| #include <iostream> |
| #define EIGEN_USE_SYCL |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| using Eigen::array; |
| using Eigen::SyclDevice; |
| using Eigen::Tensor; |
| using Eigen::TensorMap; |
| |
| int main() |
| { |
| using DataType = float; |
| using IndexType = int64_t; |
| constexpr auto DataLayout = Eigen::RowMajor; |
| |
| auto devices = Eigen::get_sycl_supported_devices(); |
| const auto device_selector = *devices.begin(); |
| Eigen::QueueInterface queueInterface(device_selector); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| |
| // create the tensors to be used in the operation |
| IndexType sizeDim1 = 3; |
| IndexType sizeDim2 = 3; |
| IndexType sizeDim3 = 3; |
| array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}}; |
| |
| // initialize the tensors with the data we want manipulate to |
| Tensor<DataType, 3,DataLayout, IndexType> in1(tensorRange); |
| Tensor<DataType, 3,DataLayout, IndexType> in2(tensorRange); |
| Tensor<DataType, 3,DataLayout, IndexType> out(tensorRange); |
| |
| // set up some random data in the tensors to be multiplied |
| in1 = in1.random(); |
| in2 = in2.random(); |
| |
| // allocate memory for the tensors |
| DataType * gpu_in1_data = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType))); |
| DataType * gpu_in2_data = static_cast<DataType*>(sycl_device.allocate(in2.size()*sizeof(DataType))); |
| DataType * gpu_out_data = static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType))); |
| |
| // |
| TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in1(gpu_in1_data, tensorRange); |
| TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in2(gpu_in2_data, tensorRange); |
| TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange); |
| |
| // copy the memory to the device and do the c=a*b calculation |
| sycl_device.memcpyHostToDevice(gpu_in1_data, in1.data(),(in1.size())*sizeof(DataType)); |
| sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.size())*sizeof(DataType)); |
| gpu_out.device(sycl_device) = gpu_in1 * gpu_in2; |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType)); |
| sycl_device.synchronize(); |
| |
| // print out the results |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim2; ++j) { |
| for (IndexType k = 0; k < sizeDim3; ++k) { |
| std::cout << "device_out" << "(" << i << ", " << j << ", " << k << ") : " << out(i,j,k) |
| << " vs host_out" << "(" << i << ", " << j << ", " << k << ") : " << in1(i,j,k) * in2(i,j,k) << "\n"; |
| } |
| } |
| } |
| printf("c=a*b Done\n"); |
| } |