| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011 Kolja Brix <brix@igpm.rwth-aachen.de> |
| // Copyright (C) 2011 Andreas Platen <andiplaten@gmx.de> |
| // Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| |
| #ifdef EIGEN_TEST_PART_1 |
| |
| #include "sparse.h" |
| #include <Eigen/SparseExtra> |
| #include <Eigen/KroneckerProduct> |
| |
| template<typename MatrixType> |
| void check_dimension(const MatrixType& ab, const int rows, const int cols) |
| { |
| VERIFY_IS_EQUAL(ab.rows(), rows); |
| VERIFY_IS_EQUAL(ab.cols(), cols); |
| } |
| |
| |
| template<typename MatrixType> |
| void check_kronecker_product(const MatrixType& ab) |
| { |
| VERIFY_IS_EQUAL(ab.rows(), 6); |
| VERIFY_IS_EQUAL(ab.cols(), 6); |
| VERIFY_IS_EQUAL(ab.size(), 36); |
| VERIFY_IS_APPROX(ab.coeff(0,0), -0.4017367630386106); |
| VERIFY_IS_APPROX(ab.coeff(0,1), 0.1056863433932735); |
| VERIFY_IS_APPROX(ab.coeff(0,2), -0.7255206194554212); |
| VERIFY_IS_APPROX(ab.coeff(0,3), 0.1908653336744706); |
| VERIFY_IS_APPROX(ab.coeff(0,4), 0.350864567234111); |
| VERIFY_IS_APPROX(ab.coeff(0,5), -0.0923032108308013); |
| VERIFY_IS_APPROX(ab.coeff(1,0), 0.415417514804677); |
| VERIFY_IS_APPROX(ab.coeff(1,1), -0.2369227701722048); |
| VERIFY_IS_APPROX(ab.coeff(1,2), 0.7502275131458511); |
| VERIFY_IS_APPROX(ab.coeff(1,3), -0.4278731019742696); |
| VERIFY_IS_APPROX(ab.coeff(1,4), -0.3628129162264507); |
| VERIFY_IS_APPROX(ab.coeff(1,5), 0.2069210808481275); |
| VERIFY_IS_APPROX(ab.coeff(2,0), 0.05465890160863986); |
| VERIFY_IS_APPROX(ab.coeff(2,1), -0.2634092511419858); |
| VERIFY_IS_APPROX(ab.coeff(2,2), 0.09871180285793758); |
| VERIFY_IS_APPROX(ab.coeff(2,3), -0.4757066334017702); |
| VERIFY_IS_APPROX(ab.coeff(2,4), -0.04773740823058334); |
| VERIFY_IS_APPROX(ab.coeff(2,5), 0.2300535609645254); |
| VERIFY_IS_APPROX(ab.coeff(3,0), -0.8172945853260133); |
| VERIFY_IS_APPROX(ab.coeff(3,1), 0.2150086428359221); |
| VERIFY_IS_APPROX(ab.coeff(3,2), 0.5825113847292743); |
| VERIFY_IS_APPROX(ab.coeff(3,3), -0.1532433770097174); |
| VERIFY_IS_APPROX(ab.coeff(3,4), -0.329383387282399); |
| VERIFY_IS_APPROX(ab.coeff(3,5), 0.08665207912033064); |
| VERIFY_IS_APPROX(ab.coeff(4,0), 0.8451267514863225); |
| VERIFY_IS_APPROX(ab.coeff(4,1), -0.481996458918977); |
| VERIFY_IS_APPROX(ab.coeff(4,2), -0.6023482390791535); |
| VERIFY_IS_APPROX(ab.coeff(4,3), 0.3435339347164565); |
| VERIFY_IS_APPROX(ab.coeff(4,4), 0.3406002157428891); |
| VERIFY_IS_APPROX(ab.coeff(4,5), -0.1942526344200915); |
| VERIFY_IS_APPROX(ab.coeff(5,0), 0.1111982482925399); |
| VERIFY_IS_APPROX(ab.coeff(5,1), -0.5358806424754169); |
| VERIFY_IS_APPROX(ab.coeff(5,2), -0.07925446559335647); |
| VERIFY_IS_APPROX(ab.coeff(5,3), 0.3819388757769038); |
| VERIFY_IS_APPROX(ab.coeff(5,4), 0.04481475387219876); |
| VERIFY_IS_APPROX(ab.coeff(5,5), -0.2159688616158057); |
| } |
| |
| |
| template<typename MatrixType> |
| void check_sparse_kronecker_product(const MatrixType& ab) |
| { |
| VERIFY_IS_EQUAL(ab.rows(), 12); |
| VERIFY_IS_EQUAL(ab.cols(), 10); |
| VERIFY_IS_EQUAL(ab.nonZeros(), 3*2); |
| VERIFY_IS_APPROX(ab.coeff(3,0), -0.04); |
| VERIFY_IS_APPROX(ab.coeff(5,1), 0.05); |
| VERIFY_IS_APPROX(ab.coeff(0,6), -0.08); |
| VERIFY_IS_APPROX(ab.coeff(2,7), 0.10); |
| VERIFY_IS_APPROX(ab.coeff(6,8), 0.12); |
| VERIFY_IS_APPROX(ab.coeff(8,9), -0.15); |
| } |
| |
| |
| EIGEN_DECLARE_TEST(kronecker_product) |
| { |
| // DM = dense matrix; SM = sparse matrix |
| |
| Matrix<double, 2, 3> DM_a; |
| SparseMatrix<double> SM_a(2,3); |
| SM_a.insert(0,0) = DM_a.coeffRef(0,0) = -0.4461540300782201; |
| SM_a.insert(0,1) = DM_a.coeffRef(0,1) = -0.8057364375283049; |
| SM_a.insert(0,2) = DM_a.coeffRef(0,2) = 0.3896572459516341; |
| SM_a.insert(1,0) = DM_a.coeffRef(1,0) = -0.9076572187376921; |
| SM_a.insert(1,1) = DM_a.coeffRef(1,1) = 0.6469156566545853; |
| SM_a.insert(1,2) = DM_a.coeffRef(1,2) = -0.3658010398782789; |
| |
| MatrixXd DM_b(3,2); |
| SparseMatrix<double> SM_b(3,2); |
| SM_b.insert(0,0) = DM_b.coeffRef(0,0) = 0.9004440976767099; |
| SM_b.insert(0,1) = DM_b.coeffRef(0,1) = -0.2368830858139832; |
| SM_b.insert(1,0) = DM_b.coeffRef(1,0) = -0.9311078389941825; |
| SM_b.insert(1,1) = DM_b.coeffRef(1,1) = 0.5310335762980047; |
| SM_b.insert(2,0) = DM_b.coeffRef(2,0) = -0.1225112806872035; |
| SM_b.insert(2,1) = DM_b.coeffRef(2,1) = 0.5903998022741264; |
| |
| SparseMatrix<double,RowMajor> SM_row_a(SM_a), SM_row_b(SM_b); |
| |
| // test DM_fixedSize = kroneckerProduct(DM_block,DM) |
| Matrix<double, 6, 6> DM_fix_ab = kroneckerProduct(DM_a.topLeftCorner<2,3>(),DM_b); |
| |
| CALL_SUBTEST(check_kronecker_product(DM_fix_ab)); |
| CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a.topLeftCorner<2,3>(),DM_b))); |
| |
| for(int i=0;i<DM_fix_ab.rows();++i) |
| for(int j=0;j<DM_fix_ab.cols();++j) |
| VERIFY_IS_APPROX(kroneckerProduct(DM_a,DM_b).coeff(i,j), DM_fix_ab(i,j)); |
| |
| // test DM_block = kroneckerProduct(DM,DM) |
| MatrixXd DM_block_ab(10,15); |
| DM_block_ab.block<6,6>(2,5) = kroneckerProduct(DM_a,DM_b); |
| CALL_SUBTEST(check_kronecker_product(DM_block_ab.block<6,6>(2,5))); |
| |
| // test DM = kroneckerProduct(DM,DM) |
| MatrixXd DM_ab = kroneckerProduct(DM_a,DM_b); |
| CALL_SUBTEST(check_kronecker_product(DM_ab)); |
| CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a,DM_b))); |
| |
| // test SM = kroneckerProduct(SM,DM) |
| SparseMatrix<double> SM_ab = kroneckerProduct(SM_a,DM_b); |
| CALL_SUBTEST(check_kronecker_product(SM_ab)); |
| SparseMatrix<double,RowMajor> SM_ab2 = kroneckerProduct(SM_a,DM_b); |
| CALL_SUBTEST(check_kronecker_product(SM_ab2)); |
| CALL_SUBTEST(check_kronecker_product(kroneckerProduct(SM_a,DM_b))); |
| |
| // test SM = kroneckerProduct(DM,SM) |
| SM_ab.setZero(); |
| SM_ab.insert(0,0)=37.0; |
| SM_ab = kroneckerProduct(DM_a,SM_b); |
| CALL_SUBTEST(check_kronecker_product(SM_ab)); |
| SM_ab2.setZero(); |
| SM_ab2.insert(0,0)=37.0; |
| SM_ab2 = kroneckerProduct(DM_a,SM_b); |
| CALL_SUBTEST(check_kronecker_product(SM_ab2)); |
| CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a,SM_b))); |
| |
| // test SM = kroneckerProduct(SM,SM) |
| SM_ab.resize(2,33); |
| SM_ab.insert(0,0)=37.0; |
| SM_ab = kroneckerProduct(SM_a,SM_b); |
| CALL_SUBTEST(check_kronecker_product(SM_ab)); |
| SM_ab2.resize(5,11); |
| SM_ab2.insert(0,0)=37.0; |
| SM_ab2 = kroneckerProduct(SM_a,SM_b); |
| CALL_SUBTEST(check_kronecker_product(SM_ab2)); |
| CALL_SUBTEST(check_kronecker_product(kroneckerProduct(SM_a,SM_b))); |
| |
| // test SM = kroneckerProduct(SM,SM) with sparse pattern |
| SM_a.resize(4,5); |
| SM_b.resize(3,2); |
| SM_a.resizeNonZeros(0); |
| SM_b.resizeNonZeros(0); |
| SM_a.insert(1,0) = -0.1; |
| SM_a.insert(0,3) = -0.2; |
| SM_a.insert(2,4) = 0.3; |
| SM_a.finalize(); |
| |
| SM_b.insert(0,0) = 0.4; |
| SM_b.insert(2,1) = -0.5; |
| SM_b.finalize(); |
| SM_ab.resize(1,1); |
| SM_ab.insert(0,0)=37.0; |
| SM_ab = kroneckerProduct(SM_a,SM_b); |
| CALL_SUBTEST(check_sparse_kronecker_product(SM_ab)); |
| |
| // test dimension of result of DM = kroneckerProduct(DM,DM) |
| MatrixXd DM_a2(2,1); |
| MatrixXd DM_b2(5,4); |
| MatrixXd DM_ab2 = kroneckerProduct(DM_a2,DM_b2); |
| CALL_SUBTEST(check_dimension(DM_ab2,2*5,1*4)); |
| DM_a2.resize(10,9); |
| DM_b2.resize(4,8); |
| DM_ab2 = kroneckerProduct(DM_a2,DM_b2); |
| CALL_SUBTEST(check_dimension(DM_ab2,10*4,9*8)); |
| |
| for(int i = 0; i < g_repeat; i++) |
| { |
| double density = Eigen::internal::random<double>(0.01,0.5); |
| int ra = Eigen::internal::random<int>(1,50); |
| int ca = Eigen::internal::random<int>(1,50); |
| int rb = Eigen::internal::random<int>(1,50); |
| int cb = Eigen::internal::random<int>(1,50); |
| SparseMatrix<float,ColMajor> sA(ra,ca), sB(rb,cb), sC; |
| SparseMatrix<float,RowMajor> sC2; |
| MatrixXf dA(ra,ca), dB(rb,cb), dC; |
| initSparse(density, dA, sA); |
| initSparse(density, dB, sB); |
| |
| sC = kroneckerProduct(sA,sB); |
| dC = kroneckerProduct(dA,dB); |
| VERIFY_IS_APPROX(MatrixXf(sC),dC); |
| |
| sC = kroneckerProduct(sA.transpose(),sB); |
| dC = kroneckerProduct(dA.transpose(),dB); |
| VERIFY_IS_APPROX(MatrixXf(sC),dC); |
| |
| sC = kroneckerProduct(sA.transpose(),sB.transpose()); |
| dC = kroneckerProduct(dA.transpose(),dB.transpose()); |
| VERIFY_IS_APPROX(MatrixXf(sC),dC); |
| |
| sC = kroneckerProduct(sA,sB.transpose()); |
| dC = kroneckerProduct(dA,dB.transpose()); |
| VERIFY_IS_APPROX(MatrixXf(sC),dC); |
| |
| sC2 = kroneckerProduct(sA,sB); |
| dC = kroneckerProduct(dA,dB); |
| VERIFY_IS_APPROX(MatrixXf(sC2),dC); |
| |
| sC2 = kroneckerProduct(dA,sB); |
| dC = kroneckerProduct(dA,dB); |
| VERIFY_IS_APPROX(MatrixXf(sC2),dC); |
| |
| sC2 = kroneckerProduct(sA,dB); |
| dC = kroneckerProduct(dA,dB); |
| VERIFY_IS_APPROX(MatrixXf(sC2),dC); |
| |
| sC2 = kroneckerProduct(2*sA,sB); |
| dC = kroneckerProduct(2*dA,dB); |
| VERIFY_IS_APPROX(MatrixXf(sC2),dC); |
| } |
| } |
| |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_2 |
| |
| // simply check that for a dense kronecker product, sparse module is not needed |
| #include "main.h" |
| #include <Eigen/KroneckerProduct> |
| |
| EIGEN_DECLARE_TEST(kronecker_product) |
| { |
| MatrixXd a(2,2), b(3,3), c; |
| a.setRandom(); |
| b.setRandom(); |
| c = kroneckerProduct(a,b); |
| VERIFY_IS_APPROX(c.block(3,3,3,3), a(1,1)*b); |
| } |
| |
| #endif |