blob: fe67833dff5f92ceb3d5b45206952f8c9f34ec81 [file] [log] [blame]
/* Optimized strcmp implementation for PowerPC64.
Copyright (C) 2003, 2006 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA
02110-1301 USA. */
#include <sysdep.h>
#include <bp-sym.h>
#include <bp-asm.h>
/* int [r3] memcmp (const char *s1 [r3], const char *s2 [r4], size_t size [r5]) */
.machine power4
EALIGN (BP_SYM(memcmp), 4, 0)
CALL_MCOUNT
#define rTMP r0
#define rRTN r3
#define rSTR1 r3 /* first string arg */
#define rSTR2 r4 /* second string arg */
#define rN r5 /* max string length */
#define rWORD1 r6 /* current word in s1 */
#define rWORD2 r7 /* current word in s2 */
#define rWORD3 r8 /* next word in s1 */
#define rWORD4 r9 /* next word in s2 */
#define rWORD5 r10 /* next word in s1 */
#define rWORD6 r11 /* next word in s2 */
#define rBITDIF r12 /* bits that differ in s1 & s2 words */
#define rWORD7 r30 /* next word in s1 */
#define rWORD8 r31 /* next word in s2 */
xor rTMP, rSTR2, rSTR1
cmplwi cr6, rN, 0
cmplwi cr1, rN, 12
clrlwi. rTMP, rTMP, 30
clrlwi rBITDIF, rSTR1, 30
cmplwi cr5, rBITDIF, 0
beq- cr6, L(zeroLength)
dcbt 0,rSTR1
dcbt 0,rSTR2
/* If less than 8 bytes or not aligned, use the unaligned
byte loop. */
blt cr1, L(bytealigned)
stwu 1,-64(1)
cfi_adjust_cfa_offset(64)
stw r31,48(1)
cfi_offset(31,(48-64))
stw r30,44(1)
cfi_offset(30,(44-64))
bne L(unaligned)
/* At this point we know both strings have the same alignment and the
compare length is at least 8 bytes. rBITDIF contains the low order
2 bits of rSTR1 and cr5 contains the result of the logical compare
of rBITDIF to 0. If rBITDIF == 0 then we are already word
aligned and can perform the word aligned loop.
Otherwise we know the two strings have the same alignment (but not
yet word aligned). So we force the string addresses to the next lower
word boundary and special case this first word using shift left to
eliminate bits preceeding the first byte. Since we want to join the
normal (word aligned) compare loop, starting at the second word,
we need to adjust the length (rN) and special case the loop
versioning for the first word. This insures that the loop count is
correct and the first word (shifted) is in the expected register pair. */
.align 4
L(samealignment):
clrrwi rSTR1, rSTR1, 2
clrrwi rSTR2, rSTR2, 2
beq cr5, L(Waligned)
add rN, rN, rBITDIF
slwi r11, rBITDIF, 3
srwi rTMP, rN, 4 /* Divide by 16 */
andi. rBITDIF, rN, 12 /* Get the word remainder */
lwz rWORD1, 0(rSTR1)
lwz rWORD2, 0(rSTR2)
cmplwi cr1, rBITDIF, 8
cmplwi cr7, rN, 16
clrlwi rN, rN, 30
beq L(dPs4)
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
bgt cr1, L(dPs3)
beq cr1, L(dPs2)
/* Remainder is 4 */
.align 3
L(dsP1):
slw rWORD5, rWORD1, r11
slw rWORD6, rWORD2, r11
cmplw cr5, rWORD5, rWORD6
blt cr7, L(dP1x)
/* Do something useful in this cycle since we have to branch anyway. */
lwz rWORD1, 4(rSTR1)
lwz rWORD2, 4(rSTR2)
cmplw cr0, rWORD1, rWORD2
b L(dP1e)
/* Remainder is 8 */
.align 4
L(dPs2):
slw rWORD5, rWORD1, r11
slw rWORD6, rWORD2, r11
cmplw cr6, rWORD5, rWORD6
blt cr7, L(dP2x)
/* Do something useful in this cycle since we have to branch anyway. */
lwz rWORD7, 4(rSTR1)
lwz rWORD8, 4(rSTR2)
cmplw cr5, rWORD7, rWORD8
b L(dP2e)
/* Remainder is 12 */
.align 4
L(dPs3):
slw rWORD3, rWORD1, r11
slw rWORD4, rWORD2, r11
cmplw cr1, rWORD3, rWORD4
b L(dP3e)
/* Count is a multiple of 16, remainder is 0 */
.align 4
L(dPs4):
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
slw rWORD1, rWORD1, r11
slw rWORD2, rWORD2, r11
cmplw cr0, rWORD1, rWORD2
b L(dP4e)
/* At this point we know both strings are word aligned and the
compare length is at least 8 bytes. */
.align 4
L(Waligned):
andi. rBITDIF, rN, 12 /* Get the word remainder */
srwi rTMP, rN, 4 /* Divide by 16 */
cmplwi cr1, rBITDIF, 8
cmplwi cr7, rN, 16
clrlwi rN, rN, 30
beq L(dP4)
bgt cr1, L(dP3)
beq cr1, L(dP2)
/* Remainder is 4 */
.align 4
L(dP1):
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
/* Normally we'd use rWORD7/rWORD8 here, but since we might exit early
(8-15 byte compare), we want to use only volatile registers. This
means we can avoid restoring non-volatile registers since we did not
change any on the early exit path. The key here is the non-early
exit path only cares about the condition code (cr5), not about which
register pair was used. */
lwz rWORD5, 0(rSTR1)
lwz rWORD6, 0(rSTR2)
cmplw cr5, rWORD5, rWORD6
blt cr7, L(dP1x)
lwz rWORD1, 4(rSTR1)
lwz rWORD2, 4(rSTR2)
cmplw cr0, rWORD1, rWORD2
L(dP1e):
lwz rWORD3, 8(rSTR1)
lwz rWORD4, 8(rSTR2)
cmplw cr1, rWORD3, rWORD4
lwz rWORD5, 12(rSTR1)
lwz rWORD6, 12(rSTR2)
cmplw cr6, rWORD5, rWORD6
bne cr5, L(dLcr5)
bne cr0, L(dLcr0)
lwzu rWORD7, 16(rSTR1)
lwzu rWORD8, 16(rSTR2)
bne cr1, L(dLcr1)
cmplw cr5, rWORD7, rWORD8
bdnz L(dLoop)
bne cr6, L(dLcr6)
lwz r30,44(1)
lwz r31,48(1)
.align 3
L(dP1x):
slwi. r12, rN, 3
bne cr5, L(dLcr5)
subfic rN, r12, 32 /* Shift count is 32 - (rN * 8). */
lwz 1,0(1)
bne L(d00)
li rRTN, 0
blr
/* Remainder is 8 */
.align 4
L(dP2):
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
lwz rWORD5, 0(rSTR1)
lwz rWORD6, 0(rSTR2)
cmplw cr6, rWORD5, rWORD6
blt cr7, L(dP2x)
lwz rWORD7, 4(rSTR1)
lwz rWORD8, 4(rSTR2)
cmplw cr5, rWORD7, rWORD8
L(dP2e):
lwz rWORD1, 8(rSTR1)
lwz rWORD2, 8(rSTR2)
cmplw cr0, rWORD1, rWORD2
lwz rWORD3, 12(rSTR1)
lwz rWORD4, 12(rSTR2)
cmplw cr1, rWORD3, rWORD4
addi rSTR1, rSTR1, 4
addi rSTR2, rSTR2, 4
bne cr6, L(dLcr6)
bne cr5, L(dLcr5)
b L(dLoop2)
/* Again we are on a early exit path (16-23 byte compare), we want to
only use volatile registers and avoid restoring non-volatile
registers. */
.align 4
L(dP2x):
lwz rWORD3, 4(rSTR1)
lwz rWORD4, 4(rSTR2)
cmplw cr5, rWORD3, rWORD4
slwi. r12, rN, 3
bne cr6, L(dLcr6)
addi rSTR1, rSTR1, 4
addi rSTR2, rSTR2, 4
bne cr5, L(dLcr5)
subfic rN, r12, 32 /* Shift count is 32 - (rN * 8). */
lwz 1,0(1)
bne L(d00)
li rRTN, 0
blr
/* Remainder is 12 */
.align 4
L(dP3):
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
lwz rWORD3, 0(rSTR1)
lwz rWORD4, 0(rSTR2)
cmplw cr1, rWORD3, rWORD4
L(dP3e):
lwz rWORD5, 4(rSTR1)
lwz rWORD6, 4(rSTR2)
cmplw cr6, rWORD5, rWORD6
blt cr7, L(dP3x)
lwz rWORD7, 8(rSTR1)
lwz rWORD8, 8(rSTR2)
cmplw cr5, rWORD7, rWORD8
lwz rWORD1, 12(rSTR1)
lwz rWORD2, 12(rSTR2)
cmplw cr0, rWORD1, rWORD2
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
bne cr1, L(dLcr1)
bne cr6, L(dLcr6)
b L(dLoop1)
/* Again we are on a early exit path (24-31 byte compare), we want to
only use volatile registers and avoid restoring non-volatile
registers. */
.align 4
L(dP3x):
lwz rWORD1, 8(rSTR1)
lwz rWORD2, 8(rSTR2)
cmplw cr5, rWORD1, rWORD2
slwi. r12, rN, 3
bne cr1, L(dLcr1)
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
bne cr6, L(dLcr6)
subfic rN, r12, 32 /* Shift count is 32 - (rN * 8). */
bne cr5, L(dLcr5)
lwz 1,0(1)
bne L(d00)
li rRTN, 0
blr
/* Count is a multiple of 16, remainder is 0 */
.align 4
L(dP4):
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
lwz rWORD1, 0(rSTR1)
lwz rWORD2, 0(rSTR2)
cmplw cr0, rWORD1, rWORD2
L(dP4e):
lwz rWORD3, 4(rSTR1)
lwz rWORD4, 4(rSTR2)
cmplw cr1, rWORD3, rWORD4
lwz rWORD5, 8(rSTR1)
lwz rWORD6, 8(rSTR2)
cmplw cr6, rWORD5, rWORD6
lwzu rWORD7, 12(rSTR1)
lwzu rWORD8, 12(rSTR2)
cmplw cr5, rWORD7, rWORD8
bne cr0, L(dLcr0)
bne cr1, L(dLcr1)
bdz- L(d24) /* Adjust CTR as we start with +4 */
/* This is the primary loop */
.align 4
L(dLoop):
lwz rWORD1, 4(rSTR1)
lwz rWORD2, 4(rSTR2)
cmplw cr1, rWORD3, rWORD4
bne cr6, L(dLcr6)
L(dLoop1):
lwz rWORD3, 8(rSTR1)
lwz rWORD4, 8(rSTR2)
cmplw cr6, rWORD5, rWORD6
bne cr5, L(dLcr5)
L(dLoop2):
lwz rWORD5, 12(rSTR1)
lwz rWORD6, 12(rSTR2)
cmplw cr5, rWORD7, rWORD8
bne cr0, L(dLcr0)
L(dLoop3):
lwzu rWORD7, 16(rSTR1)
lwzu rWORD8, 16(rSTR2)
bne- cr1, L(dLcr1)
cmplw cr0, rWORD1, rWORD2
bdnz+ L(dLoop)
L(dL4):
cmplw cr1, rWORD3, rWORD4
bne cr6, L(dLcr6)
cmplw cr6, rWORD5, rWORD6
bne cr5, L(dLcr5)
cmplw cr5, rWORD7, rWORD8
L(d44):
bne cr0, L(dLcr0)
L(d34):
bne cr1, L(dLcr1)
L(d24):
bne cr6, L(dLcr6)
L(d14):
slwi. r12, rN, 3
bne cr5, L(dLcr5)
L(d04):
lwz r30,44(1)
lwz r31,48(1)
lwz 1,0(1)
subfic rN, r12, 32 /* Shift count is 32 - (rN * 8). */
beq L(zeroLength)
/* At this point we have a remainder of 1 to 3 bytes to compare. Since
we are aligned it is safe to load the whole word, and use
shift right to eliminate bits beyond the compare length. */
L(d00):
lwz rWORD1, 4(rSTR1)
lwz rWORD2, 4(rSTR2)
srw rWORD1, rWORD1, rN
srw rWORD2, rWORD2, rN
cmplw rWORD1,rWORD2
li rRTN,0
beqlr
li rRTN,1
bgtlr
li rRTN,-1
blr
.align 4
L(dLcr0):
lwz r30,44(1)
lwz r31,48(1)
li rRTN, 1
lwz 1,0(1)
bgtlr cr0
li rRTN, -1
blr
.align 4
L(dLcr1):
lwz r30,44(1)
lwz r31,48(1)
li rRTN, 1
lwz 1,0(1)
bgtlr cr1
li rRTN, -1
blr
.align 4
L(dLcr6):
lwz r30,44(1)
lwz r31,48(1)
li rRTN, 1
lwz 1,0(1)
bgtlr cr6
li rRTN, -1
blr
.align 4
L(dLcr5):
lwz r30,44(1)
lwz r31,48(1)
L(dLcr5x):
li rRTN, 1
lwz 1,0(1)
bgtlr cr5
li rRTN, -1
blr
.align 4
L(bytealigned):
cfi_adjust_cfa_offset(-64)
mtctr rN /* Power4 wants mtctr 1st in dispatch group */
/* We need to prime this loop. This loop is swing modulo scheduled
to avoid pipe delays. The dependent instruction latencies (load to
compare to conditional branch) is 2 to 3 cycles. In this loop each
dispatch group ends in a branch and takes 1 cycle. Effectively
the first iteration of the loop only serves to load operands and
branches based on compares are delayed until the next loop.
So we must precondition some registers and condition codes so that
we don't exit the loop early on the first iteration. */
lbz rWORD1, 0(rSTR1)
lbz rWORD2, 0(rSTR2)
bdz- L(b11)
cmplw cr0, rWORD1, rWORD2
lbz rWORD3, 1(rSTR1)
lbz rWORD4, 1(rSTR2)
bdz- L(b12)
cmplw cr1, rWORD3, rWORD4
lbzu rWORD5, 2(rSTR1)
lbzu rWORD6, 2(rSTR2)
bdz- L(b13)
.align 4
L(bLoop):
lbzu rWORD1, 1(rSTR1)
lbzu rWORD2, 1(rSTR2)
bne- cr0, L(bLcr0)
cmplw cr6, rWORD5, rWORD6
bdz- L(b3i)
lbzu rWORD3, 1(rSTR1)
lbzu rWORD4, 1(rSTR2)
bne- cr1, L(bLcr1)
cmplw cr0, rWORD1, rWORD2
bdz- L(b2i)
lbzu rWORD5, 1(rSTR1)
lbzu rWORD6, 1(rSTR2)
bne- cr6, L(bLcr6)
cmplw cr1, rWORD3, rWORD4
bdnz+ L(bLoop)
/* We speculatively loading bytes before we have tested the previous
bytes. But we must avoid overrunning the length (in the ctr) to
prevent these speculative loads from causing a segfault. In this
case the loop will exit early (before the all pending bytes are
tested. In this case we must complete the pending operations
before returning. */
L(b1i):
bne- cr0, L(bLcr0)
bne- cr1, L(bLcr1)
b L(bx56)
.align 4
L(b2i):
bne- cr6, L(bLcr6)
bne- cr0, L(bLcr0)
b L(bx34)
.align 4
L(b3i):
bne- cr1, L(bLcr1)
bne- cr6, L(bLcr6)
b L(bx12)
.align 4
L(bLcr0):
li rRTN, 1
bgtlr cr0
li rRTN, -1
blr
L(bLcr1):
li rRTN, 1
bgtlr cr1
li rRTN, -1
blr
L(bLcr6):
li rRTN, 1
bgtlr cr6
li rRTN, -1
blr
L(b13):
bne- cr0, L(bx12)
bne- cr1, L(bx34)
L(bx56):
sub rRTN, rWORD5, rWORD6
blr
nop
L(b12):
bne- cr0, L(bx12)
L(bx34):
sub rRTN, rWORD3, rWORD4
blr
L(b11):
L(bx12):
sub rRTN, rWORD1, rWORD2
blr
.align 4
L(zeroLengthReturn):
L(zeroLength):
li rRTN, 0
blr
cfi_adjust_cfa_offset(64)
.align 4
/* At this point we know the strings have different alignment and the
compare length is at least 8 bytes. rBITDIF contains the low order
2 bits of rSTR1 and cr5 contains the result of the logical compare
of rBITDIF to 0. If rBITDIF == 0 then rStr1 is word aligned and can
perform the Wunaligned loop.
Otherwise we know that rSTR1 is not aready word aligned yet.
So we can force the string addresses to the next lower word
boundary and special case this first word using shift left to
eliminate bits preceeding the first byte. Since we want to join the
normal (Wualigned) compare loop, starting at the second word,
we need to adjust the length (rN) and special case the loop
versioning for the first W. This insures that the loop count is
correct and the first W (shifted) is in the expected resister pair. */
#define rSHL r29 /* Unaligned shift left count. */
#define rSHR r28 /* Unaligned shift right count. */
#define rB r27 /* Left rotation temp for rWORD2. */
#define rD r26 /* Left rotation temp for rWORD4. */
#define rF r25 /* Left rotation temp for rWORD6. */
#define rH r24 /* Left rotation temp for rWORD8. */
#define rA r0 /* Right rotation temp for rWORD2. */
#define rC r12 /* Right rotation temp for rWORD4. */
#define rE r0 /* Right rotation temp for rWORD6. */
#define rG r12 /* Right rotation temp for rWORD8. */
L(unaligned):
stw r29,40(r1)
cfi_offset(r29,(40-64))
clrlwi rSHL, rSTR2, 30
stw r28,36(r1)
cfi_offset(r28,(36-64))
beq cr5, L(Wunaligned)
stw r27,32(r1)
cfi_offset(r27,(32-64))
/* Adjust the logical start of rSTR2 to compensate for the extra bits
in the 1st rSTR1 W. */
sub r27, rSTR2, rBITDIF
/* But do not attempt to address the W before that W that contains
the actual start of rSTR2. */
clrrwi rSTR2, rSTR2, 2
stw r26,28(r1)
cfi_offset(r26,(28-64))
/* Compute the left/right shift counts for the unalign rSTR2,
compensating for the logical (W aligned) start of rSTR1. */
clrlwi rSHL, r27, 30
clrrwi rSTR1, rSTR1, 2
stw r25,24(r1)
cfi_offset(r25,(24-64))
slwi rSHL, rSHL, 3
cmplw cr5, r27, rSTR2
add rN, rN, rBITDIF
slwi r11, rBITDIF, 3
stw r24,20(r1)
cfi_offset(r24,(20-64))
subfic rSHR, rSHL, 32
srwi rTMP, rN, 4 /* Divide by 16 */
andi. rBITDIF, rN, 12 /* Get the W remainder */
/* We normally need to load 2 Ws to start the unaligned rSTR2, but in
this special case those bits may be discarded anyway. Also we
must avoid loading a W where none of the bits are part of rSTR2 as
this may cross a page boundary and cause a page fault. */
li rWORD8, 0
blt cr5, L(dus0)
lwz rWORD8, 0(rSTR2)
la rSTR2, 4(rSTR2)
slw rWORD8, rWORD8, rSHL
L(dus0):
lwz rWORD1, 0(rSTR1)
lwz rWORD2, 0(rSTR2)
cmplwi cr1, rBITDIF, 8
cmplwi cr7, rN, 16
srw rG, rWORD2, rSHR
clrlwi rN, rN, 30
beq L(duPs4)
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
or rWORD8, rG, rWORD8
bgt cr1, L(duPs3)
beq cr1, L(duPs2)
/* Remainder is 4 */
.align 4
L(dusP1):
slw rB, rWORD2, rSHL
slw rWORD7, rWORD1, r11
slw rWORD8, rWORD8, r11
bge cr7, L(duP1e)
/* At this point we exit early with the first word compare
complete and remainder of 0 to 3 bytes. See L(du14) for details on
how we handle the remaining bytes. */
cmplw cr5, rWORD7, rWORD8
slwi. rN, rN, 3
bne cr5, L(duLcr5)
cmplw cr7, rN, rSHR
beq L(duZeroReturn)
li rA, 0
ble cr7, L(dutrim)
lwz rWORD2, 4(rSTR2)
srw rA, rWORD2, rSHR
b L(dutrim)
/* Remainder is 8 */
.align 4
L(duPs2):
slw rH, rWORD2, rSHL
slw rWORD5, rWORD1, r11
slw rWORD6, rWORD8, r11
b L(duP2e)
/* Remainder is 12 */
.align 4
L(duPs3):
slw rF, rWORD2, rSHL
slw rWORD3, rWORD1, r11
slw rWORD4, rWORD8, r11
b L(duP3e)
/* Count is a multiple of 16, remainder is 0 */
.align 4
L(duPs4):
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
or rWORD8, rG, rWORD8
slw rD, rWORD2, rSHL
slw rWORD1, rWORD1, r11
slw rWORD2, rWORD8, r11
b L(duP4e)
/* At this point we know rSTR1 is word aligned and the
compare length is at least 8 bytes. */
.align 4
L(Wunaligned):
stw r27,32(r1)
cfi_offset(r27,(32-64))
clrrwi rSTR2, rSTR2, 2
stw r26,28(r1)
cfi_offset(r26,(28-64))
srwi rTMP, rN, 4 /* Divide by 16 */
stw r25,24(r1)
cfi_offset(r25,(24-64))
andi. rBITDIF, rN, 12 /* Get the W remainder */
stw r24,20(r1)
cfi_offset(r24,(20-64))
slwi rSHL, rSHL, 3
lwz rWORD6, 0(rSTR2)
lwzu rWORD8, 4(rSTR2)
cmplwi cr1, rBITDIF, 8
cmplwi cr7, rN, 16
clrlwi rN, rN, 30
subfic rSHR, rSHL, 32
slw rH, rWORD6, rSHL
beq L(duP4)
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
bgt cr1, L(duP3)
beq cr1, L(duP2)
/* Remainder is 4 */
.align 4
L(duP1):
srw rG, rWORD8, rSHR
lwz rWORD7, 0(rSTR1)
slw rB, rWORD8, rSHL
or rWORD8, rG, rH
blt cr7, L(duP1x)
L(duP1e):
lwz rWORD1, 4(rSTR1)
lwz rWORD2, 4(rSTR2)
cmplw cr5, rWORD7, rWORD8
srw rA, rWORD2, rSHR
slw rD, rWORD2, rSHL
or rWORD2, rA, rB
lwz rWORD3, 8(rSTR1)
lwz rWORD4, 8(rSTR2)
cmplw cr0, rWORD1, rWORD2
srw rC, rWORD4, rSHR
slw rF, rWORD4, rSHL
bne cr5, L(duLcr5)
or rWORD4, rC, rD
lwz rWORD5, 12(rSTR1)
lwz rWORD6, 12(rSTR2)
cmplw cr1, rWORD3, rWORD4
srw rE, rWORD6, rSHR
slw rH, rWORD6, rSHL
bne cr0, L(duLcr0)
or rWORD6, rE, rF
cmplw cr6, rWORD5, rWORD6
b L(duLoop3)
.align 4
/* At this point we exit early with the first word compare
complete and remainder of 0 to 3 bytes. See L(du14) for details on
how we handle the remaining bytes. */
L(duP1x):
cmplw cr5, rWORD7, rWORD8
slwi. rN, rN, 3
bne cr5, L(duLcr5)
cmplw cr7, rN, rSHR
beq L(duZeroReturn)
li rA, 0
ble cr7, L(dutrim)
ld rWORD2, 8(rSTR2)
srw rA, rWORD2, rSHR
b L(dutrim)
/* Remainder is 8 */
.align 4
L(duP2):
srw rE, rWORD8, rSHR
lwz rWORD5, 0(rSTR1)
or rWORD6, rE, rH
slw rH, rWORD8, rSHL
L(duP2e):
lwz rWORD7, 4(rSTR1)
lwz rWORD8, 4(rSTR2)
cmplw cr6, rWORD5, rWORD6
srw rG, rWORD8, rSHR
slw rB, rWORD8, rSHL
or rWORD8, rG, rH
blt cr7, L(duP2x)
lwz rWORD1, 8(rSTR1)
lwz rWORD2, 8(rSTR2)
cmplw cr5, rWORD7, rWORD8
bne cr6, L(duLcr6)
srw rA, rWORD2, rSHR
slw rD, rWORD2, rSHL
or rWORD2, rA, rB
lwz rWORD3, 12(rSTR1)
lwz rWORD4, 12(rSTR2)
cmplw cr0, rWORD1, rWORD2
bne cr5, L(duLcr5)
srw rC, rWORD4, rSHR
slw rF, rWORD4, rSHL
or rWORD4, rC, rD
addi rSTR1, rSTR1, 4
addi rSTR2, rSTR2, 4
cmplw cr1, rWORD3, rWORD4
b L(duLoop2)
.align 4
L(duP2x):
cmplw cr5, rWORD7, rWORD8
addi rSTR1, rSTR1, 4
addi rSTR2, rSTR2, 4
bne cr6, L(duLcr6)
slwi. rN, rN, 3
bne cr5, L(duLcr5)
cmplw cr7, rN, rSHR
beq L(duZeroReturn)
li rA, 0
ble cr7, L(dutrim)
lwz rWORD2, 4(rSTR2)
srw rA, rWORD2, rSHR
b L(dutrim)
/* Remainder is 12 */
.align 4
L(duP3):
srw rC, rWORD8, rSHR
lwz rWORD3, 0(rSTR1)
slw rF, rWORD8, rSHL
or rWORD4, rC, rH
L(duP3e):
lwz rWORD5, 4(rSTR1)
lwz rWORD6, 4(rSTR2)
cmplw cr1, rWORD3, rWORD4
srw rE, rWORD6, rSHR
slw rH, rWORD6, rSHL
or rWORD6, rE, rF
lwz rWORD7, 8(rSTR1)
lwz rWORD8, 8(rSTR2)
cmplw cr6, rWORD5, rWORD6
bne cr1, L(duLcr1)
srw rG, rWORD8, rSHR
slw rB, rWORD8, rSHL
or rWORD8, rG, rH
blt cr7, L(duP3x)
lwz rWORD1, 12(rSTR1)
lwz rWORD2, 12(rSTR2)
cmplw cr5, rWORD7, rWORD8
bne cr6, L(duLcr6)
srw rA, rWORD2, rSHR
slw rD, rWORD2, rSHL
or rWORD2, rA, rB
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
cmplw cr0, rWORD1, rWORD2
b L(duLoop1)
.align 4
L(duP3x):
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
bne cr1, L(duLcr1)
cmplw cr5, rWORD7, rWORD8
bne cr6, L(duLcr6)
slwi. rN, rN, 3
bne cr5, L(duLcr5)
cmplw cr7, rN, rSHR
beq L(duZeroReturn)
li rA, 0
ble cr7, L(dutrim)
lwz rWORD2, 4(rSTR2)
srw rA, rWORD2, rSHR
b L(dutrim)
/* Count is a multiple of 16, remainder is 0 */
.align 4
L(duP4):
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
srw rA, rWORD8, rSHR
lwz rWORD1, 0(rSTR1)
slw rD, rWORD8, rSHL
or rWORD2, rA, rH
L(duP4e):
lwz rWORD3, 4(rSTR1)
lwz rWORD4, 4(rSTR2)
cmplw cr0, rWORD1, rWORD2
srw rC, rWORD4, rSHR
slw rF, rWORD4, rSHL
or rWORD4, rC, rD
lwz rWORD5, 8(rSTR1)
lwz rWORD6, 8(rSTR2)
cmplw cr1, rWORD3, rWORD4
bne cr0, L(duLcr0)
srw rE, rWORD6, rSHR
slw rH, rWORD6, rSHL
or rWORD6, rE, rF
lwzu rWORD7, 12(rSTR1)
lwzu rWORD8, 12(rSTR2)
cmplw cr6, rWORD5, rWORD6
bne cr1, L(duLcr1)
srw rG, rWORD8, rSHR
slw rB, rWORD8, rSHL
or rWORD8, rG, rH
cmplw cr5, rWORD7, rWORD8
bdz- L(du24) /* Adjust CTR as we start with +4 */
/* This is the primary loop */
.align 4
L(duLoop):
lwz rWORD1, 4(rSTR1)
lwz rWORD2, 4(rSTR2)
cmplw cr1, rWORD3, rWORD4
bne cr6, L(duLcr6)
srw rA, rWORD2, rSHR
slw rD, rWORD2, rSHL
or rWORD2, rA, rB
L(duLoop1):
lwz rWORD3, 8(rSTR1)
lwz rWORD4, 8(rSTR2)
cmplw cr6, rWORD5, rWORD6
bne cr5, L(duLcr5)
srw rC, rWORD4, rSHR
slw rF, rWORD4, rSHL
or rWORD4, rC, rD
L(duLoop2):
lwz rWORD5, 12(rSTR1)
lwz rWORD6, 12(rSTR2)
cmplw cr5, rWORD7, rWORD8
bne cr0, L(duLcr0)
srw rE, rWORD6, rSHR
slw rH, rWORD6, rSHL
or rWORD6, rE, rF
L(duLoop3):
lwzu rWORD7, 16(rSTR1)
lwzu rWORD8, 16(rSTR2)
cmplw cr0, rWORD1, rWORD2
bne- cr1, L(duLcr1)
srw rG, rWORD8, rSHR
slw rB, rWORD8, rSHL
or rWORD8, rG, rH
bdnz+ L(duLoop)
L(duL4):
bne cr1, L(duLcr1)
cmplw cr1, rWORD3, rWORD4
bne cr6, L(duLcr6)
cmplw cr6, rWORD5, rWORD6
bne cr5, L(duLcr5)
cmplw cr5, rWORD7, rWORD8
L(du44):
bne cr0, L(duLcr0)
L(du34):
bne cr1, L(duLcr1)
L(du24):
bne cr6, L(duLcr6)
L(du14):
slwi. rN, rN, 3
bne cr5, L(duLcr5)
/* At this point we have a remainder of 1 to 3 bytes to compare. We use
shift right to eliminate bits beyond the compare length.
However it may not be safe to load rWORD2 which may be beyond the
string length. So we compare the bit length of the remainder to
the right shift count (rSHR). If the bit count is less than or equal
we do not need to load rWORD2 (all significant bits are already in
rB). */
cmplw cr7, rN, rSHR
beq L(duZeroReturn)
li rA, 0
ble cr7, L(dutrim)
lwz rWORD2, 4(rSTR2)
srw rA, rWORD2, rSHR
.align 4
L(dutrim):
lwz rWORD1, 4(rSTR1)
lwz r31,48(1)
subfic rN, rN, 32 /* Shift count is 32 - (rN * 8). */
or rWORD2, rA, rB
lwz r30,44(1)
lwz r29,40(r1)
srw rWORD1, rWORD1, rN
srw rWORD2, rWORD2, rN
lwz r28,36(r1)
lwz r27,32(r1)
cmplw rWORD1,rWORD2
li rRTN,0
beq L(dureturn26)
li rRTN,1
bgt L(dureturn26)
li rRTN,-1
b L(dureturn26)
.align 4
L(duLcr0):
lwz r31,48(1)
lwz r30,44(1)
li rRTN, 1
bgt cr0, L(dureturn29)
lwz r29,40(r1)
lwz r28,36(r1)
li rRTN, -1
b L(dureturn27)
.align 4
L(duLcr1):
lwz r31,48(1)
lwz r30,44(1)
li rRTN, 1
bgt cr1, L(dureturn29)
lwz r29,40(r1)
lwz r28,36(r1)
li rRTN, -1
b L(dureturn27)
.align 4
L(duLcr6):
lwz r31,48(1)
lwz r30,44(1)
li rRTN, 1
bgt cr6, L(dureturn29)
lwz r29,40(r1)
lwz r28,36(r1)
li rRTN, -1
b L(dureturn27)
.align 4
L(duLcr5):
lwz r31,48(1)
lwz r30,44(1)
li rRTN, 1
bgt cr5, L(dureturn29)
lwz r29,40(r1)
lwz r28,36(r1)
li rRTN, -1
b L(dureturn27)
.align 3
L(duZeroReturn):
li rRTN,0
.align 4
L(dureturn):
lwz r31,48(1)
lwz r30,44(1)
L(dureturn29):
lwz r29,40(r1)
lwz r28,36(r1)
L(dureturn27):
lwz r27,32(r1)
L(dureturn26):
lwz r26,28(r1)
L(dureturn25):
lwz r25,24(r1)
lwz r24,20(r1)
lwz 1,0(1)
blr
END (BP_SYM (memcmp))
libc_hidden_builtin_def (memcmp)
weak_alias (memcmp, bcmp)