| /* Test compilation of tgmath macros. |
| Copyright (C) 2001, 2003, 2004, 2007 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| Contributed by Jakub Jelinek <jakub@redhat.com> and |
| Ulrich Drepper <drepper@redhat.com>, 2001. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, write to the Free |
| Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 02111-1307 USA. */ |
| |
| #ifndef HAVE_MAIN |
| #undef __NO_MATH_INLINES |
| #define __NO_MATH_INLINES 1 |
| #include <math.h> |
| #include <stdio.h> |
| #include <tgmath.h> |
| |
| //#define DEBUG |
| |
| static void compile_test (void); |
| static void compile_testf (void); |
| #ifndef NO_LONG_DOUBLE |
| static void compile_testl (void); |
| #endif |
| |
| float fx; |
| double dx; |
| long double lx; |
| const float fy = 1.25; |
| const double dy = 1.25; |
| const long double ly = 1.25; |
| complex float fz; |
| complex double dz; |
| complex long double lz; |
| |
| int count_double; |
| int count_float; |
| int count_ldouble; |
| int count_cdouble; |
| int count_cfloat; |
| int count_cldouble; |
| |
| #define NCALLS 115 |
| #define NCALLS_INT 4 |
| #define NCCALLS 47 |
| |
| int |
| main (void) |
| { |
| int result = 0; |
| |
| count_float = count_double = count_ldouble = 0; |
| count_cfloat = count_cdouble = count_cldouble = 0; |
| compile_test (); |
| if (count_float != 0 || count_cfloat != 0) |
| { |
| puts ("float function called for double test"); |
| result = 1; |
| } |
| if (count_ldouble != 0 || count_cldouble != 0) |
| { |
| puts ("long double function called for double test"); |
| result = 1; |
| } |
| if (count_double < NCALLS + NCALLS_INT) |
| { |
| printf ("double functions not called often enough (%d)\n", |
| count_double); |
| result = 1; |
| } |
| else if (count_double > NCALLS + NCALLS_INT) |
| { |
| printf ("double functions called too often (%d)\n", |
| count_double); |
| result = 1; |
| } |
| if (count_cdouble < NCCALLS) |
| { |
| printf ("double complex functions not called often enough (%d)\n", |
| count_cdouble); |
| result = 1; |
| } |
| else if (count_cdouble > NCCALLS) |
| { |
| printf ("double complex functions called too often (%d)\n", |
| count_cdouble); |
| result = 1; |
| } |
| |
| count_float = count_double = count_ldouble = 0; |
| count_cfloat = count_cdouble = count_cldouble = 0; |
| compile_testf (); |
| if (count_double != 0 || count_cdouble != 0) |
| { |
| puts ("double function called for float test"); |
| result = 1; |
| } |
| if (count_ldouble != 0 || count_cldouble != 0) |
| { |
| puts ("long double function called for float test"); |
| result = 1; |
| } |
| if (count_float < NCALLS) |
| { |
| printf ("float functions not called often enough (%d)\n", count_float); |
| result = 1; |
| } |
| else if (count_float > NCALLS) |
| { |
| printf ("float functions called too often (%d)\n", |
| count_double); |
| result = 1; |
| } |
| if (count_cfloat < NCCALLS) |
| { |
| printf ("float complex functions not called often enough (%d)\n", |
| count_cfloat); |
| result = 1; |
| } |
| else if (count_cfloat > NCCALLS) |
| { |
| printf ("float complex functions called too often (%d)\n", |
| count_cfloat); |
| result = 1; |
| } |
| |
| #ifndef NO_LONG_DOUBLE |
| count_float = count_double = count_ldouble = 0; |
| count_cfloat = count_cdouble = count_cldouble = 0; |
| compile_testl (); |
| if (count_float != 0 || count_cfloat != 0) |
| { |
| puts ("float function called for long double test"); |
| result = 1; |
| } |
| if (count_double != 0 || count_cdouble != 0) |
| { |
| puts ("double function called for long double test"); |
| result = 1; |
| } |
| if (count_ldouble < NCALLS) |
| { |
| printf ("long double functions not called often enough (%d)\n", |
| count_ldouble); |
| result = 1; |
| } |
| else if (count_ldouble > NCALLS) |
| { |
| printf ("long double functions called too often (%d)\n", |
| count_double); |
| result = 1; |
| } |
| if (count_cldouble < NCCALLS) |
| { |
| printf ("long double complex functions not called often enough (%d)\n", |
| count_cldouble); |
| result = 1; |
| } |
| else if (count_cldouble > NCCALLS) |
| { |
| printf ("long double complex functions called too often (%d)\n", |
| count_cldouble); |
| result = 1; |
| } |
| #endif |
| |
| return result; |
| } |
| |
| /* Now generate the three functions. */ |
| #define HAVE_MAIN |
| |
| #define F(name) name |
| #define TYPE double |
| #define TEST_INT 1 |
| #define x dx |
| #define y dy |
| #define z dz |
| #define count count_double |
| #define ccount count_cdouble |
| #include "test-tgmath.c" |
| |
| #define F(name) name##f |
| #define TYPE float |
| #define x fx |
| #define y fy |
| #define z fz |
| #define count count_float |
| #define ccount count_cfloat |
| #include "test-tgmath.c" |
| |
| #ifndef NO_LONG_DOUBLE |
| #define F(name) name##l |
| #define TYPE long double |
| #define x lx |
| #define y ly |
| #define z lz |
| #define count count_ldouble |
| #define ccount count_cldouble |
| #include "test-tgmath.c" |
| #endif |
| |
| #else |
| |
| #ifdef DEBUG |
| #define P() puts (__FUNCTION__) |
| #else |
| #define P() |
| #endif |
| |
| static void |
| F(compile_test) (void) |
| { |
| TYPE a, b, c = 1.0; |
| complex TYPE d; |
| int i; |
| int saved_count; |
| long int j; |
| long long int k; |
| |
| a = cos (cos (x)); |
| b = acos (acos (a)); |
| a = sin (sin (x)); |
| b = asin (asin (a)); |
| a = tan (tan (x)); |
| b = atan (atan (a)); |
| c = atan2 (atan2 (a, c), atan2 (b, x)); |
| a = cosh (cosh (x)); |
| b = acosh (acosh (a)); |
| a = sinh (sinh (x)); |
| b = asinh (asinh (a)); |
| a = tanh (tanh (x)); |
| b = atanh (atanh (a)); |
| a = exp (exp (x)); |
| b = log (log (a)); |
| a = log10 (log10 (x)); |
| b = ldexp (ldexp (a, 1), 5); |
| a = frexp (frexp (x, &i), &i); |
| b = expm1 (expm1 (a)); |
| a = log1p (log1p (x)); |
| b = logb (logb (a)); |
| a = exp2 (exp2 (x)); |
| b = log2 (log2 (a)); |
| a = pow (pow (x, a), pow (c, b)); |
| b = sqrt (sqrt (a)); |
| a = hypot (hypot (x, b), hypot (c, a)); |
| b = cbrt (cbrt (a)); |
| a = ceil (ceil (x)); |
| b = fabs (fabs (a)); |
| a = floor (floor (x)); |
| b = fmod (fmod (a, b), fmod (c, x)); |
| a = nearbyint (nearbyint (x)); |
| b = round (round (a)); |
| a = trunc (trunc (x)); |
| b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i); |
| j = lrint (x) + lround (a); |
| k = llrint (b) + llround (c); |
| a = erf (erf (x)); |
| b = erfc (erfc (a)); |
| a = tgamma (tgamma (x)); |
| b = lgamma (lgamma (a)); |
| a = rint (rint (x)); |
| b = nextafter (nextafter (a, b), nextafter (c, x)); |
| a = nexttoward (nexttoward (x, a), c); |
| b = remainder (remainder (a, b), remainder (c, x)); |
| a = scalb (scalb (x, a), (TYPE) (6)); |
| k = scalbn (a, 7) + scalbln (c, 10l); |
| i = ilogb (x); |
| a = fdim (fdim (x, a), fdim (c, b)); |
| b = fmax (fmax (a, x), fmax (c, b)); |
| a = fmin (fmin (x, a), fmin (c, b)); |
| b = fma (sin (a), sin (x), sin (c)); |
| |
| #ifdef TEST_INT |
| a = atan2 (i, b); |
| b = remquo (i, a, &i); |
| c = fma (i, b, i); |
| a = pow (i, c); |
| #endif |
| x = a + b + c + i + j + k; |
| |
| saved_count = count; |
| if (ccount != 0) |
| ccount = -10000; |
| |
| d = cos (cos (z)); |
| z = acos (acos (d)); |
| d = sin (sin (z)); |
| z = asin (asin (d)); |
| d = tan (tan (z)); |
| z = atan (atan (d)); |
| d = cosh (cosh (z)); |
| z = acosh (acosh (d)); |
| d = sinh (sinh (z)); |
| z = asinh (asinh (d)); |
| d = tanh (tanh (z)); |
| z = atanh (atanh (d)); |
| d = exp (exp (z)); |
| z = log (log (d)); |
| d = sqrt (sqrt (z)); |
| z = conj (conj (d)); |
| d = fabs (conj (a)); |
| z = pow (pow (a, d), pow (b, z)); |
| d = cproj (cproj (z)); |
| z += fabs (cproj (a)); |
| a = carg (carg (z)); |
| b = creal (creal (d)); |
| c = cimag (cimag (z)); |
| x += a + b + c + i + j + k; |
| z += d; |
| |
| if (saved_count != count) |
| count = -10000; |
| |
| if (0) |
| { |
| a = cos (y); |
| a = acos (y); |
| a = sin (y); |
| a = asin (y); |
| a = tan (y); |
| a = atan (y); |
| a = atan2 (y, y); |
| a = cosh (y); |
| a = acosh (y); |
| a = sinh (y); |
| a = asinh (y); |
| a = tanh (y); |
| a = atanh (y); |
| a = exp (y); |
| a = log (y); |
| a = log10 (y); |
| a = ldexp (y, 5); |
| a = frexp (y, &i); |
| a = expm1 (y); |
| a = log1p (y); |
| a = logb (y); |
| a = exp2 (y); |
| a = log2 (y); |
| a = pow (y, y); |
| a = sqrt (y); |
| a = hypot (y, y); |
| a = cbrt (y); |
| a = ceil (y); |
| a = fabs (y); |
| a = floor (y); |
| a = fmod (y, y); |
| a = nearbyint (y); |
| a = round (y); |
| a = trunc (y); |
| a = remquo (y, y, &i); |
| j = lrint (y) + lround (y); |
| k = llrint (y) + llround (y); |
| a = erf (y); |
| a = erfc (y); |
| a = tgamma (y); |
| a = lgamma (y); |
| a = rint (y); |
| a = nextafter (y, y); |
| a = nexttoward (y, y); |
| a = remainder (y, y); |
| a = scalb (y, (const TYPE) (6)); |
| k = scalbn (y, 7) + scalbln (y, 10l); |
| i = ilogb (y); |
| a = fdim (y, y); |
| a = fmax (y, y); |
| a = fmin (y, y); |
| a = fma (y, y, y); |
| |
| #ifdef TEST_INT |
| a = atan2 (i, y); |
| a = remquo (i, y, &i); |
| a = fma (i, y, i); |
| a = pow (i, y); |
| #endif |
| |
| d = cos ((const complex TYPE) z); |
| d = acos ((const complex TYPE) z); |
| d = sin ((const complex TYPE) z); |
| d = asin ((const complex TYPE) z); |
| d = tan ((const complex TYPE) z); |
| d = atan ((const complex TYPE) z); |
| d = cosh ((const complex TYPE) z); |
| d = acosh ((const complex TYPE) z); |
| d = sinh ((const complex TYPE) z); |
| d = asinh ((const complex TYPE) z); |
| d = tanh ((const complex TYPE) z); |
| d = atanh ((const complex TYPE) z); |
| d = exp ((const complex TYPE) z); |
| d = log ((const complex TYPE) z); |
| d = sqrt ((const complex TYPE) z); |
| d = pow ((const complex TYPE) z, (const complex TYPE) z); |
| d = fabs ((const complex TYPE) z); |
| d = carg ((const complex TYPE) z); |
| d = creal ((const complex TYPE) z); |
| d = cimag ((const complex TYPE) z); |
| d = conj ((const complex TYPE) z); |
| d = cproj ((const complex TYPE) z); |
| } |
| } |
| #undef x |
| #undef y |
| #undef z |
| |
| |
| TYPE |
| (F(cos)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(acos)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(sin)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(asin)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(tan)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(atan)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(atan2)) (TYPE x, TYPE y) |
| { |
| ++count; |
| P (); |
| return x + y; |
| } |
| |
| TYPE |
| (F(cosh)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(acosh)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(sinh)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(asinh)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(tanh)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(atanh)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(exp)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(log)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(log10)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(ldexp)) (TYPE x, int y) |
| { |
| ++count; |
| P (); |
| return x + y; |
| } |
| |
| TYPE |
| (F(frexp)) (TYPE x, int *y) |
| { |
| ++count; |
| P (); |
| return x + *y; |
| } |
| |
| TYPE |
| (F(expm1)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(log1p)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(logb)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(exp2)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(log2)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(pow)) (TYPE x, TYPE y) |
| { |
| ++count; |
| P (); |
| return x + y; |
| } |
| |
| TYPE |
| (F(sqrt)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(hypot)) (TYPE x, TYPE y) |
| { |
| ++count; |
| P (); |
| return x + y; |
| } |
| |
| TYPE |
| (F(cbrt)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(ceil)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(fabs)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(floor)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(fmod)) (TYPE x, TYPE y) |
| { |
| ++count; |
| P (); |
| return x + y; |
| } |
| |
| TYPE |
| (F(nearbyint)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(round)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(trunc)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(remquo)) (TYPE x, TYPE y, int *i) |
| { |
| ++count; |
| P (); |
| return x + y + *i; |
| } |
| |
| long int |
| (F(lrint)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| long int |
| (F(lround)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| long long int |
| (F(llrint)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| long long int |
| (F(llround)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(erf)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(erfc)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(tgamma)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(lgamma)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(rint)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(nextafter)) (TYPE x, TYPE y) |
| { |
| ++count; |
| P (); |
| return x + y; |
| } |
| |
| TYPE |
| (F(nexttoward)) (TYPE x, long double y) |
| { |
| ++count; |
| P (); |
| return x + y; |
| } |
| |
| TYPE |
| (F(remainder)) (TYPE x, TYPE y) |
| { |
| ++count; |
| P (); |
| return x + y; |
| } |
| |
| TYPE |
| (F(scalb)) (TYPE x, TYPE y) |
| { |
| ++count; |
| P (); |
| return x + y; |
| } |
| |
| TYPE |
| (F(scalbn)) (TYPE x, int y) |
| { |
| ++count; |
| P (); |
| return x + y; |
| } |
| |
| TYPE |
| (F(scalbln)) (TYPE x, long int y) |
| { |
| ++count; |
| P (); |
| return x + y; |
| } |
| |
| int |
| (F(ilogb)) (TYPE x) |
| { |
| ++count; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(fdim)) (TYPE x, TYPE y) |
| { |
| ++count; |
| P (); |
| return x + y; |
| } |
| |
| TYPE |
| (F(fmin)) (TYPE x, TYPE y) |
| { |
| ++count; |
| P (); |
| return x + y; |
| } |
| |
| TYPE |
| (F(fmax)) (TYPE x, TYPE y) |
| { |
| ++count; |
| P (); |
| return x + y; |
| } |
| |
| TYPE |
| (F(fma)) (TYPE x, TYPE y, TYPE z) |
| { |
| ++count; |
| P (); |
| return x + y + z; |
| } |
| |
| complex TYPE |
| (F(cacos)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(casin)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(catan)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(ccos)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(csin)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(ctan)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(cacosh)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(casinh)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(catanh)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(ccosh)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(csinh)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(ctanh)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(cexp)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(clog)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(csqrt)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(cpow)) (complex TYPE x, complex TYPE y) |
| { |
| ++ccount; |
| P (); |
| return x + y; |
| } |
| |
| TYPE |
| (F(cabs)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(carg)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| TYPE |
| (F(creal)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return __real__ x; |
| } |
| |
| TYPE |
| (F(cimag)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return __imag__ x; |
| } |
| |
| complex TYPE |
| (F(conj)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| complex TYPE |
| (F(cproj)) (complex TYPE x) |
| { |
| ++ccount; |
| P (); |
| return x; |
| } |
| |
| #undef F |
| #undef TYPE |
| #undef count |
| #undef ccount |
| #undef TEST_INT |
| #endif |