/* | |
FreeRTOS V7.2.0 - Copyright (C) 2012 Real Time Engineers Ltd. | |
*************************************************************************** | |
* * | |
* FreeRTOS tutorial books are available in pdf and paperback. * | |
* Complete, revised, and edited pdf reference manuals are also * | |
* available. * | |
* * | |
* Purchasing FreeRTOS documentation will not only help you, by * | |
* ensuring you get running as quickly as possible and with an * | |
* in-depth knowledge of how to use FreeRTOS, it will also help * | |
* the FreeRTOS project to continue with its mission of providing * | |
* professional grade, cross platform, de facto standard solutions * | |
* for microcontrollers - completely free of charge! * | |
* * | |
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< * | |
* * | |
* Thank you for using FreeRTOS, and thank you for your support! * | |
* * | |
*************************************************************************** | |
This file is part of the FreeRTOS distribution. | |
FreeRTOS is free software; you can redistribute it and/or modify it under | |
the terms of the GNU General Public License (version 2) as published by the | |
Free Software Foundation AND MODIFIED BY the FreeRTOS exception. | |
>>>NOTE<<< The modification to the GPL is included to allow you to | |
distribute a combined work that includes FreeRTOS without being obliged to | |
provide the source code for proprietary components outside of the FreeRTOS | |
kernel. FreeRTOS is distributed in the hope that it will be useful, but | |
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
more details. You should have received a copy of the GNU General Public | |
License and the FreeRTOS license exception along with FreeRTOS; if not it | |
can be viewed here: http://www.freertos.org/a00114.html and also obtained | |
by writing to Richard Barry, contact details for whom are available on the | |
FreeRTOS WEB site. | |
1 tab == 4 spaces! | |
*************************************************************************** | |
* * | |
* Having a problem? Start by reading the FAQ "My application does * | |
* not run, what could be wrong? * | |
* * | |
* http://www.FreeRTOS.org/FAQHelp.html * | |
* * | |
*************************************************************************** | |
http://www.FreeRTOS.org - Documentation, training, latest information, | |
license and contact details. | |
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products, | |
including FreeRTOS+Trace - an indispensable productivity tool. | |
Real Time Engineers ltd license FreeRTOS to High Integrity Systems, who sell | |
the code with commercial support, indemnification, and middleware, under | |
the OpenRTOS brand: http://www.OpenRTOS.com. High Integrity Systems also | |
provide a safety engineered and independently SIL3 certified version under | |
the SafeRTOS brand: http://www.SafeRTOS.com. | |
*/ | |
/*----------------------------------------------------------- | |
* Implementation of functions defined in portable.h for the SH2A port. | |
*----------------------------------------------------------*/ | |
/* Scheduler includes. */ | |
#include "FreeRTOS.h" | |
#include "task.h" | |
/* Library includes. */ | |
#include "string.h" | |
/* Hardware specifics. */ | |
#include "iodefine.h" | |
/*-----------------------------------------------------------*/ | |
/* Tasks should start with interrupts enabled and in Supervisor mode, therefore | |
PSW is set with U and I set, and PM and IPL clear. */ | |
#define portINITIAL_PSW ( ( portSTACK_TYPE ) 0x00030000 ) | |
#define portINITIAL_FPSW ( ( portSTACK_TYPE ) 0x00000100 ) | |
/* These macros allow a critical section to be added around the call to | |
vTaskIncrementTick(), which is only ever called from interrupts at the kernel | |
priority - ie a known priority. Therefore these local macros are a slight | |
optimisation compared to calling the global SET/CLEAR_INTERRUPT_MASK macros, | |
which would require the old IPL to be read first and stored in a local variable. */ | |
#define portDISABLE_INTERRUPTS_FROM_KERNEL_ISR() __asm volatile ( "MVTIPL %0" ::"i"(configMAX_SYSCALL_INTERRUPT_PRIORITY) ) | |
#define portENABLE_INTERRUPTS_FROM_KERNEL_ISR() __asm volatile ( "MVTIPL %0" ::"i"(configKERNEL_INTERRUPT_PRIORITY) ) | |
/*-----------------------------------------------------------*/ | |
/* | |
* Function to start the first task executing - written in asm code as direct | |
* access to registers is required. | |
*/ | |
static void prvStartFirstTask( void ) __attribute__((naked)); | |
/* | |
* Software interrupt handler. Performs the actual context switch (saving and | |
* restoring of registers). Written in asm code as direct register access is | |
* required. | |
*/ | |
void vSoftwareInterruptISR( void ) __attribute__((naked)); | |
/* | |
* The tick interrupt handler. | |
*/ | |
void vTickISR( void ) __attribute__((interrupt)); | |
/*-----------------------------------------------------------*/ | |
extern void *pxCurrentTCB; | |
/*-----------------------------------------------------------*/ | |
/* | |
* See header file for description. | |
*/ | |
portSTACK_TYPE *pxPortInitialiseStack( portSTACK_TYPE *pxTopOfStack, pdTASK_CODE pxCode, void *pvParameters ) | |
{ | |
/* R0 is not included as it is the stack pointer. */ | |
*pxTopOfStack = 0x00; | |
pxTopOfStack--; | |
*pxTopOfStack = portINITIAL_PSW; | |
pxTopOfStack--; | |
*pxTopOfStack = ( portSTACK_TYPE ) pxCode; | |
/* When debugging it can be useful if every register is set to a known | |
value. Otherwise code space can be saved by just setting the registers | |
that need to be set. */ | |
#ifdef USE_FULL_REGISTER_INITIALISATION | |
{ | |
pxTopOfStack--; | |
*pxTopOfStack = 0xffffffff; /* r15. */ | |
pxTopOfStack--; | |
*pxTopOfStack = 0xeeeeeeee; | |
pxTopOfStack--; | |
*pxTopOfStack = 0xdddddddd; | |
pxTopOfStack--; | |
*pxTopOfStack = 0xcccccccc; | |
pxTopOfStack--; | |
*pxTopOfStack = 0xbbbbbbbb; | |
pxTopOfStack--; | |
*pxTopOfStack = 0xaaaaaaaa; | |
pxTopOfStack--; | |
*pxTopOfStack = 0x99999999; | |
pxTopOfStack--; | |
*pxTopOfStack = 0x88888888; | |
pxTopOfStack--; | |
*pxTopOfStack = 0x77777777; | |
pxTopOfStack--; | |
*pxTopOfStack = 0x66666666; | |
pxTopOfStack--; | |
*pxTopOfStack = 0x55555555; | |
pxTopOfStack--; | |
*pxTopOfStack = 0x44444444; | |
pxTopOfStack--; | |
*pxTopOfStack = 0x33333333; | |
pxTopOfStack--; | |
*pxTopOfStack = 0x22222222; | |
pxTopOfStack--; | |
} | |
#else | |
{ | |
pxTopOfStack -= 15; | |
} | |
#endif | |
*pxTopOfStack = ( portSTACK_TYPE ) pvParameters; /* R1 */ | |
pxTopOfStack--; | |
*pxTopOfStack = portINITIAL_FPSW; | |
pxTopOfStack--; | |
*pxTopOfStack = 0x12345678; /* Accumulator. */ | |
pxTopOfStack--; | |
*pxTopOfStack = 0x87654321; /* Accumulator. */ | |
return pxTopOfStack; | |
} | |
/*-----------------------------------------------------------*/ | |
portBASE_TYPE xPortStartScheduler( void ) | |
{ | |
extern void vApplicationSetupTimerInterrupt( void ); | |
/* Use pxCurrentTCB just so it does not get optimised away. */ | |
if( pxCurrentTCB != NULL ) | |
{ | |
/* Call an application function to set up the timer that will generate the | |
tick interrupt. This way the application can decide which peripheral to | |
use. A demo application is provided to show a suitable example. */ | |
vApplicationSetupTimerInterrupt(); | |
/* Enable the software interrupt. */ | |
_IEN( _ICU_SWINT ) = 1; | |
/* Ensure the software interrupt is clear. */ | |
_IR( _ICU_SWINT ) = 0; | |
/* Ensure the software interrupt is set to the kernel priority. */ | |
_IPR( _ICU_SWINT ) = configKERNEL_INTERRUPT_PRIORITY; | |
/* Start the first task. */ | |
prvStartFirstTask(); | |
} | |
/* Should not get here. */ | |
return pdFAIL; | |
} | |
/*-----------------------------------------------------------*/ | |
void vPortEndScheduler( void ) | |
{ | |
/* Not implemented as there is nothing to return to. */ | |
} | |
/*-----------------------------------------------------------*/ | |
static void prvStartFirstTask( void ) | |
{ | |
__asm volatile | |
( | |
/* When starting the scheduler there is nothing that needs moving to the | |
interrupt stack because the function is not called from an interrupt. | |
Just ensure the current stack is the user stack. */ | |
"SETPSW U \n" \ | |
/* Obtain the location of the stack associated with which ever task | |
pxCurrentTCB is currently pointing to. */ | |
"MOV.L #_pxCurrentTCB, R15 \n" \ | |
"MOV.L [R15], R15 \n" \ | |
"MOV.L [R15], R0 \n" \ | |
/* Restore the registers from the stack of the task pointed to by | |
pxCurrentTCB. */ | |
"POP R15 \n" \ | |
/* Accumulator low 32 bits. */ | |
"MVTACLO R15 \n" \ | |
"POP R15 \n" \ | |
/* Accumulator high 32 bits. */ | |
"MVTACHI R15 \n" \ | |
"POP R15 \n" \ | |
/* Floating point status word. */ | |
"MVTC R15, FPSW \n" \ | |
/* R1 to R15 - R0 is not included as it is the SP. */ | |
"POPM R1-R15 \n" \ | |
/* This pops the remaining registers. */ | |
"RTE \n" \ | |
"NOP \n" \ | |
"NOP \n" | |
); | |
} | |
/*-----------------------------------------------------------*/ | |
void vSoftwareInterruptISR( void ) | |
{ | |
__asm volatile | |
( | |
/* Re-enable interrupts. */ | |
"SETPSW I \n" \ | |
/* Move the data that was automatically pushed onto the interrupt stack when | |
the interrupt occurred from the interrupt stack to the user stack. | |
R15 is saved before it is clobbered. */ | |
"PUSH.L R15 \n" \ | |
/* Read the user stack pointer. */ | |
"MVFC USP, R15 \n" \ | |
/* Move the address down to the data being moved. */ | |
"SUB #12, R15 \n" \ | |
"MVTC R15, USP \n" \ | |
/* Copy the data across, R15, then PC, then PSW. */ | |
"MOV.L [ R0 ], [ R15 ] \n" \ | |
"MOV.L 4[ R0 ], 4[ R15 ] \n" \ | |
"MOV.L 8[ R0 ], 8[ R15 ] \n" \ | |
/* Move the interrupt stack pointer to its new correct position. */ | |
"ADD #12, R0 \n" \ | |
/* All the rest of the registers are saved directly to the user stack. */ | |
"SETPSW U \n" \ | |
/* Save the rest of the general registers (R15 has been saved already). */ | |
"PUSHM R1-R14 \n" \ | |
/* Save the FPSW and accumulator. */ | |
"MVFC FPSW, R15 \n" \ | |
"PUSH.L R15 \n" \ | |
"MVFACHI R15 \n" \ | |
"PUSH.L R15 \n" \ | |
/* Middle word. */ | |
"MVFACMI R15 \n" \ | |
/* Shifted left as it is restored to the low order word. */ | |
"SHLL #16, R15 \n" \ | |
"PUSH.L R15 \n" \ | |
/* Save the stack pointer to the TCB. */ | |
"MOV.L #_pxCurrentTCB, R15 \n" \ | |
"MOV.L [ R15 ], R15 \n" \ | |
"MOV.L R0, [ R15 ] \n" \ | |
/* Ensure the interrupt mask is set to the syscall priority while the kernel | |
structures are being accessed. */ | |
"MVTIPL %0 \n" \ | |
/* Select the next task to run. */ | |
"BSR.A _vTaskSwitchContext \n" \ | |
/* Reset the interrupt mask as no more data structure access is required. */ | |
"MVTIPL %1 \n" \ | |
/* Load the stack pointer of the task that is now selected as the Running | |
state task from its TCB. */ | |
"MOV.L #_pxCurrentTCB,R15 \n" \ | |
"MOV.L [ R15 ], R15 \n" \ | |
"MOV.L [ R15 ], R0 \n" \ | |
/* Restore the context of the new task. The PSW (Program Status Word) and | |
PC will be popped by the RTE instruction. */ | |
"POP R15 \n" \ | |
"MVTACLO R15 \n" \ | |
"POP R15 \n" \ | |
"MVTACHI R15 \n" \ | |
"POP R15 \n" \ | |
"MVTC R15, FPSW \n" \ | |
"POPM R1-R15 \n" \ | |
"RTE \n" \ | |
"NOP \n" \ | |
"NOP " | |
:: "i"(configMAX_SYSCALL_INTERRUPT_PRIORITY), "i"(configKERNEL_INTERRUPT_PRIORITY) | |
); | |
} | |
/*-----------------------------------------------------------*/ | |
void vTickISR( void ) | |
{ | |
/* Re-enabled interrupts. */ | |
__asm volatile( "SETPSW I" ); | |
/* Increment the tick, and perform any processing the new tick value | |
necessitates. Ensure IPL is at the max syscall value first. */ | |
portDISABLE_INTERRUPTS_FROM_KERNEL_ISR(); | |
{ | |
vTaskIncrementTick(); | |
} | |
portENABLE_INTERRUPTS_FROM_KERNEL_ISR(); | |
/* Only select a new task if the preemptive scheduler is being used. */ | |
#if( configUSE_PREEMPTION == 1 ) | |
taskYIELD(); | |
#endif | |
} | |
/*-----------------------------------------------------------*/ | |
unsigned long ulPortGetIPL( void ) | |
{ | |
__asm volatile | |
( | |
"MVFC PSW, R1 \n" \ | |
"SHLR #24, R1 \n" \ | |
"RTS " | |
); | |
/* This will never get executed, but keeps the compiler from complaining. */ | |
return 0; | |
} | |
/*-----------------------------------------------------------*/ | |
void vPortSetIPL( unsigned long ulNewIPL ) | |
{ | |
__asm volatile | |
( | |
"PUSH R5 \n" \ | |
"MVFC PSW, R5 \n" \ | |
"SHLL #24, R1 \n" \ | |
"AND #-0F000001H, R5 \n" \ | |
"OR R1, R5 \n" \ | |
"MVTC R5, PSW \n" \ | |
"POP R5 \n" \ | |
"RTS " | |
); | |
} |