blob: 1e518e832a899cdcc1f363f967664d3e25955d95 [file] [log] [blame] [edit]
/**********************************************************************
* $Id$ lpc18xx_uart.c 2011-06-02
*//**
* @file lpc18xx_uart.c
* @brief Contains all functions support for UART firmware library on LPC18xx
* @version 1.0
* @date 02. June. 2011
* @author NXP MCU SW Application Team
*
* Copyright(C) 2011, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup UART
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc18xx_uart.h"
#include "lpc18xx_cgu.h"
/* If this source file built with example, the LPC18xx FW library configuration
* file in each example directory ("lpc18xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc18xx_libcfg.h"
#else
#include "lpc18xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _UART
/* Private Functions ---------------------------------------------------------- */
static Status uart_set_divisors(LPC_USARTn_Type *UARTx, uint32_t baudrate);
/*********************************************************************//**
* @brief Determines best dividers to get a target clock rate
* @param[in] UARTx Pointer to selected UART peripheral, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @param[in] baudrate Desired UART baud rate.
* @return Error status, could be:
* - SUCCESS
* - ERROR
**********************************************************************/
static Status uart_set_divisors(LPC_USARTn_Type *UARTx, uint32_t baudrate)
{
Status errorStatus = ERROR;
uint32_t uClk;
uint32_t d, m, bestd, bestm, tmp;
uint64_t best_divisor, divisor;
uint32_t current_error, best_error;
uint32_t recalcbaud;
/* get UART block clock */
//to be defined uClk = CGU_GetCLK(CGU_CLKTYPE_PER);
#ifdef _UART0
if(UARTx == LPC_USART0)
{
uClk = CGU_GetPCLKFrequency(CGU_PERIPHERAL_UART0);
}
#endif
#ifdef _UART1
if(((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
uClk = CGU_GetPCLKFrequency(CGU_PERIPHERAL_UART1);
}
#endif
#ifdef _UART2
if(UARTx == LPC_USART2)
{
uClk = CGU_GetPCLKFrequency(CGU_PERIPHERAL_UART2);
}
#endif
#ifdef _UART3
if(UARTx == LPC_USART3)
{
uClk = CGU_GetPCLKFrequency(CGU_PERIPHERAL_UART3);
}
#endif
/* In the Uart IP block, baud rate is calculated using FDR and DLL-DLM registers
* The formula is :
* BaudRate= uClk * (mulFracDiv/(mulFracDiv+dividerAddFracDiv) / (16 * (DLL)
* It involves floating point calculations. That's the reason the formulae are adjusted with
* Multiply and divide method.*/
/* The value of mulFracDiv and dividerAddFracDiv should comply to the following expressions:
* 0 < mulFracDiv <= 15, 0 <= dividerAddFracDiv <= 15 */
best_error = 0xFFFFFFFF; /* Worst case */
bestd = 0;
bestm = 0;
best_divisor = 0;
for (m = 1 ; m <= 15 ;m++)
{
for (d = 0 ; d < m ; d++)
{
divisor = ((uint64_t)uClk<<28)*m/(baudrate*(m+d));
current_error = divisor & 0xFFFFFFFF;
tmp = divisor>>32;
/* Adjust error */
if(current_error > ((uint32_t)1<<31)){
current_error = -current_error;
tmp++;
}
if(tmp<1 || tmp>65536) /* Out of range */
continue;
if( current_error < best_error){
best_error = current_error;
best_divisor = tmp;
bestd = d;
bestm = m;
if(best_error == 0) break;
}
} /* end of inner for loop */
if (best_error == 0)
break;
} /* end of outer for loop */
if(best_divisor == 0) return ERROR; /* can not find best match */
recalcbaud = (uClk>>4) * bestm/(best_divisor * (bestm + bestd));
/* reuse best_error to evaluate baud error*/
if(baudrate>recalcbaud) best_error = baudrate - recalcbaud;
else best_error = recalcbaud -baudrate;
best_error = best_error * 100 / baudrate;
if (best_error < UART_ACCEPTED_BAUDRATE_ERROR)
{
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
((LPC_UART1_Type *)UARTx)->LCR |= UART_LCR_DLAB_EN;
((LPC_UART1_Type *)UARTx)->/*DLIER.*/DLM = UART_LOAD_DLM(best_divisor);
((LPC_UART1_Type *)UARTx)->/*RBTHDLR.*/DLL = UART_LOAD_DLL(best_divisor);
/* Then reset DLAB bit */
((LPC_UART1_Type *)UARTx)->LCR &= (~UART_LCR_DLAB_EN) & UART_LCR_BITMASK;
((LPC_UART1_Type *)UARTx)->FDR = (UART_FDR_MULVAL(bestm) \
| UART_FDR_DIVADDVAL(bestd)) & UART_FDR_BITMASK;
}
else
{
UARTx->LCR |= UART_LCR_DLAB_EN;
UARTx->/*DLIER.*/DLM = UART_LOAD_DLM(best_divisor);
UARTx->/*RBTHDLR.*/DLL = UART_LOAD_DLL(best_divisor);
/* Then reset DLAB bit */
UARTx->LCR &= (~UART_LCR_DLAB_EN) & UART_LCR_BITMASK;
UARTx->FDR = (UART_FDR_MULVAL(bestm) \
| UART_FDR_DIVADDVAL(bestd)) & UART_FDR_BITMASK;
}
errorStatus = SUCCESS;
}
return errorStatus;
}
/* End of Private Functions ---------------------------------------------------- */
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup UART_Public_Functions
* @{
*/
/* UART Init/DeInit functions -------------------------------------------------*/
/********************************************************************//**
* @brief Initializes the UARTx peripheral according to the specified
* parameters in the UART_ConfigStruct.
* @param[in] UARTx UART peripheral selected, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @param[in] UART_ConfigStruct Pointer to a UART_CFG_Type structure
* that contains the configuration information for the
* specified UART peripheral.
* @return None
*********************************************************************/
void UART_Init(LPC_USARTn_Type *UARTx, UART_CFG_Type *UART_ConfigStruct)
{
uint32_t tmp;
// For debug mode
CHECK_PARAM(PARAM_UARTx(UARTx));
CHECK_PARAM(PARAM_UART_DATABIT(UART_ConfigStruct->Databits));
CHECK_PARAM(PARAM_UART_STOPBIT(UART_ConfigStruct->Stopbits));
CHECK_PARAM(PARAM_UART_PARITY(UART_ConfigStruct->Parity));
#ifdef _UART0
if(UARTx == LPC_USART0)
{
/* Set up peripheral clock for UART0 module */
//LPC_CGU->BASE_UART0_CLK = (SRC_PL160M_0<<24) | (1<<11); // Use PLL1 and auto block
CGU_EntityConnect(CGU_CLKSRC_XTAL_OSC, CGU_BASE_UART0);
}
#endif
#ifdef _UART1
if(((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
/* Set up peripheral clock for UART1 module */
//LPC_CGU->BASE_UART1_CLK = (SRC_PL160M_0<<24) | (1<<11); // Use PLL1 and auto block
CGU_EntityConnect(CGU_CLKSRC_PLL1, CGU_BASE_UART1);
}
#endif
#ifdef _UART2
if(UARTx == LPC_USART2)
{
/* Set up peripheral clock for UART2 module */
//LPC_CGU->BASE_UART2_CLK = (SRC_PL160M_0<<24) | (1<<11); // Use PLL1 and auto block
CGU_EntityConnect(CGU_CLKSRC_XTAL_OSC, CGU_BASE_UART2);
}
#endif
#ifdef _UART3
if(UARTx == LPC_USART3)
{
/* Set up peripheral clock for UART3 module */
//LPC_CGU->BASE_UART3_CLK = (SRC_PL160M_0<<24) | (1<<11); // Use PLL1 and auto block
CGU_EntityConnect(CGU_CLKSRC_XTAL_OSC, CGU_BASE_UART3);
}
#endif
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
/* FIFOs are empty */
((LPC_UART1_Type *)UARTx)->/*IIFCR.*/FCR = ( UART_FCR_FIFO_EN \
| UART_FCR_RX_RS | UART_FCR_TX_RS);
// Disable FIFO
((LPC_UART1_Type *)UARTx)->/*IIFCR.*/FCR = 0;
// Dummy reading
while (((LPC_UART1_Type *)UARTx)->LSR & UART_LSR_RDR)
{
tmp = ((LPC_UART1_Type *)UARTx)->/*RBTHDLR.*/RBR;
}
((LPC_UART1_Type *)UARTx)->TER = UART1_TER_TXEN;
// Wait for current transmit complete
while (!(((LPC_UART1_Type *)UARTx)->LSR & UART_LSR_THRE));
// Disable Tx
((LPC_UART1_Type *)UARTx)->TER = 0;
// Disable interrupt
((LPC_UART1_Type *)UARTx)->/*DLIER.*/IER = 0;
// Set LCR to default state
((LPC_UART1_Type *)UARTx)->LCR = 0;
// Set ACR to default state
((LPC_UART1_Type *)UARTx)->ACR = 0;
// Set Modem Control to default state
((LPC_UART1_Type *)UARTx)->MCR = 0;
// Set RS485 control to default state
((LPC_UART1_Type *)UARTx)->RS485CTRL = 0;
// Set RS485 delay timer to default state
((LPC_UART1_Type *)UARTx)->RS485DLY = 0;
// Set RS485 addr match to default state
((LPC_UART1_Type *)UARTx)->RS485ADRMATCH = 0;
//Dummy Reading to Clear Status
tmp = ((LPC_UART1_Type *)UARTx)->MSR;
tmp = ((LPC_UART1_Type *)UARTx)->LSR;
}
else
{
/* FIFOs are empty */
UARTx->/*IIFCR.*/FCR = ( UART_FCR_FIFO_EN | UART_FCR_RX_RS | UART_FCR_TX_RS);
// Disable FIFO
UARTx->/*IIFCR.*/FCR = 0;
// Dummy reading
while (UARTx->LSR & UART_LSR_RDR)
{
tmp = UARTx->/*RBTHDLR.*/RBR;
}
UARTx->TER = UART0_2_3_TER_TXEN;
// Wait for current transmit complete
while (!(UARTx->LSR & UART_LSR_THRE));
// Disable Tx
UARTx->TER = 0;
// Disable interrupt
UARTx->/*DLIER.*/IER = 0;
// Set LCR to default state
UARTx->LCR = 0;
// Set ACR to default state
UARTx->ACR = 0;
// set HDEN to default state
UARTx->HDEN = 0;
// set SCICTRL to default state
UARTx->SCICTRL = 0;
// set SYNCCTRL to default state
UARTx->SYNCCTRL =0;
// Set RS485 control to default state
UARTx->RS485CTRL = 0;
// Set RS485 delay timer to default state
UARTx->RS485DLY = 0;
// Set RS485 addr match to default state
UARTx->RS485ADRMATCH = 0;
// Dummy reading
tmp = UARTx->LSR;
}
if (UARTx == LPC_USART3)
{
// Set IrDA to default state
UARTx->ICR = 0;
}
// Set Line Control register ----------------------------
uart_set_divisors(UARTx, (UART_ConfigStruct->Baud_rate));
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
tmp = (((LPC_UART1_Type *)UARTx)->LCR & (UART_LCR_DLAB_EN | UART_LCR_BREAK_EN)) \
& UART_LCR_BITMASK;
}
else
{
tmp = (UARTx->LCR & (UART_LCR_DLAB_EN | UART_LCR_BREAK_EN)) & UART_LCR_BITMASK;
}
switch (UART_ConfigStruct->Databits){
case UART_DATABIT_5:
tmp |= UART_LCR_WLEN5;
break;
case UART_DATABIT_6:
tmp |= UART_LCR_WLEN6;
break;
case UART_DATABIT_7:
tmp |= UART_LCR_WLEN7;
break;
case UART_DATABIT_8:
default:
tmp |= UART_LCR_WLEN8;
break;
}
if (UART_ConfigStruct->Parity == UART_PARITY_NONE)
{
// Do nothing...
}
else
{
tmp |= UART_LCR_PARITY_EN;
switch (UART_ConfigStruct->Parity)
{
case UART_PARITY_ODD:
tmp |= UART_LCR_PARITY_ODD;
break;
case UART_PARITY_EVEN:
tmp |= UART_LCR_PARITY_EVEN;
break;
case UART_PARITY_SP_1:
tmp |= UART_LCR_PARITY_F_1;
break;
case UART_PARITY_SP_0:
tmp |= UART_LCR_PARITY_F_0;
break;
default:
break;
}
}
switch (UART_ConfigStruct->Stopbits){
case UART_STOPBIT_2:
tmp |= UART_LCR_STOPBIT_SEL;
break;
case UART_STOPBIT_1:
default:
// Do no thing
break;
}
// Write back to LCR, configure FIFO and Disable Tx
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
((LPC_UART1_Type *)UARTx)->LCR = (uint8_t)(tmp & UART_LCR_BITMASK);
}
else
{
UARTx->LCR = (uint8_t)(tmp & UART_LCR_BITMASK);
}
}
/*********************************************************************//**
* @brief De-initializes the UARTx peripheral registers to their
* default reset values.
* @param[in] UARTx UART peripheral selected, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @return None
**********************************************************************/
void UART_DeInit(LPC_USARTn_Type* UARTx)
{
// For debug mode
CHECK_PARAM(PARAM_UARTx(UARTx));
UART_TxCmd(UARTx, DISABLE);
#ifdef _UART0
if (UARTx == LPC_USART0)
{
/* Set up peripheral clock for UART0 module */
//LPC_CGU->BASE_UART0_CLK = (SRC_PL160M_1<<24) | (1<<11); // base SRC_PL160M_1 is not configured, so no clk out
}
#endif
#ifdef _UART1
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
/* Set up peripheral clock for UART1 module */
//LPC_CGU->BASE_UART1_CLK = (SRC_PL160M_1<<24) | (1<<11); // base SRC_PL160M_1 is not configured, so no clk out
}
#endif
#ifdef _UART2
if (UARTx == LPC_USART2)
{
/* Set up peripheral clock for UART2 module */
//LPC_CGU->BASE_UART2_CLK = (SRC_PL160M_1<<24) | (1<<11); // base SRC_PL160M_1 is not configured, so no clk out
}
#endif
#ifdef _UART3
if (UARTx == LPC_USART3)
{
/* Set up peripheral clock for UART3 module */
//LPC_CGU->BASE_UART3_CLK = (SRC_PL160M_1<<24) | (1<<11); // base SRC_PL160M_1 is not configured, so no clk out
}
#endif
}
/*****************************************************************************//**
* @brief Fills each UART_InitStruct member with its default value:
* - 9600 bps
* - 8-bit data
* - 1 Stopbit
* - None Parity
* @param[in] UART_InitStruct Pointer to a UART_CFG_Type structure which will
* be initialized.
* @return None
*******************************************************************************/
void UART_ConfigStructInit(UART_CFG_Type *UART_InitStruct)
{
UART_InitStruct->Baud_rate = 9600;
UART_InitStruct->Databits = UART_DATABIT_8;
UART_InitStruct->Parity = UART_PARITY_NONE;
UART_InitStruct->Stopbits = UART_STOPBIT_1;
}
/* UART Send/Recieve functions -------------------------------------------------*/
/*********************************************************************//**
* @brief Transmit a single data through UART peripheral
* @param[in] UARTx UART peripheral selected, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @param[in] Data Data to transmit (must be 8-bit long)
* @return None
**********************************************************************/
void UART_SendByte(LPC_USARTn_Type* UARTx, uint8_t Data)
{
CHECK_PARAM(PARAM_UARTx(UARTx));
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
((LPC_UART1_Type *)UARTx)->/*RBTHDLR.*/THR = Data & UART_THR_MASKBIT;
}
else
{
UARTx->/*RBTHDLR.*/THR = Data & UART_THR_MASKBIT;
}
}
/*********************************************************************//**
* @brief Receive a single data from UART peripheral
* @param[in] UARTx UART peripheral selected, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @return Data received
**********************************************************************/
uint8_t UART_ReceiveByte(LPC_USARTn_Type* UARTx)
{
CHECK_PARAM(PARAM_UARTx(UARTx));
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
return (((LPC_UART1_Type *)UARTx)->/*RBTHDLR.*/RBR & UART_RBR_MASKBIT);
}
else
{
return (UARTx->/*RBTHDLR.*/RBR & UART_RBR_MASKBIT);
}
}
/*********************************************************************//**
* @brief Send a block of data via UART peripheral
* @param[in] UARTx Selected UART peripheral used to send data, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @param[in] txbuf Pointer to Transmit buffer
* @param[in] buflen Length of Transmit buffer
* @param[in] flag Flag used in UART transfer, should be
* - NONE_BLOCKING
* - BLOCKING
* @return Number of bytes sent.
*
* Note: when using UART in BLOCKING mode, a time-out condition is used
* via defined symbol UART_BLOCKING_TIMEOUT.
**********************************************************************/
uint32_t UART_Send(LPC_USARTn_Type *UARTx, uint8_t *txbuf,
uint32_t buflen, TRANSFER_BLOCK_Type flag)
{
uint32_t bToSend, bSent, timeOut, fifo_cnt;
uint8_t *pChar = txbuf;
bToSend = buflen;
// blocking mode
if (flag == BLOCKING) {
bSent = 0;
while (bToSend){
timeOut = UART_BLOCKING_TIMEOUT;
// Wait for THR empty with timeout
while (!(UARTx->LSR & UART_LSR_THRE)) {
if (timeOut == 0) break;
timeOut--;
}
// Time out!
if(timeOut == 0) break;
fifo_cnt = UART_TX_FIFO_SIZE;
while (fifo_cnt && bToSend){
UART_SendByte(UARTx, (*pChar++));
fifo_cnt--;
bToSend--;
bSent++;
}
}
}
// None blocking mode
else {
bSent = 0;
while (bToSend) {
if (!(UARTx->LSR & UART_LSR_THRE)){
break;
}
fifo_cnt = UART_TX_FIFO_SIZE;
while (fifo_cnt && bToSend) {
UART_SendByte(UARTx, (*pChar++));
bToSend--;
fifo_cnt--;
bSent++;
}
}
}
return bSent;
}
/*********************************************************************//**
* @brief Receive a block of data via UART peripheral
* @param[in] UARTx Selected UART peripheral used to send data,
* should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @param[out] rxbuf Pointer to Received buffer
* @param[in] buflen Length of Received buffer
* @param[in] flag Flag mode, should be:
* - NONE_BLOCKING
* - BLOCKING
* @return Number of bytes received
*
* Note: when using UART in BLOCKING mode, a time-out condition is used
* via defined symbol UART_BLOCKING_TIMEOUT.
**********************************************************************/
uint32_t UART_Receive(LPC_USARTn_Type *UARTx, uint8_t *rxbuf, \
uint32_t buflen, TRANSFER_BLOCK_Type flag)
{
uint32_t bToRecv, bRecv, timeOut;
uint8_t *pChar = rxbuf;
bToRecv = buflen;
// Blocking mode
if (flag == BLOCKING) {
bRecv = 0;
while (bToRecv){
timeOut = UART_BLOCKING_TIMEOUT;
while (!(UARTx->LSR & UART_LSR_RDR)){
if (timeOut == 0) break;
timeOut--;
}
// Time out!
if(timeOut == 0) break;
// Get data from the buffer
(*pChar++) = UART_ReceiveByte(UARTx);
bToRecv--;
bRecv++;
}
}
// None blocking mode
else {
bRecv = 0;
while (bToRecv) {
if (!(UARTx->LSR & UART_LSR_RDR)) {
break;
} else {
(*pChar++) = UART_ReceiveByte(UARTx);
bRecv++;
bToRecv--;
}
}
}
return bRecv;
}
/*********************************************************************//**
* @brief Force BREAK character on UART line, output pin UARTx TXD is
forced to logic 0.
* @param[in] UARTx UART peripheral selected, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @return None
**********************************************************************/
void UART_ForceBreak(LPC_USARTn_Type* UARTx)
{
CHECK_PARAM(PARAM_UARTx(UARTx));
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
((LPC_UART1_Type *)UARTx)->LCR |= UART_LCR_BREAK_EN;
}
else
{
UARTx->LCR |= UART_LCR_BREAK_EN;
}
}
/********************************************************************//**
* @brief Enable or disable specified UART interrupt.
* @param[in] UARTx UART peripheral selected, should be
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @param[in] UARTIntCfg Specifies the interrupt flag,
* should be one of the following:
* - UART_INTCFG_RBR :RBR Interrupt enable
* - UART_INTCFG_THRE :THR Interrupt enable
* - UART_INTCFG_RLS :RX line status interrupt enable
* - UART1_INTCFG_MS :Modem status interrupt enable (UART1 only)
* - UART1_INTCFG_CTS :CTS1 signal transition interrupt enable (UART1 only)
* - UART_INTCFG_ABEO :Enables the end of auto-baud interrupt
* - UART_INTCFG_ABTO :Enables the auto-baud time-out interrupt
* @param[in] NewState New state of specified UART interrupt type,
* should be:
* - ENALBE :Enable this UART interrupt type.
* - DISALBE :Disable this UART interrupt type.
* @return None
*********************************************************************/
void UART_IntConfig(LPC_USARTn_Type *UARTx, UART_INT_Type UARTIntCfg, FunctionalState NewState)
{
uint32_t tmp;
CHECK_PARAM(PARAM_UARTx(UARTx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
switch(UARTIntCfg){
case UART_INTCFG_RBR:
tmp = UART_IER_RBRINT_EN;
break;
case UART_INTCFG_THRE:
tmp = UART_IER_THREINT_EN;
break;
case UART_INTCFG_RLS:
tmp = UART_IER_RLSINT_EN;
break;
case UART1_INTCFG_MS:
tmp = UART1_IER_MSINT_EN;
break;
case UART1_INTCFG_CTS:
tmp = UART1_IER_CTSINT_EN;
break;
case UART_INTCFG_ABEO:
tmp = UART_IER_ABEOINT_EN;
break;
case UART_INTCFG_ABTO:
tmp = UART_IER_ABTOINT_EN;
break;
}
if ((LPC_UART1_Type *) UARTx == LPC_UART1)
{
CHECK_PARAM((PARAM_UART_INTCFG(UARTIntCfg)) || (PARAM_UART1_INTCFG(UARTIntCfg)));
}
else
{
CHECK_PARAM(PARAM_UART_INTCFG(UARTIntCfg));
}
if (NewState == ENABLE)
{
if ((LPC_UART1_Type *) UARTx == LPC_UART1)
{
((LPC_UART1_Type *)UARTx)->/*DLIER.*/IER |= tmp;
}
else
{
UARTx->/*DLIER.*/IER |= tmp;
}
}
else
{
if ((LPC_UART1_Type *) UARTx == LPC_UART1)
{
((LPC_UART1_Type *)UARTx)->/*DLIER.*/IER &= (~tmp) & UART1_IER_BITMASK;
}
else
{
UARTx->/*DLIER.*/IER &= (~tmp) & UART_IER_BITMASK;
}
}
}
/********************************************************************//**
* @brief Get current value of Line Status register in UART peripheral.
* @param[in] UARTx UART peripheral selected, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @return Current value of Line Status register in UART peripheral.
* Note: The return value of this function must be ANDed with each member in
* UART_LS_Type enumeration to determine current flag status
* corresponding to each Line status type. Because some flags in
* Line Status register will be cleared after reading, the next reading
* Line Status register could not be correct. So this function used to
* read Line status register in one time only, then the return value
* used to check all flags.
*********************************************************************/
uint8_t UART_GetLineStatus(LPC_USARTn_Type* UARTx)
{
CHECK_PARAM(PARAM_UARTx(UARTx));
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
return ((((LPC_UART1_Type *)LPC_UART1)->LSR) & UART_LSR_BITMASK);
}
else
{
return ((UARTx->LSR) & UART_LSR_BITMASK);
}
}
/*********************************************************************//**
* @brief Check whether if UART is busy or not
* @param[in] UARTx UART peripheral selected, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @return RESET if UART is not busy, otherwise return SET.
**********************************************************************/
FlagStatus UART_CheckBusy(LPC_USARTn_Type *UARTx)
{
if (UARTx->LSR & UART_LSR_TEMT){
return RESET;
} else {
return SET;
}
}
/*********************************************************************//**
* @brief Configure FIFO function on selected UART peripheral
* @param[in] UARTx UART peripheral selected, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @param[in] FIFOCfg Pointer to a UART_FIFO_CFG_Type Structure that
* contains specified information about FIFO configuration
* @return none
**********************************************************************/
void UART_FIFOConfig(LPC_USARTn_Type *UARTx, UART_FIFO_CFG_Type *FIFOCfg)
{
uint8_t tmp = 0;
CHECK_PARAM(PARAM_UARTx(UARTx));
CHECK_PARAM(PARAM_UART_FIFO_LEVEL(FIFOCfg->FIFO_Level));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(FIFOCfg->FIFO_DMAMode));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(FIFOCfg->FIFO_ResetRxBuf));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(FIFOCfg->FIFO_ResetTxBuf));
tmp |= UART_FCR_FIFO_EN;
switch (FIFOCfg->FIFO_Level){
case UART_FIFO_TRGLEV0:
tmp |= UART_FCR_TRG_LEV0;
break;
case UART_FIFO_TRGLEV1:
tmp |= UART_FCR_TRG_LEV1;
break;
case UART_FIFO_TRGLEV2:
tmp |= UART_FCR_TRG_LEV2;
break;
case UART_FIFO_TRGLEV3:
default:
tmp |= UART_FCR_TRG_LEV3;
break;
}
if (FIFOCfg->FIFO_ResetTxBuf == ENABLE)
{
tmp |= UART_FCR_TX_RS;
}
if (FIFOCfg->FIFO_ResetRxBuf == ENABLE)
{
tmp |= UART_FCR_RX_RS;
}
if (FIFOCfg->FIFO_DMAMode == ENABLE)
{
tmp |= UART_FCR_DMAMODE_SEL;
}
//write to FIFO control register
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
((LPC_UART1_Type *)UARTx)->/*IIFCR.*/FCR = tmp & UART_FCR_BITMASK;
}
else
{
UARTx->/*IIFCR.*/FCR = tmp & UART_FCR_BITMASK;
}
}
/*****************************************************************************//**
* @brief Fills each UART_FIFOInitStruct member with its default value:
* - FIFO_DMAMode = DISABLE
* - FIFO_Level = UART_FIFO_TRGLEV0
* - FIFO_ResetRxBuf = ENABLE
* - FIFO_ResetTxBuf = ENABLE
* - FIFO_State = ENABLE
*
* @param[in] UART_FIFOInitStruct Pointer to a UART_FIFO_CFG_Type structure
* which will be initialized.
* @return None
*******************************************************************************/
void UART_FIFOConfigStructInit(UART_FIFO_CFG_Type *UART_FIFOInitStruct)
{
UART_FIFOInitStruct->FIFO_DMAMode = DISABLE;
UART_FIFOInitStruct->FIFO_Level = UART_FIFO_TRGLEV0;
UART_FIFOInitStruct->FIFO_ResetRxBuf = ENABLE;
UART_FIFOInitStruct->FIFO_ResetTxBuf = ENABLE;
}
/*********************************************************************//**
* @brief Start/Stop Auto Baudrate activity
* @param[in] UARTx UART peripheral selected, should be
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @param[in] ABConfigStruct A pointer to UART_AB_CFG_Type structure that
* contains specified information about UART auto baudrate configuration
* @param[in] NewState New State of Auto baudrate activity, should be:
* - ENABLE :Start this activity
* - DISABLE :Stop this activity
* Note: Auto-baudrate mode enable bit will be cleared once this mode
* completed.
* @return none
**********************************************************************/
void UART_ABCmd(LPC_USARTn_Type *UARTx, UART_AB_CFG_Type *ABConfigStruct, \
FunctionalState NewState)
{
uint32_t tmp;
CHECK_PARAM(PARAM_UARTx(UARTx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
tmp = 0;
if (NewState == ENABLE) {
if (ABConfigStruct->ABMode == UART_AUTOBAUD_MODE1){
tmp |= UART_ACR_MODE;
}
if (ABConfigStruct->AutoRestart == ENABLE){
tmp |= UART_ACR_AUTO_RESTART;
}
}
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
if (NewState == ENABLE)
{
// Clear DLL and DLM value
((LPC_UART1_Type *)UARTx)->LCR |= UART_LCR_DLAB_EN;
((LPC_UART1_Type *)UARTx)->DLL = 0;
((LPC_UART1_Type *)UARTx)->DLM = 0;
((LPC_UART1_Type *)UARTx)->LCR &= ~UART_LCR_DLAB_EN;
// FDR value must be reset to default value
((LPC_UART1_Type *)UARTx)->FDR = 0x10;
((LPC_UART1_Type *)UARTx)->ACR = UART_ACR_START | tmp;
}
else
{
((LPC_UART1_Type *)UARTx)->ACR = 0;
}
}
else
{
if (NewState == ENABLE)
{
// Clear DLL and DLM value
UARTx->LCR |= UART_LCR_DLAB_EN;
UARTx->DLL = 0;
UARTx->DLM = 0;
UARTx->LCR &= ~UART_LCR_DLAB_EN;
// FDR value must be reset to default value
UARTx->FDR = 0x10;
UARTx->ACR = UART_ACR_START | tmp;
}
else
{
UARTx->ACR = 0;
}
}
}
/*********************************************************************//**
* @brief Enable/Disable transmission on UART TxD pin
* @param[in] UARTx UART peripheral selected, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @param[in] NewState New State of Tx transmission function, should be:
* - ENABLE :Enable this function
- DISABLE :Disable this function
* @return none
**********************************************************************/
void UART_TxCmd(LPC_USARTn_Type *UARTx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_UARTx(UARTx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if (NewState == ENABLE)
{
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
((LPC_UART1_Type *)UARTx)->TER |= UART1_TER_TXEN;
}
else
{
UARTx->TER |= UART0_2_3_TER_TXEN;
}
}
else
{
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
((LPC_UART1_Type *)UARTx)->TER &= (~UART1_TER_TXEN) & UART1_TER_BITMASK;
}
else
{
UARTx->TER &= (~UART0_2_3_TER_TXEN) & UART0_2_3_TER_BITMASK;
}
}
}
/* UART IrDA functions ---------------------------------------------------*/
#ifdef _UART3
/*********************************************************************//**
* @brief Enable or disable inverting serial input function of IrDA
* on UART peripheral.
* @param[in] UARTx UART peripheral selected, should be LPC_UART3 (only)
* @param[in] NewState New state of inverting serial input, should be:
* - ENABLE :Enable this function.
* - DISABLE :Disable this function.
* @return none
**********************************************************************/
void UART_IrDAInvtInputCmd(LPC_USARTn_Type* UARTx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_UART_IrDA(UARTx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if (NewState == ENABLE)
{
UARTx->ICR |= UART_ICR_IRDAINV;
}
else if (NewState == DISABLE)
{
UARTx->ICR &= (~UART_ICR_IRDAINV) & UART_ICR_BITMASK;
}
}
/*********************************************************************//**
* @brief Enable or disable IrDA function on UART peripheral.
* @param[in] UARTx UART peripheral selected, should be LPC_UART3 (only)
* @param[in] NewState New state of IrDA function, should be:
* - ENABLE :Enable this function.
* - DISABLE :Disable this function.
* @return none
**********************************************************************/
void UART_IrDACmd(LPC_USARTn_Type* UARTx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_UART_IrDA(UARTx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if (NewState == ENABLE)
{
UARTx->ICR |= UART_ICR_IRDAEN;
}
else
{
UARTx->ICR &= (~UART_ICR_IRDAEN) & UART_ICR_BITMASK;
}
}
/*********************************************************************//**
* @brief Configure Pulse divider for IrDA function on UART peripheral.
* @param[in] UARTx UART peripheral selected, should be LPC_UART3 (only)
* @param[in] PulseDiv Pulse Divider value from Peripheral clock,
* should be one of the following:
* - UART_IrDA_PULSEDIV2 :Pulse width = 2 * Tpclk
* - UART_IrDA_PULSEDIV4 :Pulse width = 4 * Tpclk
* - UART_IrDA_PULSEDIV8 :Pulse width = 8 * Tpclk
* - UART_IrDA_PULSEDIV16 :Pulse width = 16 * Tpclk
* - UART_IrDA_PULSEDIV32 :Pulse width = 32 * Tpclk
* - UART_IrDA_PULSEDIV64 :Pulse width = 64 * Tpclk
* - UART_IrDA_PULSEDIV128 :Pulse width = 128 * Tpclk
* - UART_IrDA_PULSEDIV256 :Pulse width = 256 * Tpclk
* @return None
**********************************************************************/
void UART_IrDAPulseDivConfig(LPC_USARTn_Type *UARTx, UART_IrDA_PULSE_Type PulseDiv)
{
uint32_t tmp, tmp1;
CHECK_PARAM(PARAM_UART_IrDA(UARTx));
CHECK_PARAM(PARAM_UART_IrDA_PULSEDIV(PulseDiv));
tmp1 = UART_ICR_PULSEDIV(PulseDiv);
tmp = UARTx->ICR & (~UART_ICR_PULSEDIV(7));
tmp |= tmp1 | UART_ICR_FIXPULSE_EN;
UARTx->ICR = tmp & UART_ICR_BITMASK;
}
#endif
/* UART1 FullModem function ---------------------------------------------*/
#ifdef _UART1
/*********************************************************************//**
* @brief Force pin DTR/RTS corresponding to given state (Full modem mode)
* @param[in] UARTx LPC_UART1 (only)
* @param[in] Pin Pin that NewState will be applied to, should be:
* - UART1_MODEM_PIN_DTR :DTR pin.
* - UART1_MODEM_PIN_RTS :RTS pin.
* @param[in] NewState New State of DTR/RTS pin, should be:
* - INACTIVE :Force the pin to inactive signal.
- ACTIVE :Force the pin to active signal.
* @return none
**********************************************************************/
void UART_FullModemForcePinState(LPC_UART1_Type *UARTx, UART_MODEM_PIN_Type Pin, \
UART1_SignalState NewState)
{
uint8_t tmp = 0;
CHECK_PARAM(PARAM_UART1_MODEM(UARTx));
CHECK_PARAM(PARAM_UART1_MODEM_PIN(Pin));
CHECK_PARAM(PARAM_UART1_SIGNALSTATE(NewState));
switch (Pin){
case UART1_MODEM_PIN_DTR:
tmp = UART1_MCR_DTR_CTRL;
break;
case UART1_MODEM_PIN_RTS:
tmp = UART1_MCR_RTS_CTRL;
break;
default:
break;
}
if (NewState == ACTIVE){
UARTx->MCR |= tmp;
} else {
UARTx->MCR &= (~tmp) & UART1_MCR_BITMASK;
}
}
/*********************************************************************//**
* @brief Configure Full Modem mode for UART peripheral
* @param[in] UARTx LPC_UART1 (only)
* @param[in] Mode Full Modem mode, should be:
* - UART1_MODEM_MODE_LOOPBACK :Loop back mode.
* - UART1_MODEM_MODE_AUTO_RTS :Auto-RTS mode.
* - UART1_MODEM_MODE_AUTO_CTS :Auto-CTS mode.
* @param[in] NewState New State of this mode, should be:
* - ENABLE :Enable this mode.
- DISABLE :Disable this mode.
* @return none
**********************************************************************/
void UART_FullModemConfigMode(LPC_UART1_Type *UARTx, UART_MODEM_MODE_Type Mode, \
FunctionalState NewState)
{
uint8_t tmp;
CHECK_PARAM(PARAM_UART1_MODEM(UARTx));
CHECK_PARAM(PARAM_UART1_MODEM_MODE(Mode));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
switch(Mode){
case UART1_MODEM_MODE_LOOPBACK:
tmp = UART1_MCR_LOOPB_EN;
break;
case UART1_MODEM_MODE_AUTO_RTS:
tmp = UART1_MCR_AUTO_RTS_EN;
break;
case UART1_MODEM_MODE_AUTO_CTS:
tmp = UART1_MCR_AUTO_CTS_EN;
break;
default:
break;
}
if (NewState == ENABLE)
{
UARTx->MCR |= tmp;
}
else
{
UARTx->MCR &= (~tmp) & UART1_MCR_BITMASK;
}
}
/*********************************************************************//**
* @brief Get current status of modem status register
* @param[in] UARTx LPC_UART1 (only)
* @return Current value of modem status register
* Note: The return value of this function must be ANDed with each member
* UART_MODEM_STAT_type enumeration to determine current flag status
* corresponding to each modem flag status. Because some flags in
* modem status register will be cleared after reading, the next reading
* modem register could not be correct. So this function used to
* read modem status register in one time only, then the return value
* used to check all flags.
**********************************************************************/
uint8_t UART_FullModemGetStatus(LPC_UART1_Type *UARTx)
{
CHECK_PARAM(PARAM_UART1_MODEM(UARTx));
return ((UARTx->MSR) & UART1_MSR_BITMASK);
}
#endif /* _UART1 */
/* UART RS485 functions --------------------------------------------------------------*/
/*********************************************************************//**
* @brief Configure UART peripheral in RS485 mode according to the specified
* parameters in the RS485ConfigStruct.
* @param[in] UARTx UART peripheral selected, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @param[in] RS485ConfigStruct Pointer to a UART_RS485_CTRLCFG_Type structure
* that contains the configuration information for specified UART
* in RS485 mode.
* @return None
**********************************************************************/
void UART_RS485Config(LPC_USARTn_Type *UARTx, UART_RS485_CTRLCFG_Type *RS485ConfigStruct)
{
uint32_t tmp;
CHECK_PARAM(PARAM_FUNCTIONALSTATE(RS485ConfigStruct->AutoAddrDetect_State));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(RS485ConfigStruct->AutoDirCtrl_State));
CHECK_PARAM(PARAM_UART_RS485_CFG_DELAYVALUE(RS485ConfigStruct->DelayValue));
CHECK_PARAM(PARAM_SETSTATE(RS485ConfigStruct->DirCtrlPol_Level));
CHECK_PARAM(PARAM_UART_RS485_DIRCTRL_PIN(RS485ConfigStruct->DirCtrlPin));
CHECK_PARAM(PARAM_UART_RS485_CFG_MATCHADDRVALUE(RS485ConfigStruct->MatchAddrValue));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(RS485ConfigStruct->NormalMultiDropMode_State));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(RS485ConfigStruct->Rx_State));
tmp = 0;
// If Auto Direction Control is enabled - This function is used in Master mode
if (RS485ConfigStruct->AutoDirCtrl_State == ENABLE)
{
tmp |= UART_RS485CTRL_DCTRL_EN;
// Set polar
if (RS485ConfigStruct->DirCtrlPol_Level == SET)
{
tmp |= UART_RS485CTRL_OINV_1;
}
// Set pin according to
if (RS485ConfigStruct->DirCtrlPin == UART_RS485_DIRCTRL_DTR)
{
tmp |= UART_RS485CTRL_SEL_DTR;
}
// Fill delay time
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
((LPC_UART1_Type *)UARTx)->RS485DLY = RS485ConfigStruct->DelayValue & UART_RS485DLY_BITMASK;
}
else
{
UARTx->RS485DLY = RS485ConfigStruct->DelayValue & UART_RS485DLY_BITMASK;
}
}
// MultiDrop mode is enable
if (RS485ConfigStruct->NormalMultiDropMode_State == ENABLE)
{
tmp |= UART_RS485CTRL_NMM_EN;
}
// Auto Address Detect function
if (RS485ConfigStruct->AutoAddrDetect_State == ENABLE)
{
tmp |= UART_RS485CTRL_AADEN;
// Fill Match Address
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
((LPC_UART1_Type *)UARTx)->RS485ADRMATCH = RS485ConfigStruct->MatchAddrValue & UART_RS485ADRMATCH_BITMASK;
}
else
{
UARTx->RS485ADRMATCH = RS485ConfigStruct->MatchAddrValue & UART_RS485ADRMATCH_BITMASK;
}
}
// Receiver is disable
if (RS485ConfigStruct->Rx_State == DISABLE)
{
tmp |= UART_RS485CTRL_RX_DIS;
}
// write back to RS485 control register
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
((LPC_UART1_Type *)UARTx)->RS485CTRL = tmp & UART_RS485CTRL_BITMASK;
}
else
{
UARTx->RS485CTRL = tmp & UART_RS485CTRL_BITMASK;
}
// Enable Parity function and leave parity in stick '0' parity as default
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
((LPC_UART1_Type *)UARTx)->LCR |= (UART_LCR_PARITY_F_0 | UART_LCR_PARITY_EN);
}
else
{
UARTx->LCR |= (UART_LCR_PARITY_F_0 | UART_LCR_PARITY_EN);
}
}
/*********************************************************************//**
* @brief Enable/Disable receiver in RS485 module in UART
* @param[in] UARTx UART peripheral selected, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @param[in] NewState New State of command, should be:
* - ENABLE :Enable this function.
* - DISABLE :Disable this function.
* @return None
**********************************************************************/
void UART_RS485ReceiverCmd(LPC_USARTn_Type *UARTx, FunctionalState NewState)
{
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
if (NewState == ENABLE){
((LPC_UART1_Type *)UARTx)->RS485CTRL &= ~UART_RS485CTRL_RX_DIS;
} else {
((LPC_UART1_Type *)UARTx)->RS485CTRL |= UART_RS485CTRL_RX_DIS;
}
}
else
{
if (NewState == ENABLE){
UARTx->RS485CTRL &= ~UART_RS485CTRL_RX_DIS;
} else {
UARTx->RS485CTRL |= UART_RS485CTRL_RX_DIS;
}
}
}
/*********************************************************************//**
* @brief Send data on RS485 bus with specified parity stick value (9-bit mode).
* @param[in] UARTx UART peripheral selected, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @param[in] pDatFrm Pointer to data frame.
* @param[in] size Size of data.
* @param[in] ParityStick Parity Stick value, should be 0 or 1.
* @return None
**********************************************************************/
uint32_t UART_RS485Send(LPC_USARTn_Type *UARTx, uint8_t *pDatFrm, \
uint32_t size, uint8_t ParityStick)
{
uint8_t tmp, save;
uint32_t cnt;
if (((LPC_UART1_Type *)UARTx) == LPC_UART1)
{
if (ParityStick){
save = tmp = ((LPC_UART1_Type *)UARTx)->LCR & UART_LCR_BITMASK;
tmp &= ~(UART_LCR_PARITY_EVEN);
((LPC_UART1_Type *)UARTx)->LCR = tmp;
cnt = UART_Send((LPC_USARTn_Type *)UARTx, pDatFrm, size, BLOCKING);
while (!(((LPC_UART1_Type *)UARTx)->LSR & UART_LSR_TEMT));
((LPC_UART1_Type *)UARTx)->LCR = save;
} else {
cnt = UART_Send((LPC_USARTn_Type *)UARTx, pDatFrm, size, BLOCKING);
while (!(((LPC_UART1_Type *)UARTx)->LSR & UART_LSR_TEMT));
}
}
else
{
if (ParityStick){
save = tmp = UARTx->LCR & UART_LCR_BITMASK;
tmp &= ~(UART_LCR_PARITY_EVEN);
UARTx->LCR = tmp;
cnt = UART_Send((LPC_USARTn_Type *)UARTx, pDatFrm, size, BLOCKING);
while (!(UARTx->LSR & UART_LSR_TEMT));
UARTx->LCR = save;
} else {
cnt = UART_Send((LPC_USARTn_Type *)UARTx, pDatFrm, size, BLOCKING);
while (!(UARTx->LSR & UART_LSR_TEMT));
}
}
return cnt;
}
/*********************************************************************//**
* @brief Send Slave address frames on RS485 bus.
* @param[in] UARTx UART peripheral selected, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @param[in] SlvAddr Slave Address.
* @return None
**********************************************************************/
void UART_RS485SendSlvAddr(LPC_USARTn_Type *UARTx, uint8_t SlvAddr)
{
UART_RS485Send(UARTx, &SlvAddr, 1, 1);
}
/*********************************************************************//**
* @brief Send Data frames on RS485 bus.
* @param[in] UARTx UART peripheral selected, should be:
* - LPC_UART0 :UART0 peripheral
* - LPC_UART1 :UART1 peripheral
* - LPC_UART2 :UART2 peripheral
* - LPC_UART3 :UART3 peripheral
* @param[in] pData Pointer to data to be sent.
* @param[in] size Size of data frame to be sent.
* @return None
**********************************************************************/
uint32_t UART_RS485SendData(LPC_USARTn_Type *UARTx, uint8_t *pData, uint32_t size)
{
return (UART_RS485Send(UARTx, pData, size, 0));
}
#endif /* _UART */
/**
* @}
*/
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */