blob: b01681c63dd03e5c16669550cfc718bc7d49fa27 [file] [log] [blame] [edit]
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2011 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_math.h
*
* Description: Public header file for CMSIS DSP Library
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
/**
\mainpage CMSIS DSP Software Library
*
* <b>Introduction</b>
*
* This user manual describes the CMSIS DSP software library,
* a suite of common signal processing functions for use on Cortex-M processor based devices.
*
* The library is divided into a number of modules each covering a specific category:
* - Basic math functions
* - Fast math functions
* - Complex math functions
* - Filters
* - Matrix functions
* - Transforms
* - Motor control functions
* - Statistical functions
* - Support functions
* - Interpolation functions
*
* The library has separate functions for operating on 8-bit integers, 16-bit integers,
* 32-bit integer and 32-bit floating-point values.
*
* <b>Processor Support</b>
*
* The library is completely written in C and is fully CMSIS compliant.
* High performance is achieved through maximum use of Cortex-M4 intrinsics.
*
* The supplied library source code also builds and runs on the Cortex-M3 and Cortex-M0 processor,
* with the DSP intrinsics being emulated through software.
*
*
* <b>Toolchain Support</b>
*
* The library has been developed and tested with MDK-ARM version 4.21.
* The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
*
* <b>Using the Library</b>
*
* The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
* - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
* - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
* - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
* - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
* - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
* - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
* - arm_cortexM0l_math.lib (Little endian on Cortex-M0)
* - arm_cortexM0b_math.lib (Big endian on Cortex-M3)
*
* The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
* Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
* public header file <code>arm_math.h</code> for Cortex-M4/M3/M0 with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
* Define the appropriate pre processor MACRO ARM_MATH_CM4 or ARM_MATH_CM3 or
* ARM_MATH_CM0 depending on the target processor in the application.
*
* <b>Examples</b>
*
* The library ships with a number of examples which demonstrate how to use the library functions.
*
* <b>Building the Library</b>
*
* The library installer contains project files to re build libraries on MDK Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
* - arm_cortexM0b_math.uvproj
* - arm_cortexM0l_math.uvproj
* - arm_cortexM3b_math.uvproj
* - arm_cortexM3l_math.uvproj
* - arm_cortexM4b_math.uvproj
* - arm_cortexM4l_math.uvproj
* - arm_cortexM4bf_math.uvproj
* - arm_cortexM4lf_math.uvproj
*
* Each library project have differant pre-processor macros.
*
* <b>ARM_MATH_CMx:</b>
* Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
* and ARM_MATH_CM0 for building library on cortex-M0 target.
*
* <b>ARM_MATH_BIG_ENDIAN:</b>
* Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
*
* <b>ARM_MATH_MATRIX_CHECK:</b>
* Define macro for checking on the input and output sizes of matrices
*
* <b>ARM_MATH_ROUNDING:</b>
* Define macro for rounding on support functions
*
* <b>__FPU_PRESENT:</b>
* Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
*
*
* The project can be built by opening the appropriate project in MDK-ARM 4.21 chain and defining the optional pre processor MACROs detailed above.
*
* <b>Copyright Notice</b>
*
* Copyright (C) 2010 ARM Limited. All rights reserved.
*/
/**
* @defgroup groupMath Basic Math Functions
*/
/**
* @defgroup groupFastMath Fast Math Functions
* This set of functions provides a fast approximation to sine, cosine, and square root.
* As compared to most of the other functions in the CMSIS math library, the fast math functions
* operate on individual values and not arrays.
* There are separate functions for Q15, Q31, and floating-point data.
*
*/
/**
* @defgroup groupCmplxMath Complex Math Functions
* This set of functions operates on complex data vectors.
* The data in the complex arrays is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* In the API functions, the number of samples in a complex array refers
* to the number of complex values; the array contains twice this number of
* real values.
*/
/**
* @defgroup groupFilters Filtering Functions
*/
/**
* @defgroup groupMatrix Matrix Functions
*
* This set of functions provides basic matrix math operations.
* The functions operate on matrix data structures. For example,
* the type
* definition for the floating-point matrix structure is shown
* below:
* <pre>
* typedef struct
* {
* uint16_t numRows; // number of rows of the matrix.
* uint16_t numCols; // number of columns of the matrix.
* float32_t *pData; // points to the data of the matrix.
* } arm_matrix_instance_f32;
* </pre>
* There are similar definitions for Q15 and Q31 data types.
*
* The structure specifies the size of the matrix and then points to
* an array of data. The array is of size <code>numRows X numCols</code>
* and the values are arranged in row order. That is, the
* matrix element (i, j) is stored at:
* <pre>
* pData[i*numCols + j]
* </pre>
*
* \par Init Functions
* There is an associated initialization function for each type of matrix
* data structure.
* The initialization function sets the values of the internal structure fields.
* Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
* and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
*
* \par
* Use of the initialization function is optional. However, if initialization function is used
* then the instance structure cannot be placed into a const data section.
* To place the instance structure in a const data
* section, manually initialize the data structure. For example:
* <pre>
* <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
* <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
* <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
* </pre>
* where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
* specifies the number of columns, and <code>pData</code> points to the
* data array.
*
* \par Size Checking
* By default all of the matrix functions perform size checking on the input and
* output matrices. For example, the matrix addition function verifies that the
* two input matrices and the output matrix all have the same number of rows and
* columns. If the size check fails the functions return:
* <pre>
* ARM_MATH_SIZE_MISMATCH
* </pre>
* Otherwise the functions return
* <pre>
* ARM_MATH_SUCCESS
* </pre>
* There is some overhead associated with this matrix size checking.
* The matrix size checking is enabled via the \#define
* <pre>
* ARM_MATH_MATRIX_CHECK
* </pre>
* within the library project settings. By default this macro is defined
* and size checking is enabled. By changing the project settings and
* undefining this macro size checking is eliminated and the functions
* run a bit faster. With size checking disabled the functions always
* return <code>ARM_MATH_SUCCESS</code>.
*/
/**
* @defgroup groupTransforms Transform Functions
*/
/**
* @defgroup groupController Controller Functions
*/
/**
* @defgroup groupStats Statistics Functions
*/
/**
* @defgroup groupSupport Support Functions
*/
/**
* @defgroup groupInterpolation Interpolation Functions
* These functions perform 1- and 2-dimensional interpolation of data.
* Linear interpolation is used for 1-dimensional data and
* bilinear interpolation is used for 2-dimensional data.
*/
/**
* @defgroup groupExamples Examples
*/
#ifndef _ARM_MATH_H
#define _ARM_MATH_H
#define __CMSIS_GENERIC /* disable NVIC and Systick functions */
#if defined (ARM_MATH_CM4)
#include "core_cm4.h"
#elif defined (ARM_MATH_CM3)
#include "core_cm3.h"
#elif defined (ARM_MATH_CM0)
#include "core_cm0.h"
#else
#include "ARMCM4.h"
#warning "Define either ARM_MATH_CM4 OR ARM_MATH_CM3...By Default building on ARM_MATH_CM4....."
#endif
#undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
#include "string.h"
#include "math.h"
#ifdef __cplusplus
extern "C"
{
#endif
/**
* @brief Macros required for reciprocal calculation in Normalized LMS
*/
#define DELTA_Q31 (0x100)
#define DELTA_Q15 0x5
#define INDEX_MASK 0x0000003F
#define PI 3.14159265358979f
/**
* @brief Macros required for SINE and COSINE Fast math approximations
*/
#define TABLE_SIZE 256
#define TABLE_SPACING_Q31 0x800000
#define TABLE_SPACING_Q15 0x80
/**
* @brief Macros required for SINE and COSINE Controller functions
*/
/* 1.31(q31) Fixed value of 2/360 */
/* -1 to +1 is divided into 360 values so total spacing is (2/360) */
#define INPUT_SPACING 0xB60B61
/**
* @brief Error status returned by some functions in the library.
*/
typedef enum
{
ARM_MATH_SUCCESS = 0, /**< No error */
ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
} arm_status;
/**
* @brief 8-bit fractional data type in 1.7 format.
*/
typedef int8_t q7_t;
/**
* @brief 16-bit fractional data type in 1.15 format.
*/
typedef int16_t q15_t;
/**
* @brief 32-bit fractional data type in 1.31 format.
*/
typedef int32_t q31_t;
/**
* @brief 64-bit fractional data type in 1.63 format.
*/
typedef int64_t q63_t;
/**
* @brief 32-bit floating-point type definition.
*/
typedef float float32_t;
/**
* @brief 64-bit floating-point type definition.
*/
typedef double float64_t;
/**
* @brief definition to read/write two 16 bit values.
*/
#define __SIMD32(addr) (*(int32_t **) & (addr))
#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0)
/**
* @brief definition to pack two 16 bit values.
*/
#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
(((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
#endif
/**
* @brief definition to pack four 8 bit values.
*/
#ifndef ARM_MATH_BIG_ENDIAN
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
(((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
(((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
(((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
#else
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
(((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
(((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
(((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
#endif
/**
* @brief Clips Q63 to Q31 values.
*/
__STATIC_INLINE q31_t clip_q63_to_q31(
q63_t x)
{
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
}
/**
* @brief Clips Q63 to Q15 values.
*/
__STATIC_INLINE q15_t clip_q63_to_q15(
q63_t x)
{
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
}
/**
* @brief Clips Q31 to Q7 values.
*/
__STATIC_INLINE q7_t clip_q31_to_q7(
q31_t x)
{
return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
}
/**
* @brief Clips Q31 to Q15 values.
*/
__STATIC_INLINE q15_t clip_q31_to_q15(
q31_t x)
{
return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
}
/**
* @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
*/
__STATIC_INLINE q63_t mult32x64(
q63_t x,
q31_t y)
{
return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
(((q63_t) (x >> 32) * y)));
}
#if defined (ARM_MATH_CM0) && defined ( __CC_ARM )
#define __CLZ __clz
#endif
#if defined (ARM_MATH_CM0) && defined ( __TASKING__ )
/* No need to redefine __CLZ */
#endif
#if defined (ARM_MATH_CM0) && ((defined (__ICCARM__)) ||(defined (__GNUC__)) )
__STATIC_INLINE uint32_t __CLZ(q31_t data);
__STATIC_INLINE uint32_t __CLZ(q31_t data)
{
uint32_t count = 0;
uint32_t mask = 0x80000000;
while((data & mask) == 0)
{
count += 1u;
mask = mask >> 1u;
}
return(count);
}
#endif
/**
* @brief Function to Calculates 1/in(reciprocal) value of Q31 Data type.
*/
__STATIC_INLINE uint32_t arm_recip_q31(
q31_t in,
q31_t * dst,
q31_t * pRecipTable)
{
uint32_t out, tempVal;
uint32_t index, i;
uint32_t signBits;
if(in > 0)
{
signBits = __CLZ(in) - 1;
}
else
{
signBits = __CLZ(-in) - 1;
}
/* Convert input sample to 1.31 format */
in = in << signBits;
/* calculation of index for initial approximated Val */
index = (uint32_t) (in >> 24u);
index = (index & INDEX_MASK);
/* 1.31 with exp 1 */
out = pRecipTable[index];
/* calculation of reciprocal value */
/* running approximation for two iterations */
for (i = 0u; i < 2u; i++)
{
tempVal = (q31_t) (((q63_t) in * out) >> 31u);
tempVal = 0x7FFFFFFF - tempVal;
/* 1.31 with exp 1 */
//out = (q31_t) (((q63_t) out * tempVal) >> 30u);
out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
}
/* write output */
*dst = out;
/* return num of signbits of out = 1/in value */
return (signBits + 1u);
}
/**
* @brief Function to Calculates 1/in(reciprocal) value of Q15 Data type.
*/
__STATIC_INLINE uint32_t arm_recip_q15(
q15_t in,
q15_t * dst,
q15_t * pRecipTable)
{
uint32_t out = 0, tempVal = 0;
uint32_t index = 0, i = 0;
uint32_t signBits = 0;
if(in > 0)
{
signBits = __CLZ(in) - 17;
}
else
{
signBits = __CLZ(-in) - 17;
}
/* Convert input sample to 1.15 format */
in = in << signBits;
/* calculation of index for initial approximated Val */
index = in >> 8;
index = (index & INDEX_MASK);
/* 1.15 with exp 1 */
out = pRecipTable[index];
/* calculation of reciprocal value */
/* running approximation for two iterations */
for (i = 0; i < 2; i++)
{
tempVal = (q15_t) (((q31_t) in * out) >> 15);
tempVal = 0x7FFF - tempVal;
/* 1.15 with exp 1 */
out = (q15_t) (((q31_t) out * tempVal) >> 14);
}
/* write output */
*dst = out;
/* return num of signbits of out = 1/in value */
return (signBits + 1);
}
/*
* @brief C custom defined intrinisic function for only M0 processors
*/
#if defined(ARM_MATH_CM0)
__STATIC_INLINE q31_t __SSAT(
q31_t x,
uint32_t y)
{
int32_t posMax, negMin;
uint32_t i;
posMax = 1;
for (i = 0; i < (y - 1); i++)
{
posMax = posMax * 2;
}
if(x > 0)
{
posMax = (posMax - 1);
if(x > posMax)
{
x = posMax;
}
}
else
{
negMin = -posMax;
if(x < negMin)
{
x = negMin;
}
}
return (x);
}
#endif /* end of ARM_MATH_CM0 */
/*
* @brief C custom defined intrinsic function for M3 and M0 processors
*/
#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0)
/*
* @brief C custom defined QADD8 for M3 and M0 processors
*/
__STATIC_INLINE q31_t __QADD8(
q31_t x,
q31_t y)
{
q31_t sum;
q7_t r, s, t, u;
r = (char) x;
s = (char) y;
r = __SSAT((q31_t) (r + s), 8);
s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
sum = (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
(((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
return sum;
}
/*
* @brief C custom defined QSUB8 for M3 and M0 processors
*/
__STATIC_INLINE q31_t __QSUB8(
q31_t x,
q31_t y)
{
q31_t sum;
q31_t r, s, t, u;
r = (char) x;
s = (char) y;
r = __SSAT((r - s), 8);
s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
sum =
(u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r & 0x000000FF);
return sum;
}
/*
* @brief C custom defined QADD16 for M3 and M0 processors
*/
/*
* @brief C custom defined QADD16 for M3 and M0 processors
*/
__STATIC_INLINE q31_t __QADD16(
q31_t x,
q31_t y)
{
q31_t sum;
q31_t r, s;
r = (short) x;
s = (short) y;
r = __SSAT(r + s, 16);
s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
return sum;
}
/*
* @brief C custom defined SHADD16 for M3 and M0 processors
*/
__STATIC_INLINE q31_t __SHADD16(
q31_t x,
q31_t y)
{
q31_t sum;
q31_t r, s;
r = (short) x;
s = (short) y;
r = ((r >> 1) + (s >> 1));
s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
return sum;
}
/*
* @brief C custom defined QSUB16 for M3 and M0 processors
*/
__STATIC_INLINE q31_t __QSUB16(
q31_t x,
q31_t y)
{
q31_t sum;
q31_t r, s;
r = (short) x;
s = (short) y;
r = __SSAT(r - s, 16);
s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
return sum;
}
/*
* @brief C custom defined SHSUB16 for M3 and M0 processors
*/
__STATIC_INLINE q31_t __SHSUB16(
q31_t x,
q31_t y)
{
q31_t diff;
q31_t r, s;
r = (short) x;
s = (short) y;
r = ((r >> 1) - (s >> 1));
s = (((x >> 17) - (y >> 17)) << 16);
diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
return diff;
}
/*
* @brief C custom defined QASX for M3 and M0 processors
*/
__STATIC_INLINE q31_t __QASX(
q31_t x,
q31_t y)
{
q31_t sum = 0;
sum = ((sum + clip_q31_to_q15((q31_t) ((short) (x >> 16) + (short) y))) << 16) +
clip_q31_to_q15((q31_t) ((short) x - (short) (y >> 16)));
return sum;
}
/*
* @brief C custom defined SHASX for M3 and M0 processors
*/
__STATIC_INLINE q31_t __SHASX(
q31_t x,
q31_t y)
{
q31_t sum;
q31_t r, s;
r = (short) x;
s = (short) y;
r = ((r >> 1) - (y >> 17));
s = (((x >> 17) + (s >> 1)) << 16);
sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
return sum;
}
/*
* @brief C custom defined QSAX for M3 and M0 processors
*/
__STATIC_INLINE q31_t __QSAX(
q31_t x,
q31_t y)
{
q31_t sum = 0;
sum = ((sum + clip_q31_to_q15((q31_t) ((short) (x >> 16) - (short) y))) << 16) +
clip_q31_to_q15((q31_t) ((short) x + (short) (y >> 16)));
return sum;
}
/*
* @brief C custom defined SHSAX for M3 and M0 processors
*/
__STATIC_INLINE q31_t __SHSAX(
q31_t x,
q31_t y)
{
q31_t sum;
q31_t r, s;
r = (short) x;
s = (short) y;
r = ((r >> 1) + (y >> 17));
s = (((x >> 17) - (s >> 1)) << 16);
sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
return sum;
}
/*
* @brief C custom defined SMUSDX for M3 and M0 processors
*/
__STATIC_INLINE q31_t __SMUSDX(
q31_t x,
q31_t y)
{
return ((q31_t)(((short) x * (short) (y >> 16)) -
((short) (x >> 16) * (short) y)));
}
/*
* @brief C custom defined SMUADX for M3 and M0 processors
*/
__STATIC_INLINE q31_t __SMUADX(
q31_t x,
q31_t y)
{
return ((q31_t)(((short) x * (short) (y >> 16)) +
((short) (x >> 16) * (short) y)));
}
/*
* @brief C custom defined QADD for M3 and M0 processors
*/
__STATIC_INLINE q31_t __QADD(
q31_t x,
q31_t y)
{
return clip_q63_to_q31((q63_t) x + y);
}
/*
* @brief C custom defined QSUB for M3 and M0 processors
*/
__STATIC_INLINE q31_t __QSUB(
q31_t x,
q31_t y)
{
return clip_q63_to_q31((q63_t) x - y);
}
/*
* @brief C custom defined SMLAD for M3 and M0 processors
*/
__STATIC_INLINE q31_t __SMLAD(
q31_t x,
q31_t y,
q31_t sum)
{
return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
((short) x * (short) y));
}
/*
* @brief C custom defined SMLADX for M3 and M0 processors
*/
__STATIC_INLINE q31_t __SMLADX(
q31_t x,
q31_t y,
q31_t sum)
{
return (sum + ((short) (x >> 16) * (short) (y)) +
((short) x * (short) (y >> 16)));
}
/*
* @brief C custom defined SMLSDX for M3 and M0 processors
*/
__STATIC_INLINE q31_t __SMLSDX(
q31_t x,
q31_t y,
q31_t sum)
{
return (sum - ((short) (x >> 16) * (short) (y)) +
((short) x * (short) (y >> 16)));
}
/*
* @brief C custom defined SMLALD for M3 and M0 processors
*/
__STATIC_INLINE q63_t __SMLALD(
q31_t x,
q31_t y,
q63_t sum)
{
return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
((short) x * (short) y));
}
/*
* @brief C custom defined SMLALDX for M3 and M0 processors
*/
__STATIC_INLINE q63_t __SMLALDX(
q31_t x,
q31_t y,
q63_t sum)
{
return (sum + ((short) (x >> 16) * (short) y)) +
((short) x * (short) (y >> 16));
}
/*
* @brief C custom defined SMUAD for M3 and M0 processors
*/
__STATIC_INLINE q31_t __SMUAD(
q31_t x,
q31_t y)
{
return (((x >> 16) * (y >> 16)) +
(((x << 16) >> 16) * ((y << 16) >> 16)));
}
/*
* @brief C custom defined SMUSD for M3 and M0 processors
*/
__STATIC_INLINE q31_t __SMUSD(
q31_t x,
q31_t y)
{
return (-((x >> 16) * (y >> 16)) +
(((x << 16) >> 16) * ((y << 16) >> 16)));
}
#endif /* (ARM_MATH_CM3) || defined (ARM_MATH_CM0) */
/**
* @brief Instance structure for the Q7 FIR filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of filter coefficients in the filter. */
q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
} arm_fir_instance_q7;
/**
* @brief Instance structure for the Q15 FIR filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of filter coefficients in the filter. */
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
} arm_fir_instance_q15;
/**
* @brief Instance structure for the Q31 FIR filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of filter coefficients in the filter. */
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
} arm_fir_instance_q31;
/**
* @brief Instance structure for the floating-point FIR filter.
*/
typedef struct
{
uint16_t numTaps; /**< number of filter coefficients in the filter. */
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
} arm_fir_instance_f32;
/**
* @brief Processing function for the Q7 FIR filter.
* @param[in] *S points to an instance of the Q7 FIR filter structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_fir_q7(
const arm_fir_instance_q7 * S,
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q7 FIR filter.
* @param[in,out] *S points to an instance of the Q7 FIR structure.
* @param[in] numTaps Number of filter coefficients in the filter.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of samples that are processed.
* @return none
*/
void arm_fir_init_q7(
arm_fir_instance_q7 * S,
uint16_t numTaps,
q7_t * pCoeffs,
q7_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the Q15 FIR filter.
* @param[in] *S points to an instance of the Q15 FIR structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_fir_q15(
const arm_fir_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
* @param[in] *S points to an instance of the Q15 FIR filter structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_fir_fast_q15(
const arm_fir_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q15 FIR filter.
* @param[in,out] *S points to an instance of the Q15 FIR filter structure.
* @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of samples that are processed at a time.
* @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
* <code>numTaps</code> is not a supported value.
*/
arm_status arm_fir_init_q15(
arm_fir_instance_q15 * S,
uint16_t numTaps,
q15_t * pCoeffs,
q15_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the Q31 FIR filter.
* @param[in] *S points to an instance of the Q31 FIR filter structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_fir_q31(
const arm_fir_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
* @param[in] *S points to an instance of the Q31 FIR structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_fir_fast_q31(
const arm_fir_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q31 FIR filter.
* @param[in,out] *S points to an instance of the Q31 FIR structure.
* @param[in] numTaps Number of filter coefficients in the filter.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of samples that are processed at a time.
* @return none.
*/
void arm_fir_init_q31(
arm_fir_instance_q31 * S,
uint16_t numTaps,
q31_t * pCoeffs,
q31_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the floating-point FIR filter.
* @param[in] *S points to an instance of the floating-point FIR structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_fir_f32(
const arm_fir_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the floating-point FIR filter.
* @param[in,out] *S points to an instance of the floating-point FIR filter structure.
* @param[in] numTaps Number of filter coefficients in the filter.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of samples that are processed at a time.
* @return none.
*/
void arm_fir_init_f32(
arm_fir_instance_f32 * S,
uint16_t numTaps,
float32_t * pCoeffs,
float32_t * pState,
uint32_t blockSize);
/**
* @brief Instance structure for the Q15 Biquad cascade filter.
*/
typedef struct
{
int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
} arm_biquad_casd_df1_inst_q15;
/**
* @brief Instance structure for the Q31 Biquad cascade filter.
*/
typedef struct
{
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
} arm_biquad_casd_df1_inst_q31;
/**
* @brief Instance structure for the floating-point Biquad cascade filter.
*/
typedef struct
{
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
} arm_biquad_casd_df1_inst_f32;
/**
* @brief Processing function for the Q15 Biquad cascade filter.
* @param[in] *S points to an instance of the Q15 Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_biquad_cascade_df1_q15(
const arm_biquad_casd_df1_inst_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q15 Biquad cascade filter.
* @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
* @return none
*/
void arm_biquad_cascade_df1_init_q15(
arm_biquad_casd_df1_inst_q15 * S,
uint8_t numStages,
q15_t * pCoeffs,
q15_t * pState,
int8_t postShift);
/**
* @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
* @param[in] *S points to an instance of the Q15 Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_biquad_cascade_df1_fast_q15(
const arm_biquad_casd_df1_inst_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Processing function for the Q31 Biquad cascade filter
* @param[in] *S points to an instance of the Q31 Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_biquad_cascade_df1_q31(
const arm_biquad_casd_df1_inst_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
* @param[in] *S points to an instance of the Q31 Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_biquad_cascade_df1_fast_q31(
const arm_biquad_casd_df1_inst_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q31 Biquad cascade filter.
* @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
* @return none
*/
void arm_biquad_cascade_df1_init_q31(
arm_biquad_casd_df1_inst_q31 * S,
uint8_t numStages,
q31_t * pCoeffs,
q31_t * pState,
int8_t postShift);
/**
* @brief Processing function for the floating-point Biquad cascade filter.
* @param[in] *S points to an instance of the floating-point Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_biquad_cascade_df1_f32(
const arm_biquad_casd_df1_inst_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the floating-point Biquad cascade filter.
* @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @return none
*/
void arm_biquad_cascade_df1_init_f32(
arm_biquad_casd_df1_inst_f32 * S,
uint8_t numStages,
float32_t * pCoeffs,
float32_t * pState);
/**
* @brief Instance structure for the floating-point matrix structure.
*/
typedef struct
{
uint16_t numRows; /**< number of rows of the matrix. */
uint16_t numCols; /**< number of columns of the matrix. */
float32_t *pData; /**< points to the data of the matrix. */
} arm_matrix_instance_f32;
/**
* @brief Instance structure for the Q15 matrix structure.
*/
typedef struct
{
uint16_t numRows; /**< number of rows of the matrix. */
uint16_t numCols; /**< number of columns of the matrix. */
q15_t *pData; /**< points to the data of the matrix. */
} arm_matrix_instance_q15;
/**
* @brief Instance structure for the Q31 matrix structure.
*/
typedef struct
{
uint16_t numRows; /**< number of rows of the matrix. */
uint16_t numCols; /**< number of columns of the matrix. */
q31_t *pData; /**< points to the data of the matrix. */
} arm_matrix_instance_q31;
/**
* @brief Floating-point matrix addition.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_add_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst);
/**
* @brief Q15 matrix addition.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_add_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst);
/**
* @brief Q31 matrix addition.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_add_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst);
/**
* @brief Floating-point matrix transpose.
* @param[in] *pSrc points to the input matrix
* @param[out] *pDst points to the output matrix
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_trans_f32(
const arm_matrix_instance_f32 * pSrc,
arm_matrix_instance_f32 * pDst);
/**
* @brief Q15 matrix transpose.
* @param[in] *pSrc points to the input matrix
* @param[out] *pDst points to the output matrix
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_trans_q15(
const arm_matrix_instance_q15 * pSrc,
arm_matrix_instance_q15 * pDst);
/**
* @brief Q31 matrix transpose.
* @param[in] *pSrc points to the input matrix
* @param[out] *pDst points to the output matrix
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_trans_q31(
const arm_matrix_instance_q31 * pSrc,
arm_matrix_instance_q31 * pDst);
/**
* @brief Floating-point matrix multiplication
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst);
/**
* @brief Q15 matrix multiplication
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst,
q15_t * pState);
/**
* @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @param[in] *pState points to the array for storing intermediate results
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_fast_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst,
q15_t * pState);
/**
* @brief Q31 matrix multiplication
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst);
/**
* @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_fast_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst);
/**
* @brief Floating-point matrix subtraction
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_sub_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst);
/**
* @brief Q15 matrix subtraction
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_sub_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst);
/**
* @brief Q31 matrix subtraction
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_sub_q31(
const arm_matrix_instance_q31 * pSrcA,
const arm_matrix_instance_q31 * pSrcB,
arm_matrix_instance_q31 * pDst);
/**
* @brief Floating-point matrix scaling.
* @param[in] *pSrc points to the input matrix
* @param[in] scale scale factor
* @param[out] *pDst points to the output matrix
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_scale_f32(
const arm_matrix_instance_f32 * pSrc,
float32_t scale,
arm_matrix_instance_f32 * pDst);
/**
* @brief Q15 matrix scaling.
* @param[in] *pSrc points to input matrix
* @param[in] scaleFract fractional portion of the scale factor
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to output matrix
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_scale_q15(
const arm_matrix_instance_q15 * pSrc,
q15_t scaleFract,
int32_t shift,
arm_matrix_instance_q15 * pDst);
/**
* @brief Q31 matrix scaling.
* @param[in] *pSrc points to input matrix
* @param[in] scaleFract fractional portion of the scale factor
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_scale_q31(
const arm_matrix_instance_q31 * pSrc,
q31_t scaleFract,
int32_t shift,
arm_matrix_instance_q31 * pDst);
/**
* @brief Q31 matrix initialization.
* @param[in,out] *S points to an instance of the floating-point matrix structure.
* @param[in] nRows number of rows in the matrix.
* @param[in] nColumns number of columns in the matrix.
* @param[in] *pData points to the matrix data array.
* @return none
*/
void arm_mat_init_q31(
arm_matrix_instance_q31 * S,
uint16_t nRows,
uint16_t nColumns,
q31_t *pData);
/**
* @brief Q15 matrix initialization.
* @param[in,out] *S points to an instance of the floating-point matrix structure.
* @param[in] nRows number of rows in the matrix.
* @param[in] nColumns number of columns in the matrix.
* @param[in] *pData points to the matrix data array.
* @return none
*/
void arm_mat_init_q15(
arm_matrix_instance_q15 * S,
uint16_t nRows,
uint16_t nColumns,
q15_t *pData);
/**
* @brief Floating-point matrix initialization.
* @param[in,out] *S points to an instance of the floating-point matrix structure.
* @param[in] nRows number of rows in the matrix.
* @param[in] nColumns number of columns in the matrix.
* @param[in] *pData points to the matrix data array.
* @return none
*/
void arm_mat_init_f32(
arm_matrix_instance_f32 * S,
uint16_t nRows,
uint16_t nColumns,
float32_t *pData);
/**
* @brief Instance structure for the Q15 PID Control.
*/
typedef struct
{
q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
#ifdef ARM_MATH_CM0
q15_t A1;
q15_t A2;
#else
q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
#endif
q15_t state[3]; /**< The state array of length 3. */
q15_t Kp; /**< The proportional gain. */
q15_t Ki; /**< The integral gain. */
q15_t Kd; /**< The derivative gain. */
} arm_pid_instance_q15;
/**
* @brief Instance structure for the Q31 PID Control.
*/
typedef struct
{
q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
q31_t A2; /**< The derived gain, A2 = Kd . */
q31_t state[3]; /**< The state array of length 3. */
q31_t Kp; /**< The proportional gain. */
q31_t Ki; /**< The integral gain. */
q31_t Kd; /**< The derivative gain. */
} arm_pid_instance_q31;
/**
* @brief Instance structure for the floating-point PID Control.
*/
typedef struct
{
float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
float32_t A2; /**< The derived gain, A2 = Kd . */
float32_t state[3]; /**< The state array of length 3. */
float32_t Kp; /**< The proportional gain. */
float32_t Ki; /**< The integral gain. */
float32_t Kd; /**< The derivative gain. */
} arm_pid_instance_f32;
/**
* @brief Initialization function for the floating-point PID Control.
* @param[in,out] *S points to an instance of the PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
* @return none.
*/
void arm_pid_init_f32(
arm_pid_instance_f32 * S,
int32_t resetStateFlag);
/**
* @brief Reset function for the floating-point PID Control.
* @param[in,out] *S is an instance of the floating-point PID Control structure
* @return none
*/
void arm_pid_reset_f32(
arm_pid_instance_f32 * S);
/**
* @brief Initialization function for the Q31 PID Control.
* @param[in,out] *S points to an instance of the Q15 PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
* @return none.
*/
void arm_pid_init_q31(
arm_pid_instance_q31 * S,
int32_t resetStateFlag);
/**
* @brief Reset function for the Q31 PID Control.
* @param[in,out] *S points to an instance of the Q31 PID Control structure
* @return none
*/
void arm_pid_reset_q31(
arm_pid_instance_q31 * S);
/**
* @brief Initialization function for the Q15 PID Control.
* @param[in,out] *S points to an instance of the Q15 PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
* @return none.
*/
void arm_pid_init_q15(
arm_pid_instance_q15 * S,
int32_t resetStateFlag);
/**
* @brief Reset function for the Q15 PID Control.
* @param[in,out] *S points to an instance of the q15 PID Control structure
* @return none
*/
void arm_pid_reset_q15(
arm_pid_instance_q15 * S);
/**
* @brief Instance structure for the floating-point Linear Interpolate function.
*/
typedef struct
{
uint32_t nValues; /**< nValues */
float32_t x1; /**< x1 */
float32_t xSpacing; /**< xSpacing */
float32_t *pYData; /**< pointer to the table of Y values */
} arm_linear_interp_instance_f32;
/**
* @brief Instance structure for the floating-point bilinear interpolation function.
*/
typedef struct
{
uint16_t numRows; /**< number of rows in the data table. */
uint16_t numCols; /**< number of columns in the data table. */
float32_t *pData; /**< points to the data table. */
} arm_bilinear_interp_instance_f32;
/**
* @brief Instance structure for the Q31 bilinear interpolation function.
*/
typedef struct
{
uint16_t numRows; /**< number of rows in the data table. */
uint16_t numCols; /**< number of columns in the data table. */
q31_t *pData; /**< points to the data table. */
} arm_bilinear_interp_instance_q31;
/**
* @brief Instance structure for the Q15 bilinear interpolation function.
*/
typedef struct
{
uint16_t numRows; /**< number of rows in the data table. */
uint16_t numCols; /**< number of columns in the data table. */
q15_t *pData; /**< points to the data table. */
} arm_bilinear_interp_instance_q15;
/**
* @brief Instance structure for the Q15 bilinear interpolation function.
*/
typedef struct
{
uint16_t numRows; /**< number of rows in the data table. */
uint16_t numCols; /**< number of columns in the data table. */
q7_t *pData; /**< points to the data table. */
} arm_bilinear_interp_instance_q7;
/**
* @brief Q7 vector multiplication.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_mult_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Q15 vector multiplication.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_mult_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Q31 vector multiplication.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_mult_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Floating-point vector multiplication.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_mult_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Instance structure for the Q15 CFFT/CIFFT function.
*/
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
q15_t *pTwiddle; /**< points to the twiddle factor table. */
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
} arm_cfft_radix4_instance_q15;
/**
* @brief Instance structure for the Q31 CFFT/CIFFT function.
*/
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
q31_t *pTwiddle; /**< points to the twiddle factor table. */
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
} arm_cfft_radix4_instance_q31;
/**
* @brief Instance structure for the floating-point CFFT/CIFFT function.
*/
typedef struct
{
uint16_t fftLen; /**< length of the FFT. */
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
float32_t *pTwiddle; /**< points to the twiddle factor table. */
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
float32_t onebyfftLen; /**< value of 1/fftLen. */
} arm_cfft_radix4_instance_f32;
/**
* @brief Processing function for the Q15 CFFT/CIFFT.
* @param[in] *S points to an instance of the Q15 CFFT/CIFFT structure.
* @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
* @return none.
*/
void arm_cfft_radix4_q15(
const arm_cfft_radix4_instance_q15 * S,
q15_t * pSrc);
/**
* @brief Initialization function for the Q15 CFFT/CIFFT.
* @param[in,out] *S points to an instance of the Q15 CFFT/CIFFT structure.
* @param[in] fftLen length of the FFT.
* @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value.
*/
arm_status arm_cfft_radix4_init_q15(
arm_cfft_radix4_instance_q15 * S,
uint16_t fftLen,
uint8_t ifftFlag,
uint8_t bitReverseFlag);
/**
* @brief Processing function for the Q31 CFFT/CIFFT.
* @param[in] *S points to an instance of the Q31 CFFT/CIFFT structure.
* @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
* @return none.
*/
void arm_cfft_radix4_q31(
const arm_cfft_radix4_instance_q31 * S,
q31_t * pSrc);
/**
* @brief Initialization function for the Q31 CFFT/CIFFT.
* @param[in,out] *S points to an instance of the Q31 CFFT/CIFFT structure.
* @param[in] fftLen length of the FFT.
* @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value.
*/
arm_status arm_cfft_radix4_init_q31(
arm_cfft_radix4_instance_q31 * S,
uint16_t fftLen,
uint8_t ifftFlag,
uint8_t bitReverseFlag);
/**
* @brief Processing function for the floating-point CFFT/CIFFT.
* @param[in] *S points to an instance of the floating-point CFFT/CIFFT structure.
* @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
* @return none.
*/
void arm_cfft_radix4_f32(
const arm_cfft_radix4_instance_f32 * S,
float32_t * pSrc);
/**
* @brief Initialization function for the floating-point CFFT/CIFFT.
* @param[in,out] *S points to an instance of the floating-point CFFT/CIFFT structure.
* @param[in] fftLen length of the FFT.
* @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value.
*/
arm_status arm_cfft_radix4_init_f32(
arm_cfft_radix4_instance_f32 * S,
uint16_t fftLen,
uint8_t ifftFlag,
uint8_t bitReverseFlag);
/*----------------------------------------------------------------------
* Internal functions prototypes FFT function
----------------------------------------------------------------------*/
/**
* @brief Core function for the floating-point CFFT butterfly process.
* @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
* @param[in] fftLen length of the FFT.
* @param[in] *pCoef points to the twiddle coefficient buffer.
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @return none.
*/
void arm_radix4_butterfly_f32(
float32_t * pSrc,
uint16_t fftLen,
float32_t * pCoef,
uint16_t twidCoefModifier);
/**
* @brief Core function for the floating-point CIFFT butterfly process.
* @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
* @param[in] fftLen length of the FFT.
* @param[in] *pCoef points to twiddle coefficient buffer.
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @param[in] onebyfftLen value of 1/fftLen.
* @return none.
*/
void arm_radix4_butterfly_inverse_f32(
float32_t * pSrc,
uint16_t fftLen,
float32_t * pCoef,
uint16_t twidCoefModifier,
float32_t onebyfftLen);
/**
* @brief In-place bit reversal function.
* @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
* @param[in] fftSize length of the FFT.
* @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table.
* @param[in] *pBitRevTab points to the bit reversal table.
* @return none.
*/
void arm_bitreversal_f32(
float32_t *pSrc,
uint16_t fftSize,
uint16_t bitRevFactor,
uint16_t *pBitRevTab);
/**
* @brief Core function for the Q31 CFFT butterfly process.
* @param[in, out] *pSrc points to the in-place buffer of Q31 data type.
* @param[in] fftLen length of the FFT.
* @param[in] *pCoef points to twiddle coefficient buffer.
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @return none.
*/
void arm_radix4_butterfly_q31(
q31_t *pSrc,
uint32_t fftLen,
q31_t *pCoef,
uint32_t twidCoefModifier);
/**
* @brief Core function for the Q31 CIFFT butterfly process.
* @param[in, out] *pSrc points to the in-place buffer of Q31 data type.
* @param[in] fftLen length of the FFT.
* @param[in] *pCoef points to twiddle coefficient buffer.
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @return none.
*/
void arm_radix4_butterfly_inverse_q31(
q31_t * pSrc,
uint32_t fftLen,
q31_t * pCoef,
uint32_t twidCoefModifier);
/**
* @brief In-place bit reversal function.
* @param[in, out] *pSrc points to the in-place buffer of Q31 data type.
* @param[in] fftLen length of the FFT.
* @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table
* @param[in] *pBitRevTab points to bit reversal table.
* @return none.
*/
void arm_bitreversal_q31(
q31_t * pSrc,
uint32_t fftLen,
uint16_t bitRevFactor,
uint16_t *pBitRevTab);
/**
* @brief Core function for the Q15 CFFT butterfly process.
* @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type.
* @param[in] fftLen length of the FFT.
* @param[in] *pCoef16 points to twiddle coefficient buffer.
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @return none.
*/
void arm_radix4_butterfly_q15(
q15_t *pSrc16,
uint32_t fftLen,
q15_t *pCoef16,
uint32_t twidCoefModifier);
/**
* @brief Core function for the Q15 CIFFT butterfly process.
* @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type.
* @param[in] fftLen length of the FFT.
* @param[in] *pCoef16 points to twiddle coefficient buffer.
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @return none.
*/
void arm_radix4_butterfly_inverse_q15(
q15_t *pSrc16,
uint32_t fftLen,
q15_t *pCoef16,
uint32_t twidCoefModifier);
/**
* @brief In-place bit reversal function.
* @param[in, out] *pSrc points to the in-place buffer of Q15 data type.
* @param[in] fftLen length of the FFT.
* @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table
* @param[in] *pBitRevTab points to bit reversal table.
* @return none.
*/
void arm_bitreversal_q15(
q15_t * pSrc,
uint32_t fftLen,
uint16_t bitRevFactor,
uint16_t *pBitRevTab);
/**
* @brief Instance structure for the Q15 RFFT/RIFFT function.
*/
typedef struct
{
uint32_t fftLenReal; /**< length of the real FFT. */
uint32_t fftLenBy2; /**< length of the complex FFT. */
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
} arm_rfft_instance_q15;
/**
* @brief Instance structure for the Q31 RFFT/RIFFT function.
*/
typedef struct
{
uint32_t fftLenReal; /**< length of the real FFT. */
uint32_t fftLenBy2; /**< length of the complex FFT. */
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
} arm_rfft_instance_q31;
/**
* @brief Instance structure for the floating-point RFFT/RIFFT function.
*/
typedef struct
{
uint32_t fftLenReal; /**< length of the real FFT. */
uint16_t fftLenBy2; /**< length of the complex FFT. */
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
} arm_rfft_instance_f32;
/**
* @brief Processing function for the Q15 RFFT/RIFFT.
* @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure.
* @param[in] *pSrc points to the input buffer.
* @param[out] *pDst points to the output buffer.
* @return none.
*/
void arm_rfft_q15(
const arm_rfft_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst);
/**
* @brief Initialization function for the Q15 RFFT/RIFFT.
* @param[in, out] *S points to an instance of the Q15 RFFT/RIFFT structure.
* @param[in] *S_CFFT points to an instance of the Q15 CFFT/CIFFT structure.
* @param[in] fftLenReal length of the FFT.
* @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform.
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value.
*/
arm_status arm_rfft_init_q15(
arm_rfft_instance_q15 * S,
arm_cfft_radix4_instance_q15 * S_CFFT,
uint32_t fftLenReal,
uint32_t ifftFlagR,
uint32_t bitReverseFlag);
/**
* @brief Processing function for the Q31 RFFT/RIFFT.
* @param[in] *S points to an instance of the Q31 RFFT/RIFFT structure.
* @param[in] *pSrc points to the input buffer.
* @param[out] *pDst points to the output buffer.
* @return none.
*/
void arm_rfft_q31(
const arm_rfft_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst);
/**
* @brief Initialization function for the Q31 RFFT/RIFFT.
* @param[in, out] *S points to an instance of the Q31 RFFT/RIFFT structure.
* @param[in, out] *S_CFFT points to an instance of the Q31 CFFT/CIFFT structure.
* @param[in] fftLenReal length of the FFT.
* @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform.
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value.
*/
arm_status arm_rfft_init_q31(
arm_rfft_instance_q31 * S,
arm_cfft_radix4_instance_q31 * S_CFFT,
uint32_t fftLenReal,
uint32_t ifftFlagR,
uint32_t bitReverseFlag);
/**
* @brief Initialization function for the floating-point RFFT/RIFFT.
* @param[in,out] *S points to an instance of the floating-point RFFT/RIFFT structure.
* @param[in,out] *S_CFFT points to an instance of the floating-point CFFT/CIFFT structure.
* @param[in] fftLenReal length of the FFT.
* @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform.
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value.
*/
arm_status arm_rfft_init_f32(
arm_rfft_instance_f32 * S,
arm_cfft_radix4_instance_f32 * S_CFFT,
uint32_t fftLenReal,
uint32_t ifftFlagR,
uint32_t bitReverseFlag);
/**
* @brief Processing function for the floating-point RFFT/RIFFT.
* @param[in] *S points to an instance of the floating-point RFFT/RIFFT structure.
* @param[in] *pSrc points to the input buffer.
* @param[out] *pDst points to the output buffer.
* @return none.
*/
void arm_rfft_f32(
const arm_rfft_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst);
/**
* @brief Instance structure for the floating-point DCT4/IDCT4 function.
*/
typedef struct
{
uint16_t N; /**< length of the DCT4. */
uint16_t Nby2; /**< half of the length of the DCT4. */
float32_t normalize; /**< normalizing factor. */
float32_t *pTwiddle; /**< points to the twiddle factor table. */
float32_t *pCosFactor; /**< points to the cosFactor table. */
arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
} arm_dct4_instance_f32;
/**
* @brief Initialization function for the floating-point DCT4/IDCT4.
* @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
* @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
* @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
* @param[in] N length of the DCT4.
* @param[in] Nby2 half of the length of the DCT4.
* @param[in] normalize normalizing factor.
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
*/
arm_status arm_dct4_init_f32(
arm_dct4_instance_f32 * S,
arm_rfft_instance_f32 * S_RFFT,
arm_cfft_radix4_instance_f32 * S_CFFT,
uint16_t N,
uint16_t Nby2,
float32_t normalize);
/**
* @brief Processing function for the floating-point DCT4/IDCT4.
* @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
* @param[in] *pState points to state buffer.
* @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
* @return none.
*/
void arm_dct4_f32(
const arm_dct4_instance_f32 * S,
float32_t * pState,
float32_t * pInlineBuffer);
/**
* @brief Instance structure for the Q31 DCT4/IDCT4 function.
*/
typedef struct
{
uint16_t N; /**< length of the DCT4. */
uint16_t Nby2; /**< half of the length of the DCT4. */
q31_t normalize; /**< normalizing factor. */
q31_t *pTwiddle; /**< points to the twiddle factor table. */
q31_t *pCosFactor; /**< points to the cosFactor table. */
arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
} arm_dct4_instance_q31;
/**
* @brief Initialization function for the Q31 DCT4/IDCT4.
* @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
* @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
* @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
* @param[in] N length of the DCT4.
* @param[in] Nby2 half of the length of the DCT4.
* @param[in] normalize normalizing factor.
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
*/
arm_status arm_dct4_init_q31(
arm_dct4_instance_q31 * S,
arm_rfft_instance_q31 * S_RFFT,
arm_cfft_radix4_instance_q31 * S_CFFT,
uint16_t N,
uint16_t Nby2,
q31_t normalize);
/**
* @brief Processing function for the Q31 DCT4/IDCT4.
* @param[in] *S points to an instance of the Q31 DCT4 structure.
* @param[in] *pState points to state buffer.
* @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
* @return none.
*/
void arm_dct4_q31(
const arm_dct4_instance_q31 * S,
q31_t * pState,
q31_t * pInlineBuffer);
/**
* @brief Instance structure for the Q15 DCT4/IDCT4 function.
*/
typedef struct
{
uint16_t N; /**< length of the DCT4. */
uint16_t Nby2; /**< half of the length of the DCT4. */
q15_t normalize; /**< normalizing factor. */
q15_t *pTwiddle; /**< points to the twiddle factor table. */
q15_t *pCosFactor; /**< points to the cosFactor table. */
arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
} arm_dct4_instance_q15;
/**
* @brief Initialization function for the Q15 DCT4/IDCT4.
* @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
* @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
* @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
* @param[in] N length of the DCT4.
* @param[in] Nby2 half of the length of the DCT4.
* @param[in] normalize normalizing factor.
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
*/
arm_status arm_dct4_init_q15(
arm_dct4_instance_q15 * S,
arm_rfft_instance_q15 * S_RFFT,
arm_cfft_radix4_instance_q15 * S_CFFT,
uint16_t N,
uint16_t Nby2,
q15_t normalize);
/**
* @brief Processing function for the Q15 DCT4/IDCT4.
* @param[in] *S points to an instance of the Q15 DCT4 structure.
* @param[in] *pState points to state buffer.
* @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
* @return none.
*/
void arm_dct4_q15(
const arm_dct4_instance_q15 * S,
q15_t * pState,
q15_t * pInlineBuffer);
/**
* @brief Floating-point vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_add_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Q7 vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_add_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Q15 vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_add_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Q31 vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_add_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Floating-point vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_sub_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Q7 vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_sub_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Q15 vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_sub_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Q31 vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_sub_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Multiplies a floating-point vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scale scale factor to be applied
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_scale_f32(
float32_t * pSrc,
float32_t scale,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Multiplies a Q7 vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_scale_q7(
q7_t * pSrc,
q7_t scaleFract,
int8_t shift,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Multiplies a Q15 vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_scale_q15(
q15_t * pSrc,
q15_t scaleFract,
int8_t shift,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Multiplies a Q31 vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_scale_q31(
q31_t * pSrc,
q31_t scaleFract,
int8_t shift,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Q7 vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_abs_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Floating-point vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_abs_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Q15 vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_abs_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Q31 vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_abs_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Dot product of floating-point vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*/
void arm_dot_prod_f32(
float32_t * pSrcA,
float32_t * pSrcB,
uint32_t blockSize,
float32_t * result);
/**
* @brief Dot product of Q7 vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*/
void arm_dot_prod_q7(
q7_t * pSrcA,
q7_t * pSrcB,
uint32_t blockSize,
q31_t * result);
/**
* @brief Dot product of Q15 vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*/
void arm_dot_prod_q15(
q15_t * pSrcA,
q15_t * pSrcB,
uint32_t blockSize,
q63_t * result);
/**
* @brief Dot product of Q31 vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*/
void arm_dot_prod_q31(
q31_t * pSrcA,
q31_t * pSrcB,
uint32_t blockSize,
q63_t * result);
/**
* @brief Shifts the elements of a Q7 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_shift_q7(
q7_t * pSrc,
int8_t shiftBits,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Shifts the elements of a Q15 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_shift_q15(
q15_t * pSrc,
int8_t shiftBits,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Shifts the elements of a Q31 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_shift_q31(
q31_t * pSrc,
int8_t shiftBits,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Adds a constant offset to a floating-point vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_offset_f32(
float32_t * pSrc,
float32_t offset,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Adds a constant offset to a Q7 vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_offset_q7(
q7_t * pSrc,
q7_t offset,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Adds a constant offset to a Q15 vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_offset_q15(
q15_t * pSrc,
q15_t offset,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Adds a constant offset to a Q31 vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_offset_q31(
q31_t * pSrc,
q31_t offset,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Negates the elements of a floating-point vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_negate_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Negates the elements of a Q7 vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_negate_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Negates the elements of a Q15 vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_negate_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Negates the elements of a Q31 vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_negate_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Copies the elements of a floating-point vector.
* @param[in] *pSrc input pointer
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_copy_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Copies the elements of a Q7 vector.
* @param[in] *pSrc input pointer
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_copy_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Copies the elements of a Q15 vector.
* @param[in] *pSrc input pointer
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_copy_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Copies the elements of a Q31 vector.
* @param[in] *pSrc input pointer
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_copy_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Fills a constant value into a floating-point vector.
* @param[in] value input value to be filled
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_fill_f32(
float32_t value,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Fills a constant value into a Q7 vector.
* @param[in] value input value to be filled
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_fill_q7(
q7_t value,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Fills a constant value into a Q15 vector.
* @param[in] value input value to be filled
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_fill_q15(
q15_t value,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Fills a constant value into a Q31 vector.
* @param[in] value input value to be filled
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_fill_q31(
q31_t value,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Convolution of floating-point sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
* @return none.
*/
void arm_conv_f32(
float32_t * pSrcA,
uint32_t srcALen,
float32_t * pSrcB,
uint32_t srcBLen,
float32_t * pDst);
/**
* @brief Convolution of Q15 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
* @return none.
*/
void arm_conv_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst);
/**
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
* @return none.
*/
void arm_conv_fast_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst);
/**
* @brief Convolution of Q31 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
* @return none.
*/
void arm_conv_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst);
/**
* @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
* @return none.
*/
void arm_conv_fast_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst);
/**
* @brief Convolution of Q7 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
* @return none.
*/
void arm_conv_q7(
q7_t * pSrcA,
uint32_t srcALen,
q7_t * pSrcB,
uint32_t srcBLen,
q7_t * pDst);
/**
* @brief Partial convolution of floating-point sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_f32(
float32_t * pSrcA,
uint32_t srcALen,
float32_t * pSrcB,
uint32_t srcBLen,
float32_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Partial convolution of Q15 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_fast_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Partial convolution of Q31 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_fast_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Partial convolution of Q7 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_q7(
q7_t * pSrcA,
uint32_t srcALen,
q7_t * pSrcB,
uint32_t srcBLen,
q7_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Instance structure for the Q15 FIR decimator.
*/
typedef struct
{
uint8_t M; /**< decimation factor. */
uint16_t numTaps; /**< number of coefficients in the filter. */
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
} arm_fir_decimate_instance_q15;
/**
* @brief Instance structure for the Q31 FIR decimator.
*/
typedef struct
{
uint8_t M; /**< decimation factor. */
uint16_t numTaps; /**< number of coefficients in the filter. */
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
} arm_fir_decimate_instance_q31;
/**
* @brief Instance structure for the floating-point FIR decimator.
*/
typedef struct
{
uint8_t M; /**< decimation factor. */
uint16_t numTaps; /**< number of coefficients in the filter. */
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
} arm_fir_decimate_instance_f32;
/**
* @brief Processing function for the floating-point FIR decimator.
* @param[in] *S points to an instance of the floating-point FIR decimator structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
* @return none
*/
void arm_fir_decimate_f32(
const arm_fir_decimate_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the floating-point FIR decimator.
* @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
* @param[in] numTaps number of coefficients in the filter.
* @param[in] M decimation factor.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* <code>blockSize</code> is not a multiple of <code>M</code>.
*/
arm_status arm_fir_decimate_init_f32(
arm_fir_decimate_instance_f32 * S,
uint16_t numTaps,
uint8_t M,
float32_t * pCoeffs,
float32_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the Q15 FIR decimator.
* @param[in] *S points to an instance of the Q15 FIR decimator structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
* @return none
*/
void arm_fir_decimate_q15(
const arm_fir_decimate_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
* @param[in] *S points to an instance of the Q15 FIR decimator structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
* @return none
*/
void arm_fir_decimate_fast_q15(
const arm_fir_decimate_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q15 FIR decimator.
* @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
* @param[in] numTaps number of coefficients in the filter.
* @param[in] M decimation factor.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* <code>blockSize</code> is not a multiple of <code>M</code>.
*/
arm_status arm_fir_decimate_init_q15(
arm_fir_decimate_instance_q15 * S,
uint16_t numTaps,
uint8_t M,
q15_t * pCoeffs,
q15_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the Q31 FIR decimator.
* @param[in] *S points to an instance of the Q31 FIR decimator structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
* @return none
*/
void arm_fir_decimate_q31(
const arm_fir_decimate_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
* @param[in] *S points to an instance of the Q31 FIR decimator structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
* @return none
*/
void arm_fir_decimate_fast_q31(
arm_fir_decimate_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q31 FIR decimator.
* @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
* @param[in] numTaps number of coefficients in the filter.
* @param[in] M decimation factor.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* <code>blockSize</code> is not a multiple of <code>M</code>.
*/
arm_status arm_fir_decimate_init_q31(
arm_fir_decimate_instance_q31 * S,
uint16_t numTaps,
uint8_t M,
q31_t * pCoeffs,
q31_t * pState,
uint32_t blockSize);
/**
* @brief Instance structure for the Q15 FIR interpolator.
*/