| /*
|
| FreeRTOS V8.0.1 - Copyright (C) 2014 Real Time Engineers Ltd.
|
| All rights reserved
|
|
|
| VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
|
|
|
| ***************************************************************************
|
| * *
|
| * FreeRTOS provides completely free yet professionally developed, *
|
| * robust, strictly quality controlled, supported, and cross *
|
| * platform software that has become a de facto standard. *
|
| * *
|
| * Help yourself get started quickly and support the FreeRTOS *
|
| * project by purchasing a FreeRTOS tutorial book, reference *
|
| * manual, or both from: http://www.FreeRTOS.org/Documentation *
|
| * *
|
| * Thank you! *
|
| * *
|
| ***************************************************************************
|
|
|
| This file is part of the FreeRTOS distribution.
|
|
|
| FreeRTOS is free software; you can redistribute it and/or modify it under
|
| the terms of the GNU General Public License (version 2) as published by the
|
| Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
|
|
|
| >>! NOTE: The modification to the GPL is included to allow you to !<<
|
| >>! distribute a combined work that includes FreeRTOS without being !<<
|
| >>! obliged to provide the source code for proprietary components !<<
|
| >>! outside of the FreeRTOS kernel. !<<
|
|
|
| FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
|
| WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
| FOR A PARTICULAR PURPOSE. Full license text is available from the following
|
| link: http://www.freertos.org/a00114.html
|
|
|
| 1 tab == 4 spaces!
|
|
|
| ***************************************************************************
|
| * *
|
| * Having a problem? Start by reading the FAQ "My application does *
|
| * not run, what could be wrong?" *
|
| * *
|
| * http://www.FreeRTOS.org/FAQHelp.html *
|
| * *
|
| ***************************************************************************
|
|
|
| http://www.FreeRTOS.org - Documentation, books, training, latest versions,
|
| license and Real Time Engineers Ltd. contact details.
|
|
|
| http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
|
| including FreeRTOS+Trace - an indispensable productivity tool, a DOS
|
| compatible FAT file system, and our tiny thread aware UDP/IP stack.
|
|
|
| http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
|
| Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
|
| licenses offer ticketed support, indemnification and middleware.
|
|
|
| http://www.SafeRTOS.com - High Integrity Systems also provide a safety
|
| engineered and independently SIL3 certified version for use in safety and
|
| mission critical applications that require provable dependability.
|
|
|
| 1 tab == 4 spaces!
|
| */
|
|
|
| /* Standard includes. */
|
| #include <stdlib.h>
|
| #include <string.h>
|
|
|
| /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
|
| all the API functions to use the MPU wrappers. That should only be done when
|
| task.h is included from an application file. */
|
| #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
|
|
|
| /* FreeRTOS includes. */
|
| #include "FreeRTOS.h"
|
| #include "task.h"
|
| #include "timers.h"
|
| #include "StackMacros.h"
|
| #include "static-allocator.h"
|
|
|
| /* Lint e961 and e750 are suppressed as a MISRA exception justified because the
|
| MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
|
| header files above, but not in this file, in order to generate the correct
|
| privileged Vs unprivileged linkage and placement. */
|
| #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */
|
|
|
| #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
|
| /* At the bottom of this file are two optional functions that can be used
|
| to generate human readable text from the raw data generated by the
|
| uxTaskGetSystemState() function. Note the formatting functions are provided
|
| for convenience only, and are NOT considered part of the kernel. */
|
| #include <stdio.h>
|
| #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
|
|
|
| /* Sanity check the configuration. */
|
| #if configUSE_TICKLESS_IDLE != 0
|
| #if INCLUDE_vTaskSuspend != 1
|
| #error INCLUDE_vTaskSuspend must be set to 1 if configUSE_TICKLESS_IDLE is not set to 0
|
| #endif /* INCLUDE_vTaskSuspend */
|
| #endif /* configUSE_TICKLESS_IDLE */
|
|
|
| /*
|
| * Defines the size, in words, of the stack allocated to the idle task.
|
| */
|
| #define tskIDLE_STACK_SIZE configMINIMAL_STACK_SIZE
|
| portSTACK_TYPE sIdleStack[tskIDLE_STACK_SIZE] __attribute__((section(".stack")));
|
|
|
| #if( configUSE_PREEMPTION == 0 )
|
| /* If the cooperative scheduler is being used then a yield should not be
|
| performed just because a higher priority task has been woken. */
|
| #define taskYIELD_IF_USING_PREEMPTION()
|
| #else
|
| #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
|
| #endif
|
|
|
| /*
|
| * Task control block. A task control block (TCB) is allocated for each task,
|
| * and stores task state information, including a pointer to the task's context
|
| * (the task's run time environment, including register values)
|
| */
|
| typedef struct tskTaskControlBlock
|
| {
|
| volatile StackType_t *pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
|
|
|
| #if ( portUSING_MPU_WRAPPERS == 1 )
|
| xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
|
| #endif
|
|
|
| ListItem_t xGenericListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
|
| ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
|
| UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
|
| StackType_t *pxStack; /*< Points to the start of the stack. */
|
| char pcTaskName[ configMAX_TASK_NAME_LEN ];/*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
| #if ( portSTACK_GROWTH > 0 )
|
| StackType_t *pxEndOfStack; /*< Points to the end of the stack on architectures where the stack grows up from low memory. */
|
| #endif
|
|
|
| #if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
| UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
|
| #endif
|
|
|
| #if ( configUSE_TRACE_FACILITY == 1 )
|
| UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
|
| UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
|
| #endif
|
|
|
| #if ( configUSE_MUTEXES == 1 )
|
| UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
|
| #endif
|
|
|
| #if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
| TaskHookFunction_t pxTaskTag;
|
| #endif
|
|
|
| #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
| uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
|
| #endif
|
|
|
| #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
| /* Allocate a Newlib reent structure that is specific to this task.
|
| Note Newlib support has been included by popular demand, but is not
|
| used by the FreeRTOS maintainers themselves. FreeRTOS is not
|
| responsible for resulting newlib operation. User must be familiar with
|
| newlib and must provide system-wide implementations of the necessary
|
| stubs. Be warned that (at the time of writing) the current newlib design
|
| implements a system-wide malloc() that must be provided with locks. */
|
| struct _reent xNewLib_reent;
|
| #endif
|
| } tskTCB;
|
|
|
| /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
|
| below to enable the use of older kernel aware debuggers. */
|
| typedef tskTCB TCB_t;
|
|
|
| #define ARRAY_SIZE(a) (sizeof(a)/sizeof(a[0]))
|
| static struct {
|
| static_pool_header_t pool_header;
|
| tskTCB pool[configMAX_NUM_TASKS];
|
| } sTCBsPool __attribute__((section(".noinit")));
|
|
|
| void xInitTCBs(void);
|
|
|
| void xInitTCBs(void)
|
| {
|
| poolInit( (static_pool_t*)&sTCBsPool,
|
| sizeof(sTCBsPool.pool[0]),
|
| ARRAY_SIZE(sTCBsPool.pool));
|
|
|
| }
|
|
|
| /*
|
| * Some kernel aware debuggers require the data the debugger needs access to to
|
| * be global, rather than file scope.
|
| */
|
| #ifdef portREMOVE_STATIC_QUALIFIER
|
| #define static
|
| #endif
|
|
|
| /*lint -e956 A manual analysis and inspection has been used to determine which
|
| static variables must be declared volatile. */
|
|
|
| PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
|
|
|
| /* Lists for ready and blocked tasks. --------------------*/
|
| PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ];/*< Prioritised ready tasks. */
|
| PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
|
| PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
|
| PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
|
| PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
|
| PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
|
|
|
| #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
| PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
|
| PRIVILEGED_DATA static volatile UBaseType_t uxTasksDeleted = ( UBaseType_t ) 0U;
|
|
|
| #endif
|
|
|
| #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
| PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
|
|
|
| #endif
|
|
|
| #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
|
|
|
| PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
|
|
|
| #endif
|
|
|
| /* Other file private variables. --------------------------------*/
|
| PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
|
| PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) 0U;
|
| PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
|
| PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
|
| PRIVILEGED_DATA static volatile UBaseType_t uxPendedTicks = ( UBaseType_t ) 0U;
|
| PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
|
| PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
|
| PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
|
| PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = portMAX_DELAY;
|
|
|
| /* Context switches are held pending while the scheduler is suspended. Also,
|
| interrupts must not manipulate the xStateListItem of a TCB, or any of the
|
| lists the xStateListItem can be referenced from, if the scheduler is suspended.
|
| If an interrupt needs to unblock a task while the scheduler is suspended then it
|
| moves the task's event list item into the xPendingReadyList, ready for the
|
| kernel to move the task from the pending ready list into the real ready list
|
| when the scheduler is unsuspended. The pending ready list itself can only be
|
| accessed from a critical section. */
|
| PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
|
|
|
| #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
| PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
|
| PRIVILEGED_DATA static uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
|
|
|
| #endif
|
|
|
| /*lint +e956 */
|
|
|
| /* Debugging and trace facilities private variables and macros. ------------*/
|
|
|
| /*
|
| * The value used to fill the stack of a task when the task is created. This
|
| * is used purely for checking the high water mark for tasks.
|
| */
|
| #define tskSTACK_FILL_BYTE ( 0xa5U )
|
|
|
| /*
|
| * Macros used by vListTask to indicate which state a task is in.
|
| */
|
| #define tskBLOCKED_CHAR ( 'B' )
|
| #define tskREADY_CHAR ( 'R' )
|
| #define tskDELETED_CHAR ( 'D' )
|
| #define tskSUSPENDED_CHAR ( 'S' )
|
|
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
|
|
|
| /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
|
| performed in a generic way that is not optimised to any particular
|
| microcontroller architecture. */
|
|
|
| /* uxTopReadyPriority holds the priority of the highest priority ready
|
| state task. */
|
| #define taskRECORD_READY_PRIORITY( uxPriority ) \
|
| { \
|
| if( ( uxPriority ) > uxTopReadyPriority ) \
|
| { \
|
| uxTopReadyPriority = ( uxPriority ); \
|
| } \
|
| } /* taskRECORD_READY_PRIORITY */
|
|
|
| /*-----------------------------------------------------------*/
|
|
|
| #define taskSELECT_HIGHEST_PRIORITY_TASK() \
|
| { \
|
| /* Find the highest priority queue that contains ready tasks. */ \
|
| while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopReadyPriority ] ) ) ) \
|
| { \
|
| configASSERT( uxTopReadyPriority ); \
|
| --uxTopReadyPriority; \
|
| } \
|
| \
|
| /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
|
| the same priority get an equal share of the processor time. */ \
|
| listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopReadyPriority ] ) ); \
|
| } /* taskSELECT_HIGHEST_PRIORITY_TASK */
|
|
|
| /*-----------------------------------------------------------*/
|
|
|
| /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
|
| they are only required when a port optimised method of task selection is
|
| being used. */
|
| #define taskRESET_READY_PRIORITY( uxPriority )
|
| #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
|
|
|
| #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
|
|
|
| /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
|
| performed in a way that is tailored to the particular microcontroller
|
| architecture being used. */
|
|
|
| /* A port optimised version is provided. Call the port defined macros. */
|
| #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
|
|
|
| /*-----------------------------------------------------------*/
|
|
|
| #define taskSELECT_HIGHEST_PRIORITY_TASK() \
|
| { \
|
| UBaseType_t uxTopPriority; \
|
| \
|
| /* Find the highest priority queue that contains ready tasks. */ \
|
| portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
|
| configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
|
| listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
|
| } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
|
|
|
| /*-----------------------------------------------------------*/
|
|
|
| /* A port optimised version is provided, call it only if the TCB being reset
|
| is being referenced from a ready list. If it is referenced from a delayed
|
| or suspended list then it won't be in a ready list. */
|
| #define taskRESET_READY_PRIORITY( uxPriority ) \
|
| { \
|
| if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == 0 ) \
|
| { \
|
| portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
|
| } \
|
| }
|
|
|
| #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
|
|
|
| /*-----------------------------------------------------------*/
|
|
|
| /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
|
| count overflows. */
|
| #define taskSWITCH_DELAYED_LISTS() \
|
| { \
|
| List_t *pxTemp; \
|
| \
|
| /* The delayed tasks list should be empty when the lists are switched. */ \
|
| configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
|
| \
|
| pxTemp = pxDelayedTaskList; \
|
| pxDelayedTaskList = pxOverflowDelayedTaskList; \
|
| pxOverflowDelayedTaskList = pxTemp; \
|
| xNumOfOverflows++; \
|
| prvResetNextTaskUnblockTime(); \
|
| }
|
|
|
| /*-----------------------------------------------------------*/
|
|
|
| /*
|
| * Place the task represented by pxTCB into the appropriate ready list for
|
| * the task. It is inserted at the end of the list.
|
| */
|
| #define prvAddTaskToReadyList( pxTCB ) \
|
| traceMOVED_TASK_TO_READY_STATE( pxTCB ) \
|
| taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
|
| vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xGenericListItem ) )
|
| /*-----------------------------------------------------------*/
|
|
|
| /*
|
| * Several functions take an TaskHandle_t parameter that can optionally be NULL,
|
| * where NULL is used to indicate that the handle of the currently executing
|
| * task should be used in place of the parameter. This macro simply checks to
|
| * see if the parameter is NULL and returns a pointer to the appropriate TCB.
|
| */
|
| #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? ( TCB_t * ) pxCurrentTCB : ( TCB_t * ) ( pxHandle ) )
|
|
|
| /* The item value of the event list item is normally used to hold the priority
|
| of the task to which it belongs (coded to allow it to be held in reverse
|
| priority order). However, it is occasionally borrowed for other purposes. It
|
| is important its value is not updated due to a task priority change while it is
|
| being used for another purpose. The following bit definition is used to inform
|
| the scheduler that the value should not be changed - in which case it is the
|
| responsibility of whichever module is using the value to ensure it gets set back
|
| to its original value when it is released. */
|
| #if configUSE_16_BIT_TICKS == 1
|
| #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
|
| #else
|
| #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
|
| #endif
|
|
|
| /* Callback function prototypes. --------------------------*/
|
| #if configCHECK_FOR_STACK_OVERFLOW > 0
|
| extern void vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName );
|
| #endif
|
|
|
| #if configUSE_TICK_HOOK > 0
|
| extern void vApplicationTickHook( void );
|
| #endif
|
|
|
| /* File private functions. --------------------------------*/
|
|
|
| /*
|
| * Utility to ready a TCB for a given task. Mainly just copies the parameters
|
| * into the TCB structure.
|
| */
|
| static void prvInitialiseTCBVariables( TCB_t * const pxTCB, const char * const pcName, UBaseType_t uxPriority, const MemoryRegion_t * const xRegions, const uint16_t usStackDepth ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
| /**
|
| * Utility task that simply returns pdTRUE if the task referenced by xTask is
|
| * currently in the Suspended state, or pdFALSE if the task referenced by xTask
|
| * is in any other state.
|
| */
|
| static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
|
|
|
| /*
|
| * Utility to ready all the lists used by the scheduler. This is called
|
| * automatically upon the creation of the first task.
|
| */
|
| static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
|
|
|
| /*
|
| * The idle task, which as all tasks is implemented as a never ending loop.
|
| * The idle task is automatically created and added to the ready lists upon
|
| * creation of the first user task.
|
| *
|
| * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
|
| * language extensions. The equivalent prototype for this function is:
|
| *
|
| * void prvIdleTask( void *pvParameters );
|
| *
|
| */
|
| static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters );
|
|
|
| /*
|
| * Utility to free all memory allocated by the scheduler to hold a TCB,
|
| * including the stack pointed to by the TCB.
|
| *
|
| * This does not free memory allocated by the task itself (i.e. memory
|
| * allocated by calls to pvPortMalloc from within the tasks application code).
|
| */
|
| #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
| static void prvDeleteTCB( TCB_t *pxTCB ) PRIVILEGED_FUNCTION;
|
|
|
| #endif
|
|
|
| /*
|
| * Used only by the idle task. This checks to see if anything has been placed
|
| * in the list of tasks waiting to be deleted. If so the task is cleaned up
|
| * and its TCB deleted.
|
| */
|
| static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
|
|
|
| /*
|
| * The currently executing task is entering the Blocked state. Add the task to
|
| * either the current or the overflow delayed task list.
|
| */
|
| static void prvAddCurrentTaskToDelayedList( const TickType_t xTimeToWake ) PRIVILEGED_FUNCTION;
|
|
|
| /*
|
| * Allocates memory from the heap for a TCB and associated stack. Checks the
|
| * allocation was successful.
|
| */
|
| static TCB_t *prvAllocateTCBAndStack( const uint16_t usStackDepth, StackType_t * const puxStackBuffer ) PRIVILEGED_FUNCTION;
|
|
|
| /*
|
| * Fills an TaskStatus_t structure with information on each task that is
|
| * referenced from the pxList list (which may be a ready list, a delayed list,
|
| * a suspended list, etc.).
|
| *
|
| * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
|
| * NORMAL APPLICATION CODE.
|
| */
|
| #if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
| static UBaseType_t prvListTaskWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState ) PRIVILEGED_FUNCTION;
|
|
|
| #endif
|
|
|
| /*
|
| * When a task is created, the stack of the task is filled with a known value.
|
| * This function determines the 'high water mark' of the task stack by
|
| * determining how much of the stack remains at the original preset value.
|
| */
|
| #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
|
|
|
| static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
|
|
|
| #endif
|
|
|
| /*
|
| * Return the amount of time, in ticks, that will pass before the kernel will
|
| * next move a task from the Blocked state to the Running state.
|
| *
|
| * This conditional compilation should use inequality to 0, not equality to 1.
|
| * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
|
| * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
|
| * set to a value other than 1.
|
| */
|
| #if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
| static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
|
|
|
| #endif
|
|
|
| /*
|
| * Set xNextTaskUnblockTime to the time at which the next Blocked state task
|
| * will exit the Blocked state.
|
| */
|
| static void prvResetNextTaskUnblockTime( void );
|
|
|
| /*-----------------------------------------------------------*/
|
|
|
| BaseType_t xTaskGenericCreate( TaskFunction_t pxTaskCode, const char * const pcName, const uint16_t usStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask, StackType_t * const puxStackBuffer, const MemoryRegion_t * const xRegions ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
| {
|
| BaseType_t xReturn;
|
| TCB_t * pxNewTCB;
|
|
|
| configASSERT( pxTaskCode );
|
| configASSERT( puxStackBuffer );
|
| configASSERT( ( ( uxPriority & ( ~portPRIVILEGE_BIT ) ) < configMAX_PRIORITIES ) );
|
|
|
| /* Allocate the memory required by the TCB and stack for the new task,
|
| checking that the allocation was successful. */
|
| pxNewTCB = prvAllocateTCBAndStack( usStackDepth, puxStackBuffer );
|
|
|
| if( pxNewTCB != NULL )
|
| {
|
| StackType_t *pxTopOfStack;
|
|
|
| #if( portUSING_MPU_WRAPPERS == 1 )
|
| /* Should the task be created in privileged mode? */
|
| BaseType_t xRunPrivileged;
|
| if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
|
| {
|
| xRunPrivileged = pdTRUE;
|
| }
|
| else
|
| {
|
| xRunPrivileged = pdFALSE;
|
| }
|
| uxPriority &= ~portPRIVILEGE_BIT;
|
| #endif /* portUSING_MPU_WRAPPERS == 1 */
|
|
|
| /* Calculate the top of stack address. This depends on whether the
|
| stack grows from high memory to low (as per the 80x86) or vice versa.
|
| portSTACK_GROWTH is used to make the result positive or negative as
|
| required by the port. */
|
| #if( portSTACK_GROWTH < 0 )
|
| {
|
| pxTopOfStack = pxNewTCB->pxStack + ( usStackDepth - ( uint16_t ) 1 );
|
| pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ( portPOINTER_SIZE_TYPE ) ~portBYTE_ALIGNMENT_MASK ) ); /*lint !e923 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. */
|
|
|
| /* Check the alignment of the calculated top of stack is correct. */
|
| configASSERT( ( ( ( uint32_t ) pxTopOfStack & ( uint32_t ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
|
| }
|
| #else /* portSTACK_GROWTH */
|
| {
|
| pxTopOfStack = pxNewTCB->pxStack;
|
|
|
| /* Check the alignment of the stack buffer is correct. */
|
| configASSERT( ( ( ( uint32_t ) pxNewTCB->pxStack & ( uint32_t ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
|
|
|
| /* If we want to use stack checking on architectures that use
|
| a positive stack growth direction then we also need to store the
|
| other extreme of the stack space. */
|
| pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( usStackDepth - 1 );
|
| }
|
| #endif /* portSTACK_GROWTH */
|
|
|
| /* Setup the newly allocated TCB with the initial state of the task. */
|
| prvInitialiseTCBVariables( pxNewTCB, pcName, uxPriority, xRegions, usStackDepth );
|
|
|
| /* Initialize the TCB stack to look as if the task was already running,
|
| but had been interrupted by the scheduler. The return address is set
|
| to the start of the task function. Once the stack has been initialised
|
| the top of stack variable is updated. */
|
| #if( portUSING_MPU_WRAPPERS == 1 )
|
| {
|
| pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
|
| }
|
| #else /* portUSING_MPU_WRAPPERS */
|
| {
|
| pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
|
| }
|
| #endif /* portUSING_MPU_WRAPPERS */
|
|
|
| if( ( void * ) pxCreatedTask != NULL )
|
| {
|
| /* Pass the TCB out - in an anonymous way. The calling function/
|
| task can use this as a handle to delete the task later if
|
| required.*/
|
| *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| /* Ensure interrupts don't access the task lists while they are being
|
| updated. */
|
| taskENTER_CRITICAL();
|
| {
|
| uxCurrentNumberOfTasks++;
|
| if( pxCurrentTCB == NULL )
|
| {
|
| /* There are no other tasks, or all the other tasks are in
|
| the suspended state - make this the current task. */
|
| pxCurrentTCB = pxNewTCB;
|
|
|
| if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
|
| {
|
| /* This is the first task to be created so do the preliminary
|
| initialisation required. We will not recover if this call
|
| fails, but we will report the failure. */
|
| prvInitialiseTaskLists();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| else
|
| {
|
| /* If the scheduler is not already running, make this task the
|
| current task if it is the highest priority task to be created
|
| so far. */
|
| if( xSchedulerRunning == pdFALSE )
|
| {
|
| if( pxCurrentTCB->uxPriority <= uxPriority )
|
| {
|
| pxCurrentTCB = pxNewTCB;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
|
|
| uxTaskNumber++;
|
|
|
| #if ( configUSE_TRACE_FACILITY == 1 )
|
| {
|
| /* Add a counter into the TCB for tracing only. */
|
| pxNewTCB->uxTCBNumber = uxTaskNumber;
|
| }
|
| #endif /* configUSE_TRACE_FACILITY */
|
| traceTASK_CREATE( pxNewTCB );
|
|
|
| prvAddTaskToReadyList( pxNewTCB );
|
|
|
| xReturn = pdPASS;
|
| portSETUP_TCB( pxNewTCB );
|
| }
|
| taskEXIT_CRITICAL();
|
| }
|
| else
|
| {
|
| xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
|
| traceTASK_CREATE_FAILED();
|
| }
|
|
|
| if( xReturn == pdPASS )
|
| {
|
| if( xSchedulerRunning != pdFALSE )
|
| {
|
| /* If the created task is of a higher priority than the current task
|
| then it should run now. */
|
| if( pxCurrentTCB->uxPriority < uxPriority )
|
| {
|
| taskYIELD_IF_USING_PREEMPTION();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
|
|
| return xReturn;
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
| void vTaskDelete( TaskHandle_t xTaskToDelete )
|
| {
|
| TCB_t *pxTCB;
|
|
|
| taskENTER_CRITICAL();
|
| {
|
| /* If null is passed in here then it is the calling task that is
|
| being deleted. */
|
| pxTCB = prvGetTCBFromHandle( xTaskToDelete );
|
|
|
| /* Remove task from the ready list and place in the termination list.
|
| This will stop the task from be scheduled. The idle task will check
|
| the termination list and free up any memory allocated by the
|
| scheduler for the TCB and stack. */
|
| if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
| {
|
| taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| /* Is the task waiting on an event also? */
|
| if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
| {
|
| ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xGenericListItem ) );
|
|
|
| /* Increment the ucTasksDeleted variable so the idle task knows
|
| there is a task that has been deleted and that it should therefore
|
| check the xTasksWaitingTermination list. */
|
| ++uxTasksDeleted;
|
|
|
| /* Increment the uxTaskNumberVariable also so kernel aware debuggers
|
| can detect that the task lists need re-generating. */
|
| uxTaskNumber++;
|
|
|
| traceTASK_DELETE( pxTCB );
|
| }
|
| taskEXIT_CRITICAL();
|
|
|
| /* Force a reschedule if it is the currently running task that has just
|
| been deleted. */
|
| if( xSchedulerRunning != pdFALSE )
|
| {
|
| if( pxTCB == pxCurrentTCB )
|
| {
|
| configASSERT( uxSchedulerSuspended == 0 );
|
|
|
| /* The pre-delete hook is primarily for the Windows simulator,
|
| in which Windows specific clean up operations are performed,
|
| after which it is not possible to yield away from this task -
|
| hence xYieldPending is used to latch that a context switch is
|
| required. */
|
| portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
|
| portYIELD_WITHIN_API();
|
| }
|
| else
|
| {
|
| /* Reset the next expected unblock time in case it referred to
|
| the task that has just been deleted. */
|
| taskENTER_CRITICAL();
|
| {
|
| prvResetNextTaskUnblockTime();
|
| }
|
| taskEXIT_CRITICAL();
|
| }
|
| }
|
| }
|
|
|
| #endif /* INCLUDE_vTaskDelete */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( INCLUDE_vTaskDelayUntil == 1 )
|
|
|
| void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement )
|
| {
|
| TickType_t xTimeToWake;
|
| BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
|
|
|
| configASSERT( pxPreviousWakeTime );
|
| configASSERT( ( xTimeIncrement > 0U ) );
|
| configASSERT( uxSchedulerSuspended == 0 );
|
|
|
| vTaskSuspendAll();
|
| {
|
| /* Minor optimisation. The tick count cannot change in this
|
| block. */
|
| const TickType_t xConstTickCount = xTickCount;
|
|
|
| /* Generate the tick time at which the task wants to wake. */
|
| xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
|
|
|
| if( xConstTickCount < *pxPreviousWakeTime )
|
| {
|
| /* The tick count has overflowed since this function was
|
| lasted called. In this case the only time we should ever
|
| actually delay is if the wake time has also overflowed,
|
| and the wake time is greater than the tick time. When this
|
| is the case it is as if neither time had overflowed. */
|
| if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
|
| {
|
| xShouldDelay = pdTRUE;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| else
|
| {
|
| /* The tick time has not overflowed. In this case we will
|
| delay if either the wake time has overflowed, and/or the
|
| tick time is less than the wake time. */
|
| if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
|
| {
|
| xShouldDelay = pdTRUE;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
|
|
| /* Update the wake time ready for the next call. */
|
| *pxPreviousWakeTime = xTimeToWake;
|
|
|
| if( xShouldDelay != pdFALSE )
|
| {
|
| traceTASK_DELAY_UNTIL();
|
|
|
| /* Remove the task from the ready list before adding it to the
|
| blocked list as the same list item is used for both lists. */
|
| if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
| {
|
| /* The current task must be in a ready list, so there is
|
| no need to check, and the port reset macro can be called
|
| directly. */
|
| portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| prvAddCurrentTaskToDelayedList( xTimeToWake );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| xAlreadyYielded = xTaskResumeAll();
|
|
|
| /* Force a reschedule if xTaskResumeAll has not already done so, we may
|
| have put ourselves to sleep. */
|
| if( xAlreadyYielded == pdFALSE )
|
| {
|
| portYIELD_WITHIN_API();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
|
|
| #endif /* INCLUDE_vTaskDelayUntil */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( INCLUDE_vTaskDelay == 1 )
|
|
|
| void vTaskDelay( const TickType_t xTicksToDelay )
|
| {
|
| TickType_t xTimeToWake;
|
| BaseType_t xAlreadyYielded = pdFALSE;
|
|
|
|
|
| /* A delay time of zero just forces a reschedule. */
|
| if( xTicksToDelay > ( TickType_t ) 0U )
|
| {
|
| configASSERT( uxSchedulerSuspended == 0 );
|
| vTaskSuspendAll();
|
| {
|
| traceTASK_DELAY();
|
|
|
| /* A task that is removed from the event list while the
|
| scheduler is suspended will not get placed in the ready
|
| list or removed from the blocked list until the scheduler
|
| is resumed.
|
|
|
| This task cannot be in an event list as it is the currently
|
| executing task. */
|
|
|
| /* Calculate the time to wake - this may overflow but this is
|
| not a problem. */
|
| xTimeToWake = xTickCount + xTicksToDelay;
|
|
|
| /* We must remove ourselves from the ready list before adding
|
| ourselves to the blocked list as the same list item is used for
|
| both lists. */
|
| if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
| {
|
| /* The current task must be in a ready list, so there is
|
| no need to check, and the port reset macro can be called
|
| directly. */
|
| portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| prvAddCurrentTaskToDelayedList( xTimeToWake );
|
| }
|
| xAlreadyYielded = xTaskResumeAll();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| /* Force a reschedule if xTaskResumeAll has not already done so, we may
|
| have put ourselves to sleep. */
|
| if( xAlreadyYielded == pdFALSE )
|
| {
|
| portYIELD_WITHIN_API();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
|
|
| #endif /* INCLUDE_vTaskDelay */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( INCLUDE_eTaskGetState == 1 )
|
|
|
| eTaskState eTaskGetState( TaskHandle_t xTask )
|
| {
|
| eTaskState eReturn;
|
| List_t *pxStateList;
|
| const TCB_t * const pxTCB = ( TCB_t * ) xTask;
|
|
|
| configASSERT( pxTCB );
|
|
|
| if( pxTCB == pxCurrentTCB )
|
| {
|
| /* The task calling this function is querying its own state. */
|
| eReturn = eRunning;
|
| }
|
| else
|
| {
|
| taskENTER_CRITICAL();
|
| {
|
| pxStateList = ( List_t * ) listLIST_ITEM_CONTAINER( &( pxTCB->xGenericListItem ) );
|
| }
|
| taskEXIT_CRITICAL();
|
|
|
| if( ( pxStateList == pxDelayedTaskList ) || ( pxStateList == pxOverflowDelayedTaskList ) )
|
| {
|
| /* The task being queried is referenced from one of the Blocked
|
| lists. */
|
| eReturn = eBlocked;
|
| }
|
|
|
| #if ( INCLUDE_vTaskSuspend == 1 )
|
| else if( pxStateList == &xSuspendedTaskList )
|
| {
|
| /* The task being queried is referenced from the suspended
|
| list. Is it genuinely suspended or is it block
|
| indefinitely? */
|
| if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
|
| {
|
| eReturn = eSuspended;
|
| }
|
| else
|
| {
|
| eReturn = eBlocked;
|
| }
|
| }
|
| #endif
|
|
|
| #if ( INCLUDE_vTaskDelete == 1 )
|
| else if( pxStateList == &xTasksWaitingTermination )
|
| {
|
| /* The task being queried is referenced from the deleted
|
| tasks list. */
|
| eReturn = eDeleted;
|
| }
|
| #endif
|
|
|
| else
|
| {
|
| /* If the task is not in any other state, it must be in the
|
| Ready (including pending ready) state. */
|
| eReturn = eReady;
|
| }
|
| }
|
|
|
| return eReturn;
|
| }
|
|
|
| #endif /* INCLUDE_eTaskGetState */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( INCLUDE_uxTaskPriorityGet == 1 )
|
|
|
| UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask )
|
| {
|
| TCB_t *pxTCB;
|
| UBaseType_t uxReturn;
|
|
|
| taskENTER_CRITICAL();
|
| {
|
| /* If null is passed in here then we are changing the
|
| priority of the calling function. */
|
| pxTCB = prvGetTCBFromHandle( xTask );
|
| uxReturn = pxTCB->uxPriority;
|
| }
|
| taskEXIT_CRITICAL();
|
|
|
| return uxReturn;
|
| }
|
|
|
| #endif /* INCLUDE_uxTaskPriorityGet */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( INCLUDE_vTaskPrioritySet == 1 )
|
|
|
| void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority )
|
| {
|
| TCB_t *pxTCB;
|
| UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
|
| BaseType_t xYieldRequired = pdFALSE;
|
|
|
| configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );
|
|
|
| /* Ensure the new priority is valid. */
|
| if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
|
| {
|
| uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| taskENTER_CRITICAL();
|
| {
|
| /* If null is passed in here then it is the priority of the calling
|
| task that is being changed. */
|
| pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
| traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
|
|
|
| #if ( configUSE_MUTEXES == 1 )
|
| {
|
| uxCurrentBasePriority = pxTCB->uxBasePriority;
|
| }
|
| #else
|
| {
|
| uxCurrentBasePriority = pxTCB->uxPriority;
|
| }
|
| #endif
|
|
|
| if( uxCurrentBasePriority != uxNewPriority )
|
| {
|
| /* The priority change may have readied a task of higher
|
| priority than the calling task. */
|
| if( uxNewPriority > uxCurrentBasePriority )
|
| {
|
| if( pxTCB != pxCurrentTCB )
|
| {
|
| /* The priority of a task other than the currently
|
| running task is being raised. Is the priority being
|
| raised above that of the running task? */
|
| if( uxNewPriority >= pxCurrentTCB->uxPriority )
|
| {
|
| xYieldRequired = pdTRUE;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| else
|
| {
|
| /* The priority of the running task is being raised,
|
| but the running task must already be the highest
|
| priority task able to run so no yield is required. */
|
| }
|
| }
|
| else if( pxTCB == pxCurrentTCB )
|
| {
|
| /* Setting the priority of the running task down means
|
| there may now be another task of higher priority that
|
| is ready to execute. */
|
| xYieldRequired = pdTRUE;
|
| }
|
| else
|
| {
|
| /* Setting the priority of any other task down does not
|
| require a yield as the running task must be above the
|
| new priority of the task being modified. */
|
| }
|
|
|
| /* Remember the ready list the task might be referenced from
|
| before its uxPriority member is changed so the
|
| taskRESET_READY_PRIORITY() macro can function correctly. */
|
| uxPriorityUsedOnEntry = pxTCB->uxPriority;
|
|
|
| #if ( configUSE_MUTEXES == 1 )
|
| {
|
| /* Only change the priority being used if the task is not
|
| currently using an inherited priority. */
|
| if( pxTCB->uxBasePriority == pxTCB->uxPriority )
|
| {
|
| pxTCB->uxPriority = uxNewPriority;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| /* The base priority gets set whatever. */
|
| pxTCB->uxBasePriority = uxNewPriority;
|
| }
|
| #else
|
| {
|
| pxTCB->uxPriority = uxNewPriority;
|
| }
|
| #endif
|
|
|
| /* Only reset the event list item value if the value is not
|
| being used for anything else. */
|
| if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
|
| {
|
| listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| /* If the task is in the blocked or suspended list we need do
|
| nothing more than change it's priority variable. However, if
|
| the task is in a ready list it needs to be removed and placed
|
| in the list appropriate to its new priority. */
|
| if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xGenericListItem ) ) != pdFALSE )
|
| {
|
| /* The task is currently in its ready list - remove before adding
|
| it to it's new ready list. As we are in a critical section we
|
| can do this even if the scheduler is suspended. */
|
| if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
| {
|
| /* It is known that the task is in its ready list so
|
| there is no need to check again and the port level
|
| reset macro can be called directly. */
|
| portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| prvAddTaskToReadyList( pxTCB );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| if( xYieldRequired == pdTRUE )
|
| {
|
| taskYIELD_IF_USING_PREEMPTION();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| /* Remove compiler warning about unused variables when the port
|
| optimised task selection is not being used. */
|
| ( void ) uxPriorityUsedOnEntry;
|
| }
|
| }
|
| taskEXIT_CRITICAL();
|
| }
|
|
|
| #endif /* INCLUDE_vTaskPrioritySet */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
| void vTaskSuspend( TaskHandle_t xTaskToSuspend )
|
| {
|
| TCB_t *pxTCB;
|
|
|
| taskENTER_CRITICAL();
|
| {
|
| /* If null is passed in here then it is the running task that is
|
| being suspended. */
|
| pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
|
|
|
| traceTASK_SUSPEND( pxTCB );
|
|
|
| /* Remove task from the ready/delayed list and place in the
|
| suspended list. */
|
| if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
| {
|
| taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| /* Is the task waiting on an event also? */
|
| if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
| {
|
| ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xGenericListItem ) );
|
| }
|
| taskEXIT_CRITICAL();
|
|
|
| if( pxTCB == pxCurrentTCB )
|
| {
|
| if( xSchedulerRunning != pdFALSE )
|
| {
|
| /* The current task has just been suspended. */
|
| configASSERT( uxSchedulerSuspended == 0 );
|
| portYIELD_WITHIN_API();
|
| }
|
| else
|
| {
|
| /* The scheduler is not running, but the task that was pointed
|
| to by pxCurrentTCB has just been suspended and pxCurrentTCB
|
| must be adjusted to point to a different task. */
|
| if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks )
|
| {
|
| /* No other tasks are ready, so set pxCurrentTCB back to
|
| NULL so when the next task is created pxCurrentTCB will
|
| be set to point to it no matter what its relative priority
|
| is. */
|
| pxCurrentTCB = NULL;
|
| }
|
| else
|
| {
|
| vTaskSwitchContext();
|
| }
|
| }
|
| }
|
| else
|
| {
|
| if( xSchedulerRunning != pdFALSE )
|
| {
|
| /* A task other than the currently running task was suspended,
|
| reset the next expected unblock time in case it referred to the
|
| task that is now in the Suspended state. */
|
| taskENTER_CRITICAL();
|
| {
|
| prvResetNextTaskUnblockTime();
|
| }
|
| taskEXIT_CRITICAL();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| }
|
|
|
| #endif /* INCLUDE_vTaskSuspend */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
| static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
|
| {
|
| BaseType_t xReturn = pdFALSE;
|
| const TCB_t * const pxTCB = ( TCB_t * ) xTask;
|
|
|
| /* Accesses xPendingReadyList so must be called from a critical
|
| section. */
|
|
|
| /* It does not make sense to check if the calling task is suspended. */
|
| configASSERT( xTask );
|
|
|
| /* Is the task being resumed actually in the suspended list? */
|
| if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xGenericListItem ) ) != pdFALSE )
|
| {
|
| /* Has the task already been resumed from within an ISR? */
|
| if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
|
| {
|
| /* Is it in the suspended list because it is in the Suspended
|
| state, or because is is blocked with no timeout? */
|
| if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE )
|
| {
|
| xReturn = pdTRUE;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| return xReturn;
|
| } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
|
|
|
| #endif /* INCLUDE_vTaskSuspend */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
| void vTaskResume( TaskHandle_t xTaskToResume )
|
| {
|
| TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume;
|
|
|
| /* It does not make sense to resume the calling task. */
|
| configASSERT( xTaskToResume );
|
|
|
| /* The parameter cannot be NULL as it is impossible to resume the
|
| currently executing task. */
|
| if( ( pxTCB != NULL ) && ( pxTCB != pxCurrentTCB ) )
|
| {
|
| taskENTER_CRITICAL();
|
| {
|
| if( prvTaskIsTaskSuspended( pxTCB ) == pdTRUE )
|
| {
|
| traceTASK_RESUME( pxTCB );
|
|
|
| /* As we are in a critical section we can access the ready
|
| lists even if the scheduler is suspended. */
|
| ( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
| prvAddTaskToReadyList( pxTCB );
|
|
|
| /* We may have just resumed a higher priority task. */
|
| if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
| {
|
| /* This yield may not cause the task just resumed to run,
|
| but will leave the lists in the correct state for the
|
| next yield. */
|
| taskYIELD_IF_USING_PREEMPTION();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| taskEXIT_CRITICAL();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
|
|
| #endif /* INCLUDE_vTaskSuspend */
|
|
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
|
|
|
| BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
|
| {
|
| BaseType_t xYieldRequired = pdFALSE;
|
| TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume;
|
| UBaseType_t uxSavedInterruptStatus;
|
|
|
| configASSERT( xTaskToResume );
|
|
|
| /* RTOS ports that support interrupt nesting have the concept of a
|
| maximum system call (or maximum API call) interrupt priority.
|
| Interrupts that are above the maximum system call priority are keep
|
| permanently enabled, even when the RTOS kernel is in a critical section,
|
| but cannot make any calls to FreeRTOS API functions. If configASSERT()
|
| is defined in FreeRTOSConfig.h then
|
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
| failure if a FreeRTOS API function is called from an interrupt that has
|
| been assigned a priority above the configured maximum system call
|
| priority. Only FreeRTOS functions that end in FromISR can be called
|
| from interrupts that have been assigned a priority at or (logically)
|
| below the maximum system call interrupt priority. FreeRTOS maintains a
|
| separate interrupt safe API to ensure interrupt entry is as fast and as
|
| simple as possible. More information (albeit Cortex-M specific) is
|
| provided on the following link:
|
| http://www.freertos.org/RTOS-Cortex-M3-M4.html */
|
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
| uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
| {
|
| if( prvTaskIsTaskSuspended( pxTCB ) == pdTRUE )
|
| {
|
| traceTASK_RESUME_FROM_ISR( pxTCB );
|
|
|
| /* Check the ready lists can be accessed. */
|
| if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
| {
|
| /* Ready lists can be accessed so move the task from the
|
| suspended list to the ready list directly. */
|
| if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
| {
|
| xYieldRequired = pdTRUE;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| ( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
| prvAddTaskToReadyList( pxTCB );
|
| }
|
| else
|
| {
|
| /* The delayed or ready lists cannot be accessed so the task
|
| is held in the pending ready list until the scheduler is
|
| unsuspended. */
|
| vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
|
| }
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
| return xYieldRequired;
|
| }
|
|
|
| #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
|
| /*-----------------------------------------------------------*/
|
|
|
| void vTaskStartScheduler( void )
|
| {
|
| BaseType_t xReturn;
|
|
|
| /* Add the idle task at the lowest priority. */
|
| #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
|
| {
|
| /* Create the idle task, storing its handle in xIdleTaskHandle so it can
|
| be returned by the xTaskGetIdleTaskHandle() function. */
|
| xReturn = xTaskGenericCreate( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), &xIdleTaskHandle, (void*)&sIdleStack, NULL ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
|
| }
|
| #else
|
| {
|
| /* Create the idle task without storing its handle. */
|
| xReturn = xTaskGenericCreate( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), NULL, (void*)&sIdleStack, NULL ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
|
| }
|
| #endif /* INCLUDE_xTaskGetIdleTaskHandle */
|
|
|
| #if ( configUSE_TIMERS == 1 )
|
| {
|
| if( xReturn == pdPASS )
|
| {
|
| xReturn = xTimerCreateTimerTask();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| #endif /* configUSE_TIMERS */
|
|
|
| if( xReturn == pdPASS )
|
| {
|
| /* Interrupts are turned off here, to ensure a tick does not occur
|
| before or during the call to xPortStartScheduler(). The stacks of
|
| the created tasks contain a status word with interrupts switched on
|
| so interrupts will automatically get re-enabled when the first task
|
| starts to run. */
|
| portDISABLE_INTERRUPTS();
|
|
|
| #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
| {
|
| /* Switch Newlib's _impure_ptr variable to point to the _reent
|
| structure specific to the task that will run first. */
|
| _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
|
| }
|
| #endif /* configUSE_NEWLIB_REENTRANT */
|
|
|
| xSchedulerRunning = pdTRUE;
|
| xTickCount = ( TickType_t ) 0U;
|
|
|
| /* If configGENERATE_RUN_TIME_STATS is defined then the following
|
| macro must be defined to configure the timer/counter used to generate
|
| the run time counter time base. */
|
| portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
|
|
|
| /* Setting up the timer tick is hardware specific and thus in the
|
| portable interface. */
|
| if( xPortStartScheduler() != pdFALSE )
|
| {
|
| /* Should not reach here as if the scheduler is running the
|
| function will not return. */
|
| }
|
| else
|
| {
|
| /* Should only reach here if a task calls xTaskEndScheduler(). */
|
| }
|
| }
|
| else
|
| {
|
| /* This line will only be reached if the kernel could not be started,
|
| because there was not enough FreeRTOS heap to create the idle task
|
| or the timer task. */
|
| configASSERT( xReturn );
|
| }
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| void vTaskEndScheduler( void )
|
| {
|
| /* Stop the scheduler interrupts and call the portable scheduler end
|
| routine so the original ISRs can be restored if necessary. The port
|
| layer must ensure interrupts enable bit is left in the correct state. */
|
| portDISABLE_INTERRUPTS();
|
| xSchedulerRunning = pdFALSE;
|
| vPortEndScheduler();
|
| }
|
| /*----------------------------------------------------------*/
|
|
|
| void vTaskSuspendAll( void )
|
| {
|
| /* A critical section is not required as the variable is of type
|
| BaseType_t. Please read Richard Barry's reply in the following link to a
|
| post in the FreeRTOS support forum before reporting this as a bug! -
|
| http://goo.gl/wu4acr */
|
| ++uxSchedulerSuspended;
|
| }
|
| /*----------------------------------------------------------*/
|
|
|
| #if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
| static TickType_t prvGetExpectedIdleTime( void )
|
| {
|
| TickType_t xReturn;
|
|
|
| if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
|
| {
|
| xReturn = 0;
|
| }
|
| else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
|
| {
|
| /* There are other idle priority tasks in the ready state. If
|
| time slicing is used then the very next tick interrupt must be
|
| processed. */
|
| xReturn = 0;
|
| }
|
| else
|
| {
|
| xReturn = xNextTaskUnblockTime - xTickCount;
|
| }
|
|
|
| return xReturn;
|
| }
|
|
|
| #endif /* configUSE_TICKLESS_IDLE */
|
| /*----------------------------------------------------------*/
|
|
|
| BaseType_t xTaskResumeAll( void )
|
| {
|
| TCB_t *pxTCB;
|
| BaseType_t xAlreadyYielded = pdFALSE;
|
|
|
| /* If uxSchedulerSuspended is zero then this function does not match a
|
| previous call to vTaskSuspendAll(). */
|
| configASSERT( uxSchedulerSuspended );
|
|
|
| /* It is possible that an ISR caused a task to be removed from an event
|
| list while the scheduler was suspended. If this was the case then the
|
| removed task will have been added to the xPendingReadyList. Once the
|
| scheduler has been resumed it is safe to move all the pending ready
|
| tasks from this list into their appropriate ready list. */
|
| taskENTER_CRITICAL();
|
| {
|
| --uxSchedulerSuspended;
|
|
|
| if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
| {
|
| if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
|
| {
|
| /* Move any readied tasks from the pending list into the
|
| appropriate ready list. */
|
| while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
|
| {
|
| pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) );
|
| ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
| ( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
| prvAddTaskToReadyList( pxTCB );
|
|
|
| /* If we have moved a task that has a priority higher than
|
| the current task then we should yield. */
|
| if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
| {
|
| xYieldPending = pdTRUE;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
|
|
| /* If any ticks occurred while the scheduler was suspended then
|
| they should be processed now. This ensures the tick count does
|
| not slip, and that any delayed tasks are resumed at the correct
|
| time. */
|
| if( uxPendedTicks > ( UBaseType_t ) 0U )
|
| {
|
| while( uxPendedTicks > ( UBaseType_t ) 0U )
|
| {
|
| if( xTaskIncrementTick() != pdFALSE )
|
| {
|
| xYieldPending = pdTRUE;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| --uxPendedTicks;
|
| }
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| if( xYieldPending == pdTRUE )
|
| {
|
| #if( configUSE_PREEMPTION != 0 )
|
| {
|
| xAlreadyYielded = pdTRUE;
|
| }
|
| #endif
|
| taskYIELD_IF_USING_PREEMPTION();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| taskEXIT_CRITICAL();
|
|
|
| return xAlreadyYielded;
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| TickType_t xTaskGetTickCount( void )
|
| {
|
| TickType_t xTicks;
|
|
|
| /* Critical section required if running on a 16 bit processor. */
|
| taskENTER_CRITICAL();
|
| {
|
| xTicks = xTickCount;
|
| }
|
| taskEXIT_CRITICAL();
|
|
|
| return xTicks;
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| TickType_t xTaskGetTickCountFromISR( void )
|
| {
|
| TickType_t xReturn;
|
| UBaseType_t uxSavedInterruptStatus;
|
|
|
| /* RTOS ports that support interrupt nesting have the concept of a maximum
|
| system call (or maximum API call) interrupt priority. Interrupts that are
|
| above the maximum system call priority are kept permanently enabled, even
|
| when the RTOS kernel is in a critical section, but cannot make any calls to
|
| FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
| then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
| failure if a FreeRTOS API function is called from an interrupt that has been
|
| assigned a priority above the configured maximum system call priority.
|
| Only FreeRTOS functions that end in FromISR can be called from interrupts
|
| that have been assigned a priority at or (logically) below the maximum
|
| system call interrupt priority. FreeRTOS maintains a separate interrupt
|
| safe API to ensure interrupt entry is as fast and as simple as possible.
|
| More information (albeit Cortex-M specific) is provided on the following
|
| link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
|
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
| uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
| {
|
| xReturn = xTickCount;
|
| }
|
| portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
| return xReturn;
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| UBaseType_t uxTaskGetNumberOfTasks( void )
|
| {
|
| /* A critical section is not required because the variables are of type
|
| BaseType_t. */
|
| return uxCurrentNumberOfTasks;
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( INCLUDE_pcTaskGetTaskName == 1 )
|
|
|
| char *pcTaskGetTaskName( TaskHandle_t xTaskToQuery )
|
| {
|
| TCB_t *pxTCB;
|
|
|
| /* If null is passed in here then the name of the calling task is being queried. */
|
| pxTCB = prvGetTCBFromHandle( xTaskToQuery );
|
| configASSERT( pxTCB );
|
| return &( pxTCB->pcTaskName[ 0 ] );
|
| }
|
|
|
| #endif /* INCLUDE_pcTaskGetTaskName */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
| UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime )
|
| {
|
| UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
|
|
|
| vTaskSuspendAll();
|
| {
|
| /* Is there a space in the array for each task in the system? */
|
| if( uxArraySize >= uxCurrentNumberOfTasks )
|
| {
|
| /* Fill in an TaskStatus_t structure with information on each
|
| task in the Ready state. */
|
| do
|
| {
|
| uxQueue--;
|
| uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
|
|
|
| } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
| /* Fill in an TaskStatus_t structure with information on each
|
| task in the Blocked state. */
|
| uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
|
| uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
|
|
|
| #if( INCLUDE_vTaskDelete == 1 )
|
| {
|
| /* Fill in an TaskStatus_t structure with information on
|
| each task that has been deleted but not yet cleaned up. */
|
| uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
|
| }
|
| #endif
|
|
|
| #if ( INCLUDE_vTaskSuspend == 1 )
|
| {
|
| /* Fill in an TaskStatus_t structure with information on
|
| each task in the Suspended state. */
|
| uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
|
| }
|
| #endif
|
|
|
| #if ( configGENERATE_RUN_TIME_STATS == 1)
|
| {
|
| if( pulTotalRunTime != NULL )
|
| {
|
| #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
|
| portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
|
| #else
|
| *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
|
| #endif
|
| }
|
| }
|
| #else
|
| {
|
| if( pulTotalRunTime != NULL )
|
| {
|
| *pulTotalRunTime = 0;
|
| }
|
| }
|
| #endif
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| ( void ) xTaskResumeAll();
|
|
|
| return uxTask;
|
| }
|
|
|
| #endif /* configUSE_TRACE_FACILITY */
|
| /*----------------------------------------------------------*/
|
|
|
| #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
|
|
|
| TaskHandle_t xTaskGetIdleTaskHandle( void )
|
| {
|
| /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
|
| started, then xIdleTaskHandle will be NULL. */
|
| configASSERT( ( xIdleTaskHandle != NULL ) );
|
| return xIdleTaskHandle;
|
| }
|
|
|
| #endif /* INCLUDE_xTaskGetIdleTaskHandle */
|
| /*----------------------------------------------------------*/
|
|
|
| /* This conditional compilation should use inequality to 0, not equality to 1.
|
| This is to ensure vTaskStepTick() is available when user defined low power mode
|
| implementations require configUSE_TICKLESS_IDLE to be set to a value other than
|
| 1. */
|
| #if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
| void vTaskStepTick( const TickType_t xTicksToJump )
|
| {
|
| /* Correct the tick count value after a period during which the tick
|
| was suppressed. Note this does *not* call the tick hook function for
|
| each stepped tick. */
|
| configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
|
| xTickCount += xTicksToJump;
|
| traceINCREASE_TICK_COUNT( xTicksToJump );
|
| }
|
|
|
| #endif /* configUSE_TICKLESS_IDLE */
|
| /*----------------------------------------------------------*/
|
|
|
| BaseType_t xTaskIncrementTick( void )
|
| {
|
| TCB_t * pxTCB;
|
| TickType_t xItemValue;
|
| BaseType_t xSwitchRequired = pdFALSE;
|
|
|
| /* Called by the portable layer each time a tick interrupt occurs.
|
| Increments the tick then checks to see if the new tick value will cause any
|
| tasks to be unblocked. */
|
| traceTASK_INCREMENT_TICK( xTickCount );
|
| if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
| {
|
| /* Increment the RTOS tick, switching the delayed and overflowed
|
| delayed lists if it wraps to 0. */
|
| ++xTickCount;
|
|
|
| {
|
| /* Minor optimisation. The tick count cannot change in this
|
| block. */
|
| const TickType_t xConstTickCount = xTickCount;
|
|
|
| if( xConstTickCount == ( TickType_t ) 0U )
|
| {
|
| taskSWITCH_DELAYED_LISTS();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| /* See if this tick has made a timeout expire. Tasks are stored in
|
| the queue in the order of their wake time - meaning once one task
|
| has been found whose block time has not expired there is no need to
|
| look any further down the list. */
|
| if( xConstTickCount >= xNextTaskUnblockTime )
|
| {
|
| for( ;; )
|
| {
|
| if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
|
| {
|
| /* The delayed list is empty. Set xNextTaskUnblockTime
|
| to the maximum possible value so it is extremely
|
| unlikely that the
|
| if( xTickCount >= xNextTaskUnblockTime ) test will pass
|
| next time through. */
|
| xNextTaskUnblockTime = portMAX_DELAY;
|
| break;
|
| }
|
| else
|
| {
|
| /* The delayed list is not empty, get the value of the
|
| item at the head of the delayed list. This is the time
|
| at which the task at the head of the delayed list must
|
| be removed from the Blocked state. */
|
| pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
|
| xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xGenericListItem ) );
|
|
|
| if( xConstTickCount < xItemValue )
|
| {
|
| /* It is not time to unblock this item yet, but the
|
| item value is the time at which the task at the head
|
| of the blocked list must be removed from the Blocked
|
| state - so record the item value in
|
| xNextTaskUnblockTime. */
|
| xNextTaskUnblockTime = xItemValue;
|
| break;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| /* It is time to remove the item from the Blocked state. */
|
| ( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
|
|
| /* Is the task waiting on an event also? If so remove
|
| it from the event list. */
|
| if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
| {
|
| ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| /* Place the unblocked task into the appropriate ready
|
| list. */
|
| prvAddTaskToReadyList( pxTCB );
|
|
|
| /* A task being unblocked cannot cause an immediate
|
| context switch if preemption is turned off. */
|
| #if ( configUSE_PREEMPTION == 1 )
|
| {
|
| /* Preemption is on, but a context switch should
|
| only be performed if the unblocked task has a
|
| priority that is equal to or higher than the
|
| currently executing task. */
|
| if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
| {
|
| xSwitchRequired = pdTRUE;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| #endif /* configUSE_PREEMPTION */
|
| }
|
| }
|
| }
|
| }
|
|
|
| /* Tasks of equal priority to the currently running task will share
|
| processing time (time slice) if preemption is on, and the application
|
| writer has not explicitly turned time slicing off. */
|
| #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
|
| {
|
| if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
|
| {
|
| xSwitchRequired = pdTRUE;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
|
|
|
| #if ( configUSE_TICK_HOOK == 1 )
|
| {
|
| /* Guard against the tick hook being called when the pended tick
|
| count is being unwound (when the scheduler is being unlocked). */
|
| if( uxPendedTicks == ( UBaseType_t ) 0U )
|
| {
|
| vApplicationTickHook();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| #endif /* configUSE_TICK_HOOK */
|
| }
|
| else
|
| {
|
| ++uxPendedTicks;
|
|
|
| /* The tick hook gets called at regular intervals, even if the
|
| scheduler is locked. */
|
| #if ( configUSE_TICK_HOOK == 1 )
|
| {
|
| vApplicationTickHook();
|
| }
|
| #endif
|
| }
|
|
|
| #if ( configUSE_PREEMPTION == 1 )
|
| {
|
| if( xYieldPending != pdFALSE )
|
| {
|
| xSwitchRequired = pdTRUE;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| #endif /* configUSE_PREEMPTION */
|
|
|
| return xSwitchRequired;
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
| void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction )
|
| {
|
| TCB_t *xTCB;
|
|
|
| /* If xTask is NULL then it is the task hook of the calling task that is
|
| getting set. */
|
| if( xTask == NULL )
|
| {
|
| xTCB = ( TCB_t * ) pxCurrentTCB;
|
| }
|
| else
|
| {
|
| xTCB = ( TCB_t * ) xTask;
|
| }
|
|
|
| /* Save the hook function in the TCB. A critical section is required as
|
| the value can be accessed from an interrupt. */
|
| taskENTER_CRITICAL();
|
| xTCB->pxTaskTag = pxHookFunction;
|
| taskEXIT_CRITICAL();
|
| }
|
|
|
| #endif /* configUSE_APPLICATION_TASK_TAG */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
| TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
|
| {
|
| TCB_t *xTCB;
|
| TaskHookFunction_t xReturn;
|
|
|
| /* If xTask is NULL then we are setting our own task hook. */
|
| if( xTask == NULL )
|
| {
|
| xTCB = ( TCB_t * ) pxCurrentTCB;
|
| }
|
| else
|
| {
|
| xTCB = ( TCB_t * ) xTask;
|
| }
|
|
|
| /* Save the hook function in the TCB. A critical section is required as
|
| the value can be accessed from an interrupt. */
|
| taskENTER_CRITICAL();
|
| {
|
| xReturn = xTCB->pxTaskTag;
|
| }
|
| taskEXIT_CRITICAL();
|
|
|
| return xReturn;
|
| }
|
|
|
| #endif /* configUSE_APPLICATION_TASK_TAG */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
| BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter )
|
| {
|
| TCB_t *xTCB;
|
| BaseType_t xReturn;
|
|
|
| /* If xTask is NULL then we are calling our own task hook. */
|
| if( xTask == NULL )
|
| {
|
| xTCB = ( TCB_t * ) pxCurrentTCB;
|
| }
|
| else
|
| {
|
| xTCB = ( TCB_t * ) xTask;
|
| }
|
|
|
| if( xTCB->pxTaskTag != NULL )
|
| {
|
| xReturn = xTCB->pxTaskTag( pvParameter );
|
| }
|
| else
|
| {
|
| xReturn = pdFAIL;
|
| }
|
|
|
| return xReturn;
|
| }
|
|
|
| #endif /* configUSE_APPLICATION_TASK_TAG */
|
| /*-----------------------------------------------------------*/
|
|
|
| void vTaskSwitchContext( void )
|
| {
|
| if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
|
| {
|
| /* The scheduler is currently suspended - do not allow a context
|
| switch. */
|
| xYieldPending = pdTRUE;
|
| }
|
| else
|
| {
|
| xYieldPending = pdFALSE;
|
| traceTASK_SWITCHED_OUT();
|
|
|
| #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
| {
|
| #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
|
| portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
|
| #else
|
| ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
|
| #endif
|
|
|
| /* Add the amount of time the task has been running to the
|
| accumulated time so far. The time the task started running was
|
| stored in ulTaskSwitchedInTime. Note that there is no overflow
|
| protection here so count values are only valid until the timer
|
| overflows. The guard against negative values is to protect
|
| against suspect run time stat counter implementations - which
|
| are provided by the application, not the kernel. */
|
| if( ulTotalRunTime > ulTaskSwitchedInTime )
|
| {
|
| pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| ulTaskSwitchedInTime = ulTotalRunTime;
|
| }
|
| #endif /* configGENERATE_RUN_TIME_STATS */
|
|
|
| taskFIRST_CHECK_FOR_STACK_OVERFLOW();
|
| taskSECOND_CHECK_FOR_STACK_OVERFLOW();
|
|
|
| taskSELECT_HIGHEST_PRIORITY_TASK();
|
|
|
| traceTASK_SWITCHED_IN();
|
|
|
| #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
| {
|
| /* Switch Newlib's _impure_ptr variable to point to the _reent
|
| structure specific to this task. */
|
| _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
|
| }
|
| #endif /* configUSE_NEWLIB_REENTRANT */
|
| }
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait )
|
| {
|
| TickType_t xTimeToWake;
|
|
|
| configASSERT( pxEventList );
|
|
|
| /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
|
| SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
|
|
|
| /* Place the event list item of the TCB in the appropriate event list.
|
| This is placed in the list in priority order so the highest priority task
|
| is the first to be woken by the event. The queue that contains the event
|
| list is locked, preventing simultaneous access from interrupts. */
|
| vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
|
|
|
| /* The task must be removed from from the ready list before it is added to
|
| the blocked list as the same list item is used for both lists. Exclusive
|
| access to the ready lists guaranteed because the scheduler is locked. */
|
| if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
| {
|
| /* The current task must be in a ready list, so there is no need to
|
| check, and the port reset macro can be called directly. */
|
| portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| #if ( INCLUDE_vTaskSuspend == 1 )
|
| {
|
| if( xTicksToWait == portMAX_DELAY )
|
| {
|
| /* Add the task to the suspended task list instead of a delayed task
|
| list to ensure the task is not woken by a timing event. It will
|
| block indefinitely. */
|
| vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xGenericListItem ) );
|
| }
|
| else
|
| {
|
| /* Calculate the time at which the task should be woken if the event
|
| does not occur. This may overflow but this doesn't matter, the
|
| scheduler will handle it. */
|
| xTimeToWake = xTickCount + xTicksToWait;
|
| prvAddCurrentTaskToDelayedList( xTimeToWake );
|
| }
|
| }
|
| #else /* INCLUDE_vTaskSuspend */
|
| {
|
| /* Calculate the time at which the task should be woken if the event does
|
| not occur. This may overflow but this doesn't matter, the scheduler
|
| will handle it. */
|
| xTimeToWake = xTickCount + xTicksToWait;
|
| prvAddCurrentTaskToDelayedList( xTimeToWake );
|
| }
|
| #endif /* INCLUDE_vTaskSuspend */
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait )
|
| {
|
| TickType_t xTimeToWake;
|
|
|
| configASSERT( pxEventList );
|
|
|
| /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
|
| the event groups implementation. */
|
| configASSERT( uxSchedulerSuspended != 0 );
|
|
|
| /* Store the item value in the event list item. It is safe to access the
|
| event list item here as interrupts won't access the event list item of a
|
| task that is not in the Blocked state. */
|
| listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
|
|
|
| /* Place the event list item of the TCB at the end of the appropriate event
|
| list. It is safe to access the event list here because it is part of an
|
| event group implementation - and interrupts don't access event groups
|
| directly (instead they access them indirectly by pending function calls to
|
| the task level). */
|
| vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
|
|
|
| /* The task must be removed from the ready list before it is added to the
|
| blocked list. Exclusive access can be assured to the ready list as the
|
| scheduler is locked. */
|
| if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
| {
|
| /* The current task must be in a ready list, so there is no need to
|
| check, and the port reset macro can be called directly. */
|
| portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| #if ( INCLUDE_vTaskSuspend == 1 )
|
| {
|
| if( xTicksToWait == portMAX_DELAY )
|
| {
|
| /* Add the task to the suspended task list instead of a delayed task
|
| list to ensure it is not woken by a timing event. It will block
|
| indefinitely. */
|
| vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xGenericListItem ) );
|
| }
|
| else
|
| {
|
| /* Calculate the time at which the task should be woken if the event
|
| does not occur. This may overflow but this doesn't matter, the
|
| kernel will manage it correctly. */
|
| xTimeToWake = xTickCount + xTicksToWait;
|
| prvAddCurrentTaskToDelayedList( xTimeToWake );
|
| }
|
| }
|
| #else /* INCLUDE_vTaskSuspend */
|
| {
|
| /* Calculate the time at which the task should be woken if the event does
|
| not occur. This may overflow but this doesn't matter, the kernel
|
| will manage it correctly. */
|
| xTimeToWake = xTickCount + xTicksToWait;
|
| prvAddCurrentTaskToDelayedList( xTimeToWake );
|
| }
|
| #endif /* INCLUDE_vTaskSuspend */
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| #if configUSE_TIMERS == 1
|
|
|
| void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, const TickType_t xTicksToWait )
|
| {
|
| TickType_t xTimeToWake;
|
|
|
| configASSERT( pxEventList );
|
|
|
| /* This function should not be called by application code hence the
|
| 'Restricted' in its name. It is not part of the public API. It is
|
| designed for use by kernel code, and has special calling requirements -
|
| it should be called from a critical section. */
|
|
|
|
|
| /* Place the event list item of the TCB in the appropriate event list.
|
| In this case it is assume that this is the only task that is going to
|
| be waiting on this event list, so the faster vListInsertEnd() function
|
| can be used in place of vListInsert. */
|
| vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
|
|
|
| /* We must remove this task from the ready list before adding it to the
|
| blocked list as the same list item is used for both lists. This
|
| function is called form a critical section. */
|
| if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
| {
|
| /* The current task must be in a ready list, so there is no need to
|
| check, and the port reset macro can be called directly. */
|
| portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| /* Calculate the time at which the task should be woken if the event does
|
| not occur. This may overflow but this doesn't matter. */
|
| xTimeToWake = xTickCount + xTicksToWait;
|
|
|
| traceTASK_DELAY_UNTIL();
|
| prvAddCurrentTaskToDelayedList( xTimeToWake );
|
| }
|
|
|
| #endif /* configUSE_TIMERS */
|
| /*-----------------------------------------------------------*/
|
|
|
| BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
|
| {
|
| TCB_t *pxUnblockedTCB;
|
| BaseType_t xReturn;
|
|
|
| /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
|
| called from a critical section within an ISR. */
|
|
|
| /* The event list is sorted in priority order, so the first in the list can
|
| be removed as it is known to be the highest priority. Remove the TCB from
|
| the delayed list, and add it to the ready list.
|
|
|
| If an event is for a queue that is locked then this function will never
|
| get called - the lock count on the queue will get modified instead. This
|
| means exclusive access to the event list is guaranteed here.
|
|
|
| This function assumes that a check has already been made to ensure that
|
| pxEventList is not empty. */
|
| pxUnblockedTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
|
| configASSERT( pxUnblockedTCB );
|
| ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) );
|
|
|
| if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
| {
|
| ( void ) uxListRemove( &( pxUnblockedTCB->xGenericListItem ) );
|
| prvAddTaskToReadyList( pxUnblockedTCB );
|
| }
|
| else
|
| {
|
| /* The delayed and ready lists cannot be accessed, so hold this task
|
| pending until the scheduler is resumed. */
|
| vListInsertEnd( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
|
| }
|
|
|
| if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
|
| {
|
| /* Return true if the task removed from the event list has a higher
|
| priority than the calling task. This allows the calling task to know if
|
| it should force a context switch now. */
|
| xReturn = pdTRUE;
|
|
|
| /* Mark that a yield is pending in case the user is not using the
|
| "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
|
| xYieldPending = pdTRUE;
|
| }
|
| else
|
| {
|
| xReturn = pdFALSE;
|
| }
|
|
|
| return xReturn;
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| BaseType_t xTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue )
|
| {
|
| TCB_t *pxUnblockedTCB;
|
| BaseType_t xReturn;
|
|
|
| /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
|
| the event flags implementation. */
|
| configASSERT( uxSchedulerSuspended != pdFALSE );
|
|
|
| /* Store the new item value in the event list. */
|
| listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
|
|
|
| /* Remove the event list form the event flag. Interrupts do not access
|
| event flags. */
|
| pxUnblockedTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxEventListItem );
|
| configASSERT( pxUnblockedTCB );
|
| ( void ) uxListRemove( pxEventListItem );
|
|
|
| /* Remove the task from the delayed list and add it to the ready list. The
|
| scheduler is suspended so interrupts will not be accessing the ready
|
| lists. */
|
| ( void ) uxListRemove( &( pxUnblockedTCB->xGenericListItem ) );
|
| prvAddTaskToReadyList( pxUnblockedTCB );
|
|
|
| if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
|
| {
|
| /* Return true if the task removed from the event list has
|
| a higher priority than the calling task. This allows
|
| the calling task to know if it should force a context
|
| switch now. */
|
| xReturn = pdTRUE;
|
|
|
| /* Mark that a yield is pending in case the user is not using the
|
| "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
|
| xYieldPending = pdTRUE;
|
| }
|
| else
|
| {
|
| xReturn = pdFALSE;
|
| }
|
|
|
| return xReturn;
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
|
| {
|
| configASSERT( pxTimeOut );
|
| pxTimeOut->xOverflowCount = xNumOfOverflows;
|
| pxTimeOut->xTimeOnEntering = xTickCount;
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait )
|
| {
|
| BaseType_t xReturn;
|
|
|
| configASSERT( pxTimeOut );
|
| configASSERT( pxTicksToWait );
|
|
|
| taskENTER_CRITICAL();
|
| {
|
| /* Minor optimisation. The tick count cannot change in this block. */
|
| const TickType_t xConstTickCount = xTickCount;
|
|
|
| #if ( INCLUDE_vTaskSuspend == 1 )
|
| /* If INCLUDE_vTaskSuspend is set to 1 and the block time specified is
|
| the maximum block time then the task should block indefinitely, and
|
| therefore never time out. */
|
| if( *pxTicksToWait == portMAX_DELAY )
|
| {
|
| xReturn = pdFALSE;
|
| }
|
| else /* We are not blocking indefinitely, perform the checks below. */
|
| #endif
|
|
|
| if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
|
| {
|
| /* The tick count is greater than the time at which vTaskSetTimeout()
|
| was called, but has also overflowed since vTaskSetTimeOut() was called.
|
| It must have wrapped all the way around and gone past us again. This
|
| passed since vTaskSetTimeout() was called. */
|
| xReturn = pdTRUE;
|
| }
|
| else if( ( xConstTickCount - pxTimeOut->xTimeOnEntering ) < *pxTicksToWait )
|
| {
|
| /* Not a genuine timeout. Adjust parameters for time remaining. */
|
| *pxTicksToWait -= ( xConstTickCount - pxTimeOut->xTimeOnEntering );
|
| vTaskSetTimeOutState( pxTimeOut );
|
| xReturn = pdFALSE;
|
| }
|
| else
|
| {
|
| xReturn = pdTRUE;
|
| }
|
| }
|
| taskEXIT_CRITICAL();
|
|
|
| return xReturn;
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| void vTaskMissedYield( void )
|
| {
|
| xYieldPending = pdTRUE;
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
| UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
|
| {
|
| UBaseType_t uxReturn;
|
| TCB_t *pxTCB;
|
|
|
| if( xTask != NULL )
|
| {
|
| pxTCB = ( TCB_t * ) xTask;
|
| uxReturn = pxTCB->uxTaskNumber;
|
| }
|
| else
|
| {
|
| uxReturn = 0U;
|
| }
|
|
|
| return uxReturn;
|
| }
|
|
|
| #endif /* configUSE_TRACE_FACILITY */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
| void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle )
|
| {
|
| TCB_t *pxTCB;
|
|
|
| if( xTask != NULL )
|
| {
|
| pxTCB = ( TCB_t * ) xTask;
|
| pxTCB->uxTaskNumber = uxHandle;
|
| }
|
| }
|
|
|
| #endif /* configUSE_TRACE_FACILITY */
|
|
|
| /*
|
| * -----------------------------------------------------------
|
| * The Idle task.
|
| * ----------------------------------------------------------
|
| *
|
| * The portTASK_FUNCTION() macro is used to allow port/compiler specific
|
| * language extensions. The equivalent prototype for this function is:
|
| *
|
| * void prvIdleTask( void *pvParameters );
|
| *
|
| */
|
| static portTASK_FUNCTION( prvIdleTask, pvParameters )
|
| {
|
| /* Stop warnings. */
|
| ( void ) pvParameters;
|
|
|
| for( ;; )
|
| {
|
| /* See if any tasks have been deleted. */
|
| prvCheckTasksWaitingTermination();
|
|
|
| #if ( configUSE_PREEMPTION == 0 )
|
| {
|
| /* If we are not using preemption we keep forcing a task switch to
|
| see if any other task has become available. If we are using
|
| preemption we don't need to do this as any task becoming available
|
| will automatically get the processor anyway. */
|
| taskYIELD();
|
| }
|
| #endif /* configUSE_PREEMPTION */
|
|
|
| #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
|
| {
|
| /* When using preemption tasks of equal priority will be
|
| timesliced. If a task that is sharing the idle priority is ready
|
| to run then the idle task should yield before the end of the
|
| timeslice.
|
|
|
| A critical region is not required here as we are just reading from
|
| the list, and an occasional incorrect value will not matter. If
|
| the ready list at the idle priority contains more than one task
|
| then a task other than the idle task is ready to execute. */
|
| if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
|
| {
|
| taskYIELD();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
|
|
|
| #if ( configUSE_IDLE_HOOK == 1 )
|
| {
|
| extern void vApplicationIdleHook( void );
|
|
|
| /* Call the user defined function from within the idle task. This
|
| allows the application designer to add background functionality
|
| without the overhead of a separate task.
|
| NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
|
| CALL A FUNCTION THAT MIGHT BLOCK. */
|
| vApplicationIdleHook();
|
| }
|
| #endif /* configUSE_IDLE_HOOK */
|
|
|
| /* This conditional compilation should use inequality to 0, not equality
|
| to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
|
| user defined low power mode implementations require
|
| configUSE_TICKLESS_IDLE to be set to a value other than 1. */
|
| #if ( configUSE_TICKLESS_IDLE != 0 )
|
| {
|
| TickType_t xExpectedIdleTime;
|
|
|
| /* It is not desirable to suspend then resume the scheduler on
|
| each iteration of the idle task. Therefore, a preliminary
|
| test of the expected idle time is performed without the
|
| scheduler suspended. The result here is not necessarily
|
| valid. */
|
| xExpectedIdleTime = prvGetExpectedIdleTime();
|
|
|
| if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
|
| {
|
| vTaskSuspendAll();
|
| {
|
| /* Now the scheduler is suspended, the expected idle
|
| time can be sampled again, and this time its value can
|
| be used. */
|
| configASSERT( xNextTaskUnblockTime >= xTickCount );
|
| xExpectedIdleTime = prvGetExpectedIdleTime();
|
|
|
| if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
|
| {
|
| traceLOW_POWER_IDLE_BEGIN();
|
| portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
|
| traceLOW_POWER_IDLE_END();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| ( void ) xTaskResumeAll();
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| #endif /* configUSE_TICKLESS_IDLE */
|
| }
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| #if configUSE_TICKLESS_IDLE != 0
|
|
|
| eSleepModeStatus eTaskConfirmSleepModeStatus( void )
|
| {
|
| eSleepModeStatus eReturn = eStandardSleep;
|
|
|
| if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
|
| {
|
| /* A task was made ready while the scheduler was suspended. */
|
| eReturn = eAbortSleep;
|
| }
|
| else if( xYieldPending != pdFALSE )
|
| {
|
| /* A yield was pended while the scheduler was suspended. */
|
| eReturn = eAbortSleep;
|
| }
|
| else
|
| {
|
| #if configUSE_TIMERS == 0
|
| {
|
| /* The idle task exists in addition to the application tasks. */
|
| const UBaseType_t uxNonApplicationTasks = 1;
|
|
|
| /* If timers are not being used and all the tasks are in the
|
| suspended list (which might mean they have an infinite block
|
| time rather than actually being suspended) then it is safe to
|
| turn all clocks off and just wait for external interrupts. */
|
| if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
|
| {
|
| eReturn = eNoTasksWaitingTimeout;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| #endif /* configUSE_TIMERS */
|
| }
|
|
|
| return eReturn;
|
| }
|
| #endif /* configUSE_TICKLESS_IDLE */
|
| /*-----------------------------------------------------------*/
|
|
|
| static void prvInitialiseTCBVariables( TCB_t * const pxTCB, const char * const pcName, UBaseType_t uxPriority, const MemoryRegion_t * const xRegions, const uint16_t usStackDepth ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
| {
|
| UBaseType_t x;
|
|
|
| /* Store the task name in the TCB. */
|
| for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
|
| {
|
| pxTCB->pcTaskName[ x ] = pcName[ x ];
|
|
|
| /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
|
| configMAX_TASK_NAME_LEN characters just in case the memory after the
|
| string is not accessible (extremely unlikely). */
|
| if( pcName[ x ] == 0x00 )
|
| {
|
| break;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
|
|
| /* Ensure the name string is terminated in the case that the string length
|
| was greater or equal to configMAX_TASK_NAME_LEN. */
|
| pxTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
|
|
|
| /* This is used as an array index so must ensure it's not too large. First
|
| remove the privilege bit if one is present. */
|
| if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
|
| {
|
| uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| pxTCB->uxPriority = uxPriority;
|
| #if ( configUSE_MUTEXES == 1 )
|
| {
|
| pxTCB->uxBasePriority = uxPriority;
|
| }
|
| #endif /* configUSE_MUTEXES */
|
|
|
| vListInitialiseItem( &( pxTCB->xGenericListItem ) );
|
| vListInitialiseItem( &( pxTCB->xEventListItem ) );
|
|
|
| /* Set the pxTCB as a link back from the ListItem_t. This is so we can get
|
| back to the containing TCB from a generic item in a list. */
|
| listSET_LIST_ITEM_OWNER( &( pxTCB->xGenericListItem ), pxTCB );
|
|
|
| /* Event lists are always in priority order. */
|
| listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
| listSET_LIST_ITEM_OWNER( &( pxTCB->xEventListItem ), pxTCB );
|
|
|
| #if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
| {
|
| pxTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
|
| }
|
| #endif /* portCRITICAL_NESTING_IN_TCB */
|
|
|
| #if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
| {
|
| pxTCB->pxTaskTag = NULL;
|
| }
|
| #endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
| #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
| {
|
| pxTCB->ulRunTimeCounter = 0UL;
|
| }
|
| #endif /* configGENERATE_RUN_TIME_STATS */
|
|
|
| #if ( portUSING_MPU_WRAPPERS == 1 )
|
| {
|
| vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, pxTCB->pxStack, usStackDepth );
|
| }
|
| #else /* portUSING_MPU_WRAPPERS */
|
| {
|
| ( void ) xRegions;
|
| ( void ) usStackDepth;
|
| }
|
| #endif /* portUSING_MPU_WRAPPERS */
|
|
|
| #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
| {
|
| /* Initialise this task's Newlib reent structure. */
|
| _REENT_INIT_PTR( ( &( pxTCB->xNewLib_reent ) ) );
|
| }
|
| #endif /* configUSE_NEWLIB_REENTRANT */
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
| void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, const MemoryRegion_t * const xRegions )
|
| {
|
| TCB_t *pxTCB;
|
|
|
| /* If null is passed in here then we are deleting ourselves. */
|
| pxTCB = prvGetTCBFromHandle( xTaskToModify );
|
|
|
| vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
|
| }
|
|
|
| #endif /* portUSING_MPU_WRAPPERS */
|
| /*-----------------------------------------------------------*/
|
|
|
| static void prvInitialiseTaskLists( void )
|
| {
|
| UBaseType_t uxPriority;
|
|
|
| for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
|
| {
|
| vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
|
| }
|
|
|
| vListInitialise( &xDelayedTaskList1 );
|
| vListInitialise( &xDelayedTaskList2 );
|
| vListInitialise( &xPendingReadyList );
|
|
|
| #if ( INCLUDE_vTaskDelete == 1 )
|
| {
|
| vListInitialise( &xTasksWaitingTermination );
|
| }
|
| #endif /* INCLUDE_vTaskDelete */
|
|
|
| #if ( INCLUDE_vTaskSuspend == 1 )
|
| {
|
| vListInitialise( &xSuspendedTaskList );
|
| }
|
| #endif /* INCLUDE_vTaskSuspend */
|
|
|
| /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
|
| using list2. */
|
| pxDelayedTaskList = &xDelayedTaskList1;
|
| pxOverflowDelayedTaskList = &xDelayedTaskList2;
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| static void prvCheckTasksWaitingTermination( void )
|
| {
|
| #if ( INCLUDE_vTaskDelete == 1 )
|
| {
|
| BaseType_t xListIsEmpty;
|
|
|
| /* ucTasksDeleted is used to prevent vTaskSuspendAll() being called
|
| too often in the idle task. */
|
| while( uxTasksDeleted > ( UBaseType_t ) 0U )
|
| {
|
| vTaskSuspendAll();
|
| {
|
| xListIsEmpty = listLIST_IS_EMPTY( &xTasksWaitingTermination );
|
| }
|
| ( void ) xTaskResumeAll();
|
|
|
| if( xListIsEmpty == pdFALSE )
|
| {
|
| TCB_t *pxTCB;
|
|
|
| taskENTER_CRITICAL();
|
| {
|
| pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
|
| ( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
| --uxCurrentNumberOfTasks;
|
| --uxTasksDeleted;
|
| }
|
| taskEXIT_CRITICAL();
|
|
|
| prvDeleteTCB( pxTCB );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| }
|
| #endif /* vTaskDelete */
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| static void prvAddCurrentTaskToDelayedList( const TickType_t xTimeToWake )
|
| {
|
| /* The list item will be inserted in wake time order. */
|
| listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xGenericListItem ), xTimeToWake );
|
|
|
| if( xTimeToWake < xTickCount )
|
| {
|
| /* Wake time has overflowed. Place this item in the overflow list. */
|
| vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xGenericListItem ) );
|
| }
|
| else
|
| {
|
| /* The wake time has not overflowed, so the current block list is used. */
|
| vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xGenericListItem ) );
|
|
|
| /* If the task entering the blocked state was placed at the head of the
|
| list of blocked tasks then xNextTaskUnblockTime needs to be updated
|
| too. */
|
| if( xTimeToWake < xNextTaskUnblockTime )
|
| {
|
| xNextTaskUnblockTime = xTimeToWake;
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| static TCB_t *prvAllocateTCBAndStack( const uint16_t usStackDepth, StackType_t * const puxStackBuffer )
|
| {
|
| TCB_t *pxNewTCB;
|
|
|
| pxNewTCB = ( tskTCB * ) poolAllocateBuffer( (static_pool_t*)&sTCBsPool );
|
|
|
| if( pxNewTCB != NULL )
|
| {
|
| /* Allocate space for the stack used by the task being created.
|
| The base of the stack memory stored in the TCB so the task can
|
| be deleted later if required. */
|
| pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocAligned( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ), puxStackBuffer ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
| if( pxNewTCB->pxStack == NULL )
|
| {
|
| /* Could not allocate the stack. Delete the allocated TCB. */
|
| poolFreeBuffer( (static_pool_t*)&sTCBsPool, pxNewTCB );
|
| pxNewTCB = NULL;
|
| }
|
| else
|
| {
|
| /* Avoid dependency on memset() if it is not required. */
|
| #if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
|
| {
|
| /* Just to help debugging. */
|
| ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) usStackDepth * sizeof( StackType_t ) );
|
| }
|
| #endif /* ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) ) */
|
| }
|
| }
|
|
|
| return pxNewTCB;
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
| static UBaseType_t prvListTaskWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState )
|
| {
|
| volatile TCB_t *pxNextTCB, *pxFirstTCB;
|
| UBaseType_t uxTask = 0;
|
|
|
| if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
|
| {
|
| listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
|
|
|
| /* Populate an TaskStatus_t structure within the
|
| pxTaskStatusArray array for each task that is referenced from
|
| pxList. See the definition of TaskStatus_t in task.h for the
|
| meaning of each TaskStatus_t structure member. */
|
| do
|
| {
|
| listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
|
|
|
| pxTaskStatusArray[ uxTask ].xHandle = ( TaskHandle_t ) pxNextTCB;
|
| pxTaskStatusArray[ uxTask ].pcTaskName = ( const char * ) &( pxNextTCB->pcTaskName [ 0 ] );
|
| pxTaskStatusArray[ uxTask ].xTaskNumber = pxNextTCB->uxTCBNumber;
|
| pxTaskStatusArray[ uxTask ].eCurrentState = eState;
|
| pxTaskStatusArray[ uxTask ].uxCurrentPriority = pxNextTCB->uxPriority;
|
|
|
| #if ( INCLUDE_vTaskSuspend == 1 )
|
| {
|
| /* If the task is in the suspended list then there is a chance
|
| it is actually just blocked indefinitely - so really it should
|
| be reported as being in the Blocked state. */
|
| if( eState == eSuspended )
|
| {
|
| if( listLIST_ITEM_CONTAINER( &( pxNextTCB->xEventListItem ) ) != NULL )
|
| {
|
| pxTaskStatusArray[ uxTask ].eCurrentState = eBlocked;
|
| }
|
| }
|
| }
|
| #endif /* INCLUDE_vTaskSuspend */
|
|
|
| #if ( configUSE_MUTEXES == 1 )
|
| {
|
| pxTaskStatusArray[ uxTask ].uxBasePriority = pxNextTCB->uxBasePriority;
|
| }
|
| #else
|
| {
|
| pxTaskStatusArray[ uxTask ].uxBasePriority = 0;
|
| }
|
| #endif
|
|
|
| #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
| {
|
| pxTaskStatusArray[ uxTask ].ulRunTimeCounter = pxNextTCB->ulRunTimeCounter;
|
| }
|
| #else
|
| {
|
| pxTaskStatusArray[ uxTask ].ulRunTimeCounter = 0;
|
| }
|
| #endif
|
|
|
| #if ( portSTACK_GROWTH > 0 )
|
| {
|
| pxTaskStatusArray[ uxTask ].usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxNextTCB->pxEndOfStack );
|
| }
|
| #else
|
| {
|
| pxTaskStatusArray[ uxTask ].usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxNextTCB->pxStack );
|
| }
|
| #endif
|
|
|
| uxTask++;
|
|
|
| } while( pxNextTCB != pxFirstTCB );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| return uxTask;
|
| }
|
|
|
| #endif /* configUSE_TRACE_FACILITY */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
|
|
|
| static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
|
| {
|
| uint32_t ulCount = 0U;
|
|
|
| while( *pucStackByte == tskSTACK_FILL_BYTE )
|
| {
|
| pucStackByte -= portSTACK_GROWTH;
|
| ulCount++;
|
| }
|
|
|
| ulCount /= ( uint32_t ) sizeof( StackType_t );
|
|
|
| return ( uint16_t ) ulCount;
|
| }
|
|
|
| #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
|
|
|
| UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
|
| {
|
| TCB_t *pxTCB;
|
| uint8_t *pucEndOfStack;
|
| UBaseType_t uxReturn;
|
|
|
| pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
| #if portSTACK_GROWTH < 0
|
| {
|
| pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
|
| }
|
| #else
|
| {
|
| pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
|
| }
|
| #endif
|
|
|
| uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
|
|
|
| return uxReturn;
|
| }
|
|
|
| #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
| static void prvDeleteTCB( TCB_t *pxTCB )
|
| {
|
| /* This call is required specifically for the TriCore port. It must be
|
| above the vPortFree() calls. The call is also used by ports/demos that
|
| want to allocate and clean RAM statically. */
|
| portCLEAN_UP_TCB( pxTCB );
|
|
|
| /* Free up the memory allocated by the scheduler for the task. It is up
|
| to the task to free any memory allocated at the application level. */
|
| #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
| {
|
| _reclaim_reent( &( pxTCB->xNewLib_reent ) );
|
| }
|
| #endif /* configUSE_NEWLIB_REENTRANT */
|
| poolFreeBuffer( (static_pool_t*)&sTCBsPool, pxTCB );
|
| }
|
|
|
| #endif /* INCLUDE_vTaskDelete */
|
| /*-----------------------------------------------------------*/
|
|
|
| static void prvResetNextTaskUnblockTime( void )
|
| {
|
| TCB_t *pxTCB;
|
|
|
| if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
|
| {
|
| /* The new current delayed list is empty. Set
|
| xNextTaskUnblockTime to the maximum possible value so it is
|
| extremely unlikely that the
|
| if( xTickCount >= xNextTaskUnblockTime ) test will pass until
|
| there is an item in the delayed list. */
|
| xNextTaskUnblockTime = portMAX_DELAY;
|
| }
|
| else
|
| {
|
| /* The new current delayed list is not empty, get the value of
|
| the item at the head of the delayed list. This is the time at
|
| which the task at the head of the delayed list should be removed
|
| from the Blocked state. */
|
| ( pxTCB ) = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
|
| xNextTaskUnblockTime = listGET_LIST_ITEM_VALUE( &( ( pxTCB )->xGenericListItem ) );
|
| }
|
| }
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
|
|
|
| TaskHandle_t xTaskGetCurrentTaskHandle( void )
|
| {
|
| TaskHandle_t xReturn;
|
|
|
| /* A critical section is not required as this is not called from
|
| an interrupt and the current TCB will always be the same for any
|
| individual execution thread. */
|
| xReturn = pxCurrentTCB;
|
|
|
| return xReturn;
|
| }
|
|
|
| #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
|
|
|
| BaseType_t xTaskGetSchedulerState( void )
|
| {
|
| BaseType_t xReturn;
|
|
|
| if( xSchedulerRunning == pdFALSE )
|
| {
|
| xReturn = taskSCHEDULER_NOT_STARTED;
|
| }
|
| else
|
| {
|
| if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
| {
|
| xReturn = taskSCHEDULER_RUNNING;
|
| }
|
| else
|
| {
|
| xReturn = taskSCHEDULER_SUSPENDED;
|
| }
|
| }
|
|
|
| return xReturn;
|
| }
|
|
|
| #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( configUSE_MUTEXES == 1 )
|
|
|
| void vTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
|
| {
|
| TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder;
|
|
|
| /* If the mutex was given back by an interrupt while the queue was
|
| locked then the mutex holder might now be NULL. */
|
| if( pxMutexHolder != NULL )
|
| {
|
| if( pxTCB->uxPriority < pxCurrentTCB->uxPriority )
|
| {
|
| /* Adjust the mutex holder state to account for its new
|
| priority. Only reset the event list item value if the value is
|
| not being used for anything else. */
|
| if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
|
| {
|
| listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| /* If the task being modified is in the ready state it will need to
|
| be moved into a new list. */
|
| if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxTCB->uxPriority ] ), &( pxTCB->xGenericListItem ) ) != pdFALSE )
|
| {
|
| if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
| {
|
| taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
|
|
| /* Inherit the priority before being moved into the new list. */
|
| pxTCB->uxPriority = pxCurrentTCB->uxPriority;
|
| prvAddTaskToReadyList( pxTCB );
|
| }
|
| else
|
| {
|
| /* Just inherit the priority. */
|
| pxTCB->uxPriority = pxCurrentTCB->uxPriority;
|
| }
|
|
|
| traceTASK_PRIORITY_INHERIT( pxTCB, pxCurrentTCB->uxPriority );
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
| else
|
| {
|
| mtCOVERAGE_TEST_MARKER();
|
| }
|
| }
|
|
|
| #endif /* configUSE_MUTEXES */
|
| /*-----------------------------------------------------------*/
|
|
|
| #if ( configUSE_MUTEXES == 1 )
|
|
|
| void vTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
|
| {
|
| TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder;
|
|
|
| if( pxMutexHolder != NULL )
|
<