blob: 87ece4bf436ebb8bdab2f89ee6e18ce48f6215af [file] [log] [blame]
/* asn.c
*
* Copyright (C) 2006-2012 Sawtooth Consulting Ltd.
*
* This file is part of CyaSSL.
*
* CyaSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* CyaSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifdef THREADX
#include "os.h" /* dc_rtc_api needs */
#include "dc_rtc_api.h" /* to get current time */
#endif
#include <cyassl/ctaocrypt/asn.h>
#include <cyassl/ctaocrypt/coding.h>
#include <cyassl/ctaocrypt/sha.h>
#include <cyassl/ctaocrypt/md5.h>
#include <cyassl/ctaocrypt/md2.h>
#include <cyassl/ctaocrypt/error.h>
#include <cyassl/ctaocrypt/pwdbased.h>
#include <cyassl/ctaocrypt/des3.h>
#include <cyassl/ctaocrypt/sha256.h>
#include <cyassl/ctaocrypt/sha512.h>
#include <cyassl/ctaocrypt/logging.h>
#include <cyassl/ctaocrypt/random.h>
#ifdef HAVE_NTRU
#include "crypto_ntru.h"
#endif
#ifdef HAVE_ECC
#include <cyassl/ctaocrypt/ecc.h>
#endif
#ifdef _MSC_VER
/* 4996 warning to use MS extensions e.g., strcpy_s instead of XSTRNCPY */
#pragma warning(disable: 4996)
#endif
#ifndef TRUE
enum {
FALSE = 0,
TRUE = 1
};
#endif
#ifndef min
static INLINE word32 min(word32 a, word32 b)
{
return a > b ? b : a;
}
#endif /* min */
#ifdef THREADX
/* uses parital <time.h> structures */
#define XTIME(tl) (0)
#define XGMTIME(c) my_gmtime((c))
#define XVALIDATE_DATE(d, f, t) ValidateDate((d), (f), (t))
#elif defined(MICRIUM)
#if (NET_SECURE_MGR_CFG_EN == DEF_ENABLED)
#define XVALIDATE_DATE(d,f,t) NetSecure_ValidateDateHandler((d),(f),(t))
#else
#define XVALIDATE_DATE(d, f, t) (0)
#endif
#define NO_TIME_H
/* since Micrium not defining XTIME or XGMTIME, CERT_GEN not available */
#elif defined(USER_TIME)
/* no <time.h> structures used */
#define NO_TIME_H
/* user time, and gmtime compatible functions, there is a gmtime
implementation here that WINCE uses, so really just need some ticks
since the EPOCH
*/
#else
/* default */
/* uses complete <time.h> facility */
#include <time.h>
#define XTIME(tl) time((tl))
#define XGMTIME(c) gmtime((c))
#define XVALIDATE_DATE(d, f, t) ValidateDate((d), (f), (t))
#endif
#ifdef _WIN32_WCE
/* no time() or gmtime() even though in time.h header?? */
#include <windows.h>
time_t time(time_t* timer)
{
SYSTEMTIME sysTime;
FILETIME fTime;
ULARGE_INTEGER intTime;
time_t localTime;
if (timer == NULL)
timer = &localTime;
GetSystemTime(&sysTime);
SystemTimeToFileTime(&sysTime, &fTime);
XMEMCPY(&intTime, &fTime, sizeof(FILETIME));
/* subtract EPOCH */
intTime.QuadPart -= 0x19db1ded53e8000;
/* to secs */
intTime.QuadPart /= 10000000;
*timer = (time_t)intTime.QuadPart;
return *timer;
}
struct tm* gmtime(const time_t* timer)
{
#define YEAR0 1900
#define EPOCH_YEAR 1970
#define SECS_DAY (24L * 60L * 60L)
#define LEAPYEAR(year) (!((year) % 4) && (((year) % 100) || !((year) %400)))
#define YEARSIZE(year) (LEAPYEAR(year) ? 366 : 365)
static const int _ytab[2][12] =
{
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
};
static struct tm st_time;
struct tm* ret = &st_time;
time_t time = *timer;
unsigned long dayclock, dayno;
int year = EPOCH_YEAR;
dayclock = (unsigned long)time % SECS_DAY;
dayno = (unsigned long)time / SECS_DAY;
ret->tm_sec = dayclock % 60;
ret->tm_min = (dayclock % 3600) / 60;
ret->tm_hour = dayclock / 3600;
ret->tm_wday = (dayno + 4) % 7; /* day 0 a Thursday */
while(dayno >= (unsigned long)YEARSIZE(year)) {
dayno -= YEARSIZE(year);
year++;
}
ret->tm_year = year - YEAR0;
ret->tm_yday = dayno;
ret->tm_mon = 0;
while(dayno >= (unsigned long)_ytab[LEAPYEAR(year)][ret->tm_mon]) {
dayno -= _ytab[LEAPYEAR(year)][ret->tm_mon];
ret->tm_mon++;
}
ret->tm_mday = ++dayno;
ret->tm_isdst = 0;
return ret;
}
#endif /* _WIN32_WCE */
#ifdef THREADX
#define YEAR0 1900
struct tm* my_gmtime(const time_t* timer) /* has a gmtime() but hangs */
{
static struct tm st_time;
struct tm* ret = &st_time;
DC_RTC_CALENDAR cal;
dc_rtc_time_get(&cal, TRUE);
ret->tm_year = cal.year - YEAR0; /* gm starts at 1900 */
ret->tm_mon = cal.month - 1; /* gm starts at 0 */
ret->tm_mday = cal.day;
ret->tm_hour = cal.hour;
ret->tm_min = cal.minute;
ret->tm_sec = cal.second;
return ret;
}
#endif /* THREADX */
static INLINE word32 btoi(byte b)
{
return b - 0x30;
}
/* two byte date/time, add to value */
static INLINE void GetTime(int* value, const byte* date, int* idx)
{
int i = *idx;
*value += btoi(date[i++]) * 10;
*value += btoi(date[i++]);
*idx = i;
}
#if defined(MICRIUM)
CPU_INT32S NetSecure_ValidateDateHandler(CPU_INT08U *date, CPU_INT08U format,
CPU_INT08U dateType)
{
CPU_BOOLEAN rtn_code;
CPU_INT32S i;
CPU_INT32S val;
CPU_INT16U year;
CPU_INT08U month;
CPU_INT16U day;
CPU_INT08U hour;
CPU_INT08U min;
CPU_INT08U sec;
i = 0;
year = 0u;
if (format == ASN_UTC_TIME) {
if (btoi(date[0]) >= 5)
year = 1900;
else
year = 2000;
}
else { /* format == GENERALIZED_TIME */
year += btoi(date[i++]) * 1000;
year += btoi(date[i++]) * 100;
}
val = year;
GetTime(&val, date, &i);
year = (CPU_INT16U)val;
val = 0;
GetTime(&val, date, &i);
month = (CPU_INT08U)val;
val = 0;
GetTime(&val, date, &i);
day = (CPU_INT16U)val;
val = 0;
GetTime(&val, date, &i);
hour = (CPU_INT08U)val;
val = 0;
GetTime(&val, date, &i);
min = (CPU_INT08U)val;
val = 0;
GetTime(&val, date, &i);
sec = (CPU_INT08U)val;
return NetSecure_ValidateDate(year, month, day, hour, min, sec, dateType);
}
#endif /* MICRIUM */
static int GetLength(const byte* input, word32* inOutIdx, int* len,
word32 maxIdx)
{
int length = 0;
word32 i = *inOutIdx;
byte b;
if ( (i+1) > maxIdx) { /* for first read */
CYASSL_MSG("GetLength bad index on input");
return BUFFER_E;
}
b = input[i++];
if (b >= ASN_LONG_LENGTH) {
word32 bytes = b & 0x7F;
if ( (i+bytes) > maxIdx) { /* for reading bytes */
CYASSL_MSG("GetLength bad long length");
return BUFFER_E;
}
while (bytes--) {
b = input[i++];
length = (length << 8) | b;
}
}
else
length = b;
if ( (i+length) > maxIdx) { /* for user of length */
CYASSL_MSG("GetLength value exceeds buffer length");
return BUFFER_E;
}
*inOutIdx = i;
*len = length;
return length;
}
static int GetSequence(const byte* input, word32* inOutIdx, int* len,
word32 maxIdx)
{
int length = -1;
word32 idx = *inOutIdx;
if (input[idx++] != (ASN_SEQUENCE | ASN_CONSTRUCTED) ||
GetLength(input, &idx, &length, maxIdx) < 0)
return ASN_PARSE_E;
*len = length;
*inOutIdx = idx;
return length;
}
static int GetSet(const byte* input, word32* inOutIdx, int* len, word32 maxIdx)
{
int length = -1;
word32 idx = *inOutIdx;
if (input[idx++] != (ASN_SET | ASN_CONSTRUCTED) ||
GetLength(input, &idx, &length, maxIdx) < 0)
return ASN_PARSE_E;
*len = length;
*inOutIdx = idx;
return length;
}
/* winodws header clash for WinCE using GetVersion */
static int GetMyVersion(const byte* input, word32* inOutIdx, int* version)
{
word32 idx = *inOutIdx;
CYASSL_ENTER("GetMyVersion");
if (input[idx++] != ASN_INTEGER)
return ASN_PARSE_E;
if (input[idx++] != 0x01)
return ASN_VERSION_E;
*version = input[idx++];
*inOutIdx = idx;
return *version;
}
/* Get small count integer, 32 bits or less */
static int GetShortInt(const byte* input, word32* inOutIdx, int* number)
{
word32 idx = *inOutIdx;
word32 len;
*number = 0;
if (input[idx++] != ASN_INTEGER)
return ASN_PARSE_E;
len = input[idx++];
if (len > 4)
return ASN_PARSE_E;
while (len--) {
*number = *number << 8 | input[idx++];
}
*inOutIdx = idx;
return *number;
}
/* May not have one, not an error */
static int GetExplicitVersion(const byte* input, word32* inOutIdx, int* version)
{
word32 idx = *inOutIdx;
CYASSL_ENTER("GetExplicitVersion");
if (input[idx++] == (ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED)) {
*inOutIdx = ++idx; /* eat header */
return GetMyVersion(input, inOutIdx, version);
}
/* go back as is */
*version = 0;
return 0;
}
static int GetInt(mp_int* mpi, const byte* input, word32* inOutIdx,
word32 maxIdx)
{
word32 i = *inOutIdx;
byte b = input[i++];
int length;
if (b != ASN_INTEGER)
return ASN_PARSE_E;
if (GetLength(input, &i, &length, maxIdx) < 0)
return ASN_PARSE_E;
if ( (b = input[i++]) == 0x00)
length--;
else
i--;
mp_init(mpi);
if (mp_read_unsigned_bin(mpi, (byte*)input + i, length) != 0) {
mp_clear(mpi);
return ASN_GETINT_E;
}
*inOutIdx = i + length;
return 0;
}
static int GetObjectId(const byte* input, word32* inOutIdx, word32* oid,
word32 maxIdx)
{
int length;
word32 i = *inOutIdx;
byte b;
*oid = 0;
b = input[i++];
if (b != ASN_OBJECT_ID)
return ASN_OBJECT_ID_E;
if (GetLength(input, &i, &length, maxIdx) < 0)
return ASN_PARSE_E;
while(length--)
*oid += input[i++];
/* just sum it up for now */
*inOutIdx = i;
return 0;
}
static int GetAlgoId(const byte* input, word32* inOutIdx, word32* oid,
word32 maxIdx)
{
int length;
word32 i = *inOutIdx;
byte b;
*oid = 0;
CYASSL_ENTER("GetAlgoId");
if (GetSequence(input, &i, &length, maxIdx) < 0)
return ASN_PARSE_E;
b = input[i++];
if (b != ASN_OBJECT_ID)
return ASN_OBJECT_ID_E;
if (GetLength(input, &i, &length, maxIdx) < 0)
return ASN_PARSE_E;
while(length--)
*oid += input[i++];
/* just sum it up for now */
/* could have NULL tag and 0 terminator, but may not */
b = input[i++];
if (b == ASN_TAG_NULL) {
b = input[i++];
if (b != 0)
return ASN_EXPECT_0_E;
}
else
/* go back, didn't have it */
i--;
*inOutIdx = i;
return 0;
}
int RsaPrivateKeyDecode(const byte* input, word32* inOutIdx, RsaKey* key,
word32 inSz)
{
int version, length;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
if (GetMyVersion(input, inOutIdx, &version) < 0)
return ASN_PARSE_E;
key->type = RSA_PRIVATE;
if (GetInt(&key->n, input, inOutIdx, inSz) < 0 ||
GetInt(&key->e, input, inOutIdx, inSz) < 0 ||
GetInt(&key->d, input, inOutIdx, inSz) < 0 ||
GetInt(&key->p, input, inOutIdx, inSz) < 0 ||
GetInt(&key->q, input, inOutIdx, inSz) < 0 ||
GetInt(&key->dP, input, inOutIdx, inSz) < 0 ||
GetInt(&key->dQ, input, inOutIdx, inSz) < 0 ||
GetInt(&key->u, input, inOutIdx, inSz) < 0 ) return ASN_RSA_KEY_E;
return 0;
}
/* Remove PKCS8 header, move beginning of traditional to beginning of input */
int ToTraditional(byte* input, word32 sz)
{
word32 inOutIdx = 0, oid;
int version, length;
if (GetSequence(input, &inOutIdx, &length, sz) < 0)
return ASN_PARSE_E;
if (GetMyVersion(input, &inOutIdx, &version) < 0)
return ASN_PARSE_E;
if (GetAlgoId(input, &inOutIdx, &oid, sz) < 0)
return ASN_PARSE_E;
if (input[inOutIdx] == ASN_OBJECT_ID) {
/* pkcs8 ecc uses slightly different format */
inOutIdx++; /* past id */
if (GetLength(input, &inOutIdx, &length, sz) < 0)
return ASN_PARSE_E;
inOutIdx += length; /* over sub id, key input will verify */
}
if (input[inOutIdx++] != ASN_OCTET_STRING)
return ASN_PARSE_E;
if (GetLength(input, &inOutIdx, &length, sz) < 0)
return ASN_PARSE_E;
XMEMMOVE(input, input + inOutIdx, length);
return 0;
}
#ifndef NO_PWDBASED
/* Check To see if PKCS version algo is supported, set id if it is return 0
< 0 on error */
static int CheckAlgo(int first, int second, int* id, int* version)
{
*id = ALGO_ID_E;
*version = PKCS5; /* default */
if (first == 1) {
switch (second) {
case 1:
*id = PBE_SHA1_RC4_128;
*version = PKCS12;
return 0;
case 3:
*id = PBE_SHA1_DES3;
*version = PKCS12;
return 0;
default:
return ALGO_ID_E;
}
}
if (first != PKCS5)
return ASN_INPUT_E; /* VERSION ERROR */
if (second == PBES2) {
*version = PKCS5v2;
return 0;
}
switch (second) {
case 3: /* see RFC 2898 for ids */
*id = PBE_MD5_DES;
return 0;
case 10:
*id = PBE_SHA1_DES;
return 0;
default:
return ALGO_ID_E;
}
}
/* Check To see if PKCS v2 algo is supported, set id if it is return 0
< 0 on error */
static int CheckAlgoV2(int oid, int* id)
{
switch (oid) {
case 69:
*id = PBE_SHA1_DES;
return 0;
case 652:
*id = PBE_SHA1_DES3;
return 0;
default:
return ALGO_ID_E;
}
}
/* Decrypt intput in place from parameters based on id */
static int DecryptKey(const char* password, int passwordSz, byte* salt,
int saltSz, int iterations, int id, byte* input,
int length, int version, byte* cbcIv)
{
byte key[MAX_KEY_SIZE];
int typeH;
int derivedLen;
int decryptionType;
int ret = 0;
switch (id) {
case PBE_MD5_DES:
typeH = MD5;
derivedLen = 16; /* may need iv for v1.5 */
decryptionType = DES_TYPE;
break;
case PBE_SHA1_DES:
typeH = SHA;
derivedLen = 16; /* may need iv for v1.5 */
decryptionType = DES_TYPE;
break;
case PBE_SHA1_DES3:
typeH = SHA;
derivedLen = 32; /* may need iv for v1.5 */
decryptionType = DES3_TYPE;
break;
case PBE_SHA1_RC4_128:
typeH = SHA;
derivedLen = 16;
decryptionType = RC4_TYPE;
break;
default:
return ALGO_ID_E;
}
if (version == PKCS5v2)
ret = PBKDF2(key, (byte*)password, passwordSz, salt, saltSz, iterations,
derivedLen, typeH);
else if (version == PKCS5)
ret = PBKDF1(key, (byte*)password, passwordSz, salt, saltSz, iterations,
derivedLen, typeH);
else if (version == PKCS12) {
int i, idx = 0;
byte unicodePasswd[MAX_UNICODE_SZ];
if ( (passwordSz * 2 + 2) > (int)sizeof(unicodePasswd))
return UNICODE_SIZE_E;
for (i = 0; i < passwordSz; i++) {
unicodePasswd[idx++] = 0x00;
unicodePasswd[idx++] = (byte)password[i];
}
/* add trailing NULL */
unicodePasswd[idx++] = 0x00;
unicodePasswd[idx++] = 0x00;
ret = PKCS12_PBKDF(key, unicodePasswd, idx, salt, saltSz,
iterations, derivedLen, typeH, 1);
if (decryptionType != RC4_TYPE)
ret += PKCS12_PBKDF(cbcIv, unicodePasswd, idx, salt, saltSz,
iterations, 8, typeH, 2);
}
if (ret != 0)
return ret;
switch (decryptionType) {
#ifndef NO_DES3
case DES_TYPE:
{
Des dec;
byte* desIv = key + 8;
if (version == PKCS5v2 || version == PKCS12)
desIv = cbcIv;
Des_SetKey(&dec, key, desIv, DES_DECRYPTION);
Des_CbcDecrypt(&dec, input, input, length);
break;
}
case DES3_TYPE:
{
Des3 dec;
byte* desIv = key + 24;
if (version == PKCS5v2 || version == PKCS12)
desIv = cbcIv;
Des3_SetKey(&dec, key, desIv, DES_DECRYPTION);
Des3_CbcDecrypt(&dec, input, input, length);
break;
}
#endif
case RC4_TYPE:
{
Arc4 dec;
Arc4SetKey(&dec, key, derivedLen);
Arc4Process(&dec, input, input, length);
break;
}
default:
return ALGO_ID_E;
}
return 0;
}
/* Remove Encrypted PKCS8 header, move beginning of traditional to beginning
of input */
int ToTraditionalEnc(byte* input, word32 sz,const char* password,int passwordSz)
{
word32 inOutIdx = 0, oid;
int first, second, length, iterations, saltSz, id;
int version;
byte salt[MAX_SALT_SIZE];
byte cbcIv[MAX_IV_SIZE];
if (GetSequence(input, &inOutIdx, &length, sz) < 0)
return ASN_PARSE_E;
if (GetAlgoId(input, &inOutIdx, &oid, sz) < 0)
return ASN_PARSE_E;
first = input[inOutIdx - 2]; /* PKCS version alwyas 2nd to last byte */
second = input[inOutIdx - 1]; /* version.algo, algo id last byte */
if (CheckAlgo(first, second, &id, &version) < 0)
return ASN_INPUT_E; /* Algo ID error */
if (version == PKCS5v2) {
if (GetSequence(input, &inOutIdx, &length, sz) < 0)
return ASN_PARSE_E;
if (GetAlgoId(input, &inOutIdx, &oid, sz) < 0)
return ASN_PARSE_E;
if (oid != PBKDF2_OID)
return ASN_PARSE_E;
}
if (GetSequence(input, &inOutIdx, &length, sz) < 0)
return ASN_PARSE_E;
if (input[inOutIdx++] != ASN_OCTET_STRING)
return ASN_PARSE_E;
if (GetLength(input, &inOutIdx, &saltSz, sz) < 0)
return ASN_PARSE_E;
if (saltSz > MAX_SALT_SIZE)
return ASN_PARSE_E;
XMEMCPY(salt, &input[inOutIdx], saltSz);
inOutIdx += saltSz;
if (GetShortInt(input, &inOutIdx, &iterations) < 0)
return ASN_PARSE_E;
if (version == PKCS5v2) {
/* get encryption algo */
if (GetAlgoId(input, &inOutIdx, &oid, sz) < 0)
return ASN_PARSE_E;
if (CheckAlgoV2(oid, &id) < 0)
return ASN_PARSE_E; /* PKCS v2 algo id error */
if (input[inOutIdx++] != ASN_OCTET_STRING)
return ASN_PARSE_E;
if (GetLength(input, &inOutIdx, &length, sz) < 0)
return ASN_PARSE_E;
XMEMCPY(cbcIv, &input[inOutIdx], length);
inOutIdx += length;
}
if (input[inOutIdx++] != ASN_OCTET_STRING)
return ASN_PARSE_E;
if (GetLength(input, &inOutIdx, &length, sz) < 0)
return ASN_PARSE_E;
if (DecryptKey(password, passwordSz, salt, saltSz, iterations, id,
input + inOutIdx, length, version, cbcIv) < 0)
return ASN_INPUT_E; /* decrypt failure */
XMEMMOVE(input, input + inOutIdx, length);
return ToTraditional(input, length);
}
#endif /* NO_PWDBASED */
int RsaPublicKeyDecode(const byte* input, word32* inOutIdx, RsaKey* key,
word32 inSz)
{
int length;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
key->type = RSA_PUBLIC;
#ifdef OPENSSL_EXTRA
{
byte b = input[*inOutIdx];
if (b != ASN_INTEGER) {
/* not from decoded cert, will have algo id, skip past */
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
b = input[(*inOutIdx)++];
if (b != ASN_OBJECT_ID)
return ASN_OBJECT_ID_E;
if (GetLength(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
*inOutIdx += length; /* skip past */
/* could have NULL tag and 0 terminator, but may not */
b = input[(*inOutIdx)++];
if (b == ASN_TAG_NULL) {
b = input[(*inOutIdx)++];
if (b != 0)
return ASN_EXPECT_0_E;
}
else
/* go back, didn't have it */
(*inOutIdx)--;
/* should have bit tag length and seq next */
b = input[(*inOutIdx)++];
if (b != ASN_BIT_STRING)
return ASN_BITSTR_E;
if (GetLength(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
/* could have 0 */
b = input[(*inOutIdx)++];
if (b != 0)
(*inOutIdx)--;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
} /* end if */
} /* openssl var block */
#endif /* OPENSSL_EXTRA */
if (GetInt(&key->n, input, inOutIdx, inSz) < 0 ||
GetInt(&key->e, input, inOutIdx, inSz) < 0 ) return ASN_RSA_KEY_E;
return 0;
}
#ifndef NO_DH
int DhKeyDecode(const byte* input, word32* inOutIdx, DhKey* key, word32 inSz)
{
int length;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
if (GetInt(&key->p, input, inOutIdx, inSz) < 0 ||
GetInt(&key->g, input, inOutIdx, inSz) < 0 ) return ASN_DH_KEY_E;
return 0;
}
int DhSetKey(DhKey* key, const byte* p, word32 pSz, const byte* g, word32 gSz)
{
/* may have leading 0 */
if (p[0] == 0) {
pSz--; p++;
}
if (g[0] == 0) {
gSz--; g++;
}
mp_init(&key->p);
if (mp_read_unsigned_bin(&key->p, p, pSz) != 0) {
mp_clear(&key->p);
return ASN_DH_KEY_E;
}
mp_init(&key->g);
if (mp_read_unsigned_bin(&key->g, g, gSz) != 0) {
mp_clear(&key->p);
return ASN_DH_KEY_E;
}
return 0;
}
#ifdef OPENSSL_EXTRA
int DhParamsLoad(const byte* input, word32 inSz, byte* p, word32* pInOutSz,
byte* g, word32* gInOutSz)
{
word32 i = 0;
byte b;
int length;
if (GetSequence(input, &i, &length, inSz) < 0)
return ASN_PARSE_E;
b = input[i++];
if (b != ASN_INTEGER)
return ASN_PARSE_E;
if (GetLength(input, &i, &length, inSz) < 0)
return ASN_PARSE_E;
if ( (b = input[i++]) == 0x00)
length--;
else
i--;
if (length <= (int)*pInOutSz) {
XMEMCPY(p, &input[i], length);
*pInOutSz = length;
}
else
return BUFFER_E;
i += length;
b = input[i++];
if (b != ASN_INTEGER)
return ASN_PARSE_E;
if (GetLength(input, &i, &length, inSz) < 0)
return ASN_PARSE_E;
if (length <= (int)*gInOutSz) {
XMEMCPY(g, &input[i], length);
*gInOutSz = length;
}
else
return BUFFER_E;
return 0;
}
#endif /* OPENSSL_EXTRA */
#endif /* NO_DH */
#ifndef NO_DSA
int DsaPublicKeyDecode(const byte* input, word32* inOutIdx, DsaKey* key,
word32 inSz)
{
int length;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
if (GetInt(&key->p, input, inOutIdx, inSz) < 0 ||
GetInt(&key->q, input, inOutIdx, inSz) < 0 ||
GetInt(&key->g, input, inOutIdx, inSz) < 0 ||
GetInt(&key->y, input, inOutIdx, inSz) < 0 ) return ASN_DH_KEY_E;
key->type = DSA_PUBLIC;
return 0;
}
int DsaPrivateKeyDecode(const byte* input, word32* inOutIdx, DsaKey* key,
word32 inSz)
{
int length, version;
if (GetSequence(input, inOutIdx, &length, inSz) < 0)
return ASN_PARSE_E;
if (GetMyVersion(input, inOutIdx, &version) < 0)
return ASN_PARSE_E;
if (GetInt(&key->p, input, inOutIdx, inSz) < 0 ||
GetInt(&key->q, input, inOutIdx, inSz) < 0 ||
GetInt(&key->g, input, inOutIdx, inSz) < 0 ||
GetInt(&key->y, input, inOutIdx, inSz) < 0 ||
GetInt(&key->x, input, inOutIdx, inSz) < 0 ) return ASN_DH_KEY_E;
key->type = DSA_PRIVATE;
return 0;
}
#endif /* NO_DSA */
void InitDecodedCert(DecodedCert* cert, byte* source, word32 inSz, void* heap)
{
cert->publicKey = 0;
cert->pubKeyStored = 0;
cert->signature = 0;
cert->subjectCN = 0;
cert->subjectCNLen = 0;
cert->subjectCNStored = 0;
cert->altNames = NULL;
cert->issuer[0] = '\0';
cert->subject[0] = '\0';
cert->source = source; /* don't own */
cert->srcIdx = 0;
cert->maxIdx = inSz; /* can't go over this index */
cert->heap = heap;
XMEMSET(cert->serial, 0, EXTERNAL_SERIAL_SIZE);
cert->serialSz = 0;
cert->extensions = 0;
cert->extensionsSz = 0;
cert->extensionsIdx = 0;
cert->extAuthInfo = NULL;
cert->extAuthInfoSz = 0;
cert->extCrlInfo = NULL;
cert->extCrlInfoSz = 0;
cert->isCA = 0;
#ifdef CYASSL_CERT_GEN
cert->subjectSN = 0;
cert->subjectSNLen = 0;
cert->subjectC = 0;
cert->subjectCLen = 0;
cert->subjectL = 0;
cert->subjectLLen = 0;
cert->subjectST = 0;
cert->subjectSTLen = 0;
cert->subjectO = 0;
cert->subjectOLen = 0;
cert->subjectOU = 0;
cert->subjectOULen = 0;
cert->subjectEmail = 0;
cert->subjectEmailLen = 0;
cert->beforeDate = 0;
cert->beforeDateLen = 0;
cert->afterDate = 0;
cert->afterDateLen = 0;
#endif /* CYASSL_CERT_GEN */
}
void FreeAltNames(DNS_entry* altNames, void* heap)
{
(void)heap;
while (altNames) {
DNS_entry* tmp = altNames->next;
XFREE(altNames->name, heap, DYNAMIC_TYPE_ALTNAME);
XFREE(altNames, heap, DYNAMIC_TYPE_ALTNAME);
altNames = tmp;
}
}
void FreeDecodedCert(DecodedCert* cert)
{
if (cert->subjectCNStored == 1)
XFREE(cert->subjectCN, cert->heap, DYNAMIC_TYPE_SUBJECT_CN);
if (cert->pubKeyStored == 1)
XFREE(cert->publicKey, cert->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (cert->altNames)
FreeAltNames(cert->altNames, cert->heap);
}
static int GetCertHeader(DecodedCert* cert)
{
int ret = 0, version, len;
byte serialTmp[EXTERNAL_SERIAL_SIZE];
mp_int mpi;
if (GetSequence(cert->source, &cert->srcIdx, &len, cert->maxIdx) < 0)
return ASN_PARSE_E;
cert->certBegin = cert->srcIdx;
if (GetSequence(cert->source, &cert->srcIdx, &len, cert->maxIdx) < 0)
return ASN_PARSE_E;
cert->sigIndex = len + cert->srcIdx;
if (GetExplicitVersion(cert->source, &cert->srcIdx, &version) < 0)
return ASN_PARSE_E;
if (GetInt(&mpi, cert->source, &cert->srcIdx, cert->maxIdx) < 0)
return ASN_PARSE_E;
len = mp_unsigned_bin_size(&mpi);
if (len < (int)sizeof(serialTmp)) {
if (mp_to_unsigned_bin(&mpi, serialTmp) == MP_OKAY) {
if (len > EXTERNAL_SERIAL_SIZE)
len = EXTERNAL_SERIAL_SIZE;
XMEMCPY(cert->serial, serialTmp, len);
cert->serialSz = len;
}
}
mp_clear(&mpi);
return ret;
}
/* Store Rsa Key, may save later, Dsa could use in future */
static int StoreRsaKey(DecodedCert* cert)
{
int length;
word32 read = cert->srcIdx;
if (GetSequence(cert->source, &cert->srcIdx, &length, cert->maxIdx) < 0)
return ASN_PARSE_E;
read = cert->srcIdx - read;
length += read;
while (read--)
cert->srcIdx--;
cert->pubKeySize = length;
cert->publicKey = cert->source + cert->srcIdx;
cert->srcIdx += length;
return 0;
}
#ifdef HAVE_ECC
/* return 0 on sucess if the ECC curve oid sum is supported */
static int CheckCurve(word32 oid)
{
if (oid != ECC_256R1 && oid != ECC_384R1 && oid != ECC_521R1 && oid !=
ECC_160R1 && oid != ECC_192R1 && oid != ECC_224R1)
return ALGO_ID_E;
return 0;
}
#endif /* HAVE_ECC */
static int GetKey(DecodedCert* cert)
{
int length;
#ifdef HAVE_NTRU
int tmpIdx = cert->srcIdx;
#endif
if (GetSequence(cert->source, &cert->srcIdx, &length, cert->maxIdx) < 0)
return ASN_PARSE_E;
if (GetAlgoId(cert->source, &cert->srcIdx, &cert->keyOID, cert->maxIdx) < 0)
return ASN_PARSE_E;
if (cert->keyOID == RSAk) {
byte b = cert->source[cert->srcIdx++];
if (b != ASN_BIT_STRING)
return ASN_BITSTR_E;
if (GetLength(cert->source, &cert->srcIdx, &length, cert->maxIdx) < 0)
return ASN_PARSE_E;
b = cert->source[cert->srcIdx++];
if (b != 0x00)
return ASN_EXPECT_0_E;
}
else if (cert->keyOID == DSAk )
; /* do nothing */
#ifdef HAVE_NTRU
else if (cert->keyOID == NTRUk ) {
const byte* key = &cert->source[tmpIdx];
byte* next = (byte*)key;
word16 keyLen;
byte keyBlob[MAX_NTRU_KEY_SZ];
word32 rc = crypto_ntru_encrypt_subjectPublicKeyInfo2PublicKey(key,
&keyLen, NULL, &next);
if (rc != NTRU_OK)
return ASN_NTRU_KEY_E;
if (keyLen > sizeof(keyBlob))
return ASN_NTRU_KEY_E;
rc = crypto_ntru_encrypt_subjectPublicKeyInfo2PublicKey(key, &keyLen,
keyBlob, &next);
if (rc != NTRU_OK)
return ASN_NTRU_KEY_E;
if ( (next - key) < 0)
return ASN_NTRU_KEY_E;
cert->srcIdx = tmpIdx + (next - key);
cert->publicKey = (byte*) XMALLOC(keyLen, cert->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (cert->publicKey == NULL)
return MEMORY_E;
XMEMCPY(cert->publicKey, keyBlob, keyLen);
cert->pubKeyStored = 1;
cert->pubKeySize = keyLen;
}
#endif /* HAVE_NTRU */
#ifdef HAVE_ECC
else if (cert->keyOID == ECDSAk ) {
word32 oid = 0;
int oidSz = 0;
byte b = cert->source[cert->srcIdx++];
if (b != ASN_OBJECT_ID)
return ASN_OBJECT_ID_E;
if (GetLength(cert->source, &cert->srcIdx, &oidSz, cert->maxIdx) < 0)
return ASN_PARSE_E;
while(oidSz--)
oid += cert->source[cert->srcIdx++];
if (CheckCurve(oid) < 0)
return ECC_CURVE_OID_E;
/* key header */
b = cert->source[cert->srcIdx++];
if (b != ASN_BIT_STRING)
return ASN_BITSTR_E;
if (GetLength(cert->source, &cert->srcIdx, &length, cert->maxIdx) < 0)
return ASN_PARSE_E;
b = cert->source[cert->srcIdx++];
if (b != 0x00)
return ASN_EXPECT_0_E;
/* actual key, use length - 1 since ate preceding 0 */
length -= 1;
cert->publicKey = (byte*) XMALLOC(length, cert->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (cert->publicKey == NULL)
return MEMORY_E;
XMEMCPY(cert->publicKey, &cert->source[cert->srcIdx], length);
cert->pubKeyStored = 1;
cert->pubKeySize = length;
cert->srcIdx += length;
}
#endif /* HAVE_ECC */
else
return ASN_UNKNOWN_OID_E;
if (cert->keyOID == RSAk)
return StoreRsaKey(cert);
return 0;
}
/* process NAME, either issuer or subject */
static int GetName(DecodedCert* cert, int nameType)
{
Sha sha;
int length; /* length of all distinguished names */
int dummy;
char* full = (nameType == ISSUER) ? cert->issuer : cert->subject;
word32 idx;
if (cert->source[cert->srcIdx] == ASN_OBJECT_ID) {
CYASSL_MSG("Trying optional prefix...");
if (GetLength(cert->source, &cert->srcIdx, &length, cert->maxIdx) < 0)
return ASN_PARSE_E;
cert->srcIdx += length;
CYASSL_MSG("Got optional prefix");
}
/* For OCSP, RFC2560 section 4.1.1 states the issuer hash should be
* calculated over the entire DER encoding of the Name field, including
* the tag and length. */
idx = cert->srcIdx;
if (GetSequence(cert->source, &cert->srcIdx, &length, cert->maxIdx) < 0)
return ASN_PARSE_E;
InitSha(&sha);
ShaUpdate(&sha, &cert->source[idx], length + cert->srcIdx - idx);
if (nameType == ISSUER)
ShaFinal(&sha, cert->issuerHash);
else
ShaFinal(&sha, cert->subjectHash);
length += cert->srcIdx;
idx = 0;
while (cert->srcIdx < (word32)length) {
byte b;
byte joint[2];
int oidSz;
if (GetSet(cert->source, &cert->srcIdx, &dummy, cert->maxIdx) < 0) {
(void)b; /* empty body warning w/o messages enabled */
CYASSL_MSG("Cert name lacks set header, trying sequence");
}
if (GetSequence(cert->source, &cert->srcIdx, &dummy, cert->maxIdx) < 0)
return ASN_PARSE_E;
b = cert->source[cert->srcIdx++];
if (b != ASN_OBJECT_ID)
return ASN_OBJECT_ID_E;
if (GetLength(cert->source, &cert->srcIdx, &oidSz, cert->maxIdx) < 0)
return ASN_PARSE_E;
XMEMCPY(joint, &cert->source[cert->srcIdx], sizeof(joint));
/* v1 name types */
if (joint[0] == 0x55 && joint[1] == 0x04) {
byte id;
byte copy = FALSE;
int strLen;
cert->srcIdx += 2;
id = cert->source[cert->srcIdx++];
b = cert->source[cert->srcIdx++]; /* strType */
if (GetLength(cert->source, &cert->srcIdx, &strLen,
cert->maxIdx) < 0)
return ASN_PARSE_E;
if (strLen > (int)(ASN_NAME_MAX - idx))
return ASN_PARSE_E;
if (4 > (ASN_NAME_MAX - idx)) /* make sure room for biggest */
return ASN_PARSE_E; /* pre fix header too "/CN=" */
if (id == ASN_COMMON_NAME) {
if (nameType == SUBJECT) {
cert->subjectCN = (char *)&cert->source[cert->srcIdx];
cert->subjectCNLen = strLen;
}
XMEMCPY(&full[idx], "/CN=", 4);
idx += 4;
copy = TRUE;
}
else if (id == ASN_SUR_NAME) {
XMEMCPY(&full[idx], "/SN=", 4);
idx += 4;
copy = TRUE;
#ifdef CYASSL_CERT_GEN
if (nameType == SUBJECT) {
cert->subjectSN = (char*)&cert->source[cert->srcIdx];
cert->subjectSNLen = strLen;
}
#endif /* CYASSL_CERT_GEN */
}
else if (id == ASN_COUNTRY_NAME) {
XMEMCPY(&full[idx], "/C=", 3);
idx += 3;
copy = TRUE;
#ifdef CYASSL_CERT_GEN
if (nameType == SUBJECT) {
cert->subjectC = (char*)&cert->source[cert->srcIdx];
cert->subjectCLen = strLen;
}
#endif /* CYASSL_CERT_GEN */
}
else if (id == ASN_LOCALITY_NAME) {
XMEMCPY(&full[idx], "/L=", 3);
idx += 3;
copy = TRUE;
#ifdef CYASSL_CERT_GEN
if (nameType == SUBJECT) {
cert->subjectL = (char*)&cert->source[cert->srcIdx];
cert->subjectLLen = strLen;
}
#endif /* CYASSL_CERT_GEN */
}
else if (id == ASN_STATE_NAME) {
XMEMCPY(&full[idx], "/ST=", 4);
idx += 4;
copy = TRUE;
#ifdef CYASSL_CERT_GEN
if (nameType == SUBJECT) {
cert->subjectST = (char*)&cert->source[cert->srcIdx];
cert->subjectSTLen = strLen;
}
#endif /* CYASSL_CERT_GEN */
}
else if (id == ASN_ORG_NAME) {
XMEMCPY(&full[idx], "/O=", 3);
idx += 3;
copy = TRUE;
#ifdef CYASSL_CERT_GEN
if (nameType == SUBJECT) {
cert->subjectO = (char*)&cert->source[cert->srcIdx];
cert->subjectOLen = strLen;
}
#endif /* CYASSL_CERT_GEN */
}
else if (id == ASN_ORGUNIT_NAME) {
XMEMCPY(&full[idx], "/OU=", 4);
idx += 4;
copy = TRUE;
#ifdef CYASSL_CERT_GEN
if (nameType == SUBJECT) {
cert->subjectOU = (char*)&cert->source[cert->srcIdx];
cert->subjectOULen = strLen;
}
#endif /* CYASSL_CERT_GEN */
}
if (copy) {
XMEMCPY(&full[idx], &cert->source[cert->srcIdx], strLen);
idx += strLen;
}
cert->srcIdx += strLen;
}
else {
/* skip */
byte email = FALSE;
byte uid = FALSE;
int adv;
if (joint[0] == 0x2a && joint[1] == 0x86) /* email id hdr */
email = TRUE;
if (joint[0] == 0x9 && joint[1] == 0x92) /* uid id hdr */
uid = TRUE;
cert->srcIdx += oidSz + 1;
if (GetLength(cert->source, &cert->srcIdx, &adv, cert->maxIdx) < 0)
return ASN_PARSE_E;
if (adv > (int)(ASN_NAME_MAX - idx))
return ASN_PARSE_E;
if (email) {
if (14 > (ASN_NAME_MAX - idx))
return ASN_PARSE_E;
XMEMCPY(&full[idx], "/emailAddress=", 14);
idx += 14;
#ifdef CYASSL_CERT_GEN
if (nameType == SUBJECT) {
cert->subjectEmail = (char*)&cert->source[cert->srcIdx];
cert->subjectEmailLen = adv;
}
#endif /* CYASSL_CERT_GEN */
XMEMCPY(&full[idx], &cert->source[cert->srcIdx], adv);
idx += adv;
}
if (uid) {
if (5 > (ASN_NAME_MAX - idx))
return ASN_PARSE_E;
XMEMCPY(&full[idx], "/UID=", 5);
idx += 5;
XMEMCPY(&full[idx], &cert->source[cert->srcIdx], adv);
idx += adv;
}
cert->srcIdx += adv;
}
}
full[idx++] = 0;
return 0;
}
#ifndef NO_TIME_H
/* to the second */
static int DateGreaterThan(const struct tm* a, const struct tm* b)
{
if (a->tm_year > b->tm_year)
return 1;
if (a->tm_year == b->tm_year && a->tm_mon > b->tm_mon)
return 1;
if (a->tm_year == b->tm_year && a->tm_mon == b->tm_mon &&
a->tm_mday > b->tm_mday)
return 1;
if (a->tm_year == b->tm_year && a->tm_mon == b->tm_mon &&
a->tm_mday == b->tm_mday && a->tm_hour > b->tm_hour)
return 1;
if (a->tm_year == b->tm_year && a->tm_mon == b->tm_mon &&
a->tm_mday == b->tm_mday && a->tm_hour == b->tm_hour &&
a->tm_min > b->tm_min)
return 1;
if (a->tm_year == b->tm_year && a->tm_mon == b->tm_mon &&
a->tm_mday == b->tm_mday && a->tm_hour == b->tm_hour &&
a->tm_min == b->tm_min && a->tm_sec > b->tm_sec)
return 1;
return 0; /* false */
}
static INLINE int DateLessThan(const struct tm* a, const struct tm* b)
{
return !DateGreaterThan(a,b);
}
/* like atoi but only use first byte */
/* Make sure before and after dates are valid */
int ValidateDate(const byte* date, byte format, int dateType)
{
time_t ltime;
struct tm certTime;
struct tm* localTime;
int i = 0;
ltime = XTIME(0);
XMEMSET(&certTime, 0, sizeof(certTime));
if (format == ASN_UTC_TIME) {
if (btoi(date[0]) >= 5)
certTime.tm_year = 1900;
else
certTime.tm_year = 2000;
}
else { /* format == GENERALIZED_TIME */
certTime.tm_year += btoi(date[i++]) * 1000;
certTime.tm_year += btoi(date[i++]) * 100;
}
GetTime(&certTime.tm_year, date, &i); certTime.tm_year -= 1900; /* adjust */
GetTime(&certTime.tm_mon, date, &i); certTime.tm_mon -= 1; /* adjust */
GetTime(&certTime.tm_mday, date, &i);
GetTime(&certTime.tm_hour, date, &i);
GetTime(&certTime.tm_min, date, &i);
GetTime(&certTime.tm_sec, date, &i);
if (date[i] != 'Z') { /* only Zulu supported for this profile */
CYASSL_MSG("Only Zulu time supported for this profile");
return 0;
}
localTime = XGMTIME(&ltime);
if (dateType == BEFORE) {
if (DateLessThan(localTime, &certTime))
return 0;
}
else
if (DateGreaterThan(localTime, &certTime))
return 0;
return 1;
}
#endif /* NO_TIME_H */
static int GetDate(DecodedCert* cert, int dateType)
{
int length;
byte date[MAX_DATE_SIZE];
byte b;
#ifdef CYASSL_CERT_GEN
word32 startIdx = 0;
if (dateType == BEFORE)
cert->beforeDate = &cert->source[cert->srcIdx];
else
cert->afterDate = &cert->source[cert->srcIdx];
startIdx = cert->srcIdx;
#endif
b = cert->source[cert->srcIdx++];
if (b != ASN_UTC_TIME && b != ASN_GENERALIZED_TIME)
return ASN_TIME_E;
if (GetLength(cert->source, &cert->srcIdx, &length, cert->maxIdx) < 0)
return ASN_PARSE_E;
if (length > MAX_DATE_SIZE || length < MIN_DATE_SIZE)
return ASN_DATE_SZ_E;
XMEMCPY(date, &cert->source[cert->srcIdx], length);
cert->srcIdx += length;
#ifdef CYASSL_CERT_GEN
if (dateType == BEFORE)
cert->beforeDateLen = cert->srcIdx - startIdx;
else
cert->afterDateLen = cert->srcIdx - startIdx;
#endif
if (!XVALIDATE_DATE(date, b, dateType)) {
if (dateType == BEFORE)
return ASN_BEFORE_DATE_E;
else
return ASN_AFTER_DATE_E;
}
return 0;
}
static int GetValidity(DecodedCert* cert, int verify)
{
int length;
int badDate = 0;
if (GetSequence(cert->source, &cert->srcIdx, &length, cert->maxIdx) < 0)
return ASN_PARSE_E;
if (GetDate(cert, BEFORE) < 0 && verify)
badDate = ASN_BEFORE_DATE_E; /* continue parsing */
if (GetDate(cert, AFTER) < 0 && verify)
return ASN_AFTER_DATE_E;
if (badDate != 0)
return badDate;
return 0;
}
int DecodeToKey(DecodedCert* cert, int verify)
{
int badDate = 0;
int ret;
if ( (ret = GetCertHeader(cert)) < 0)
return ret;
if ( (ret = GetAlgoId(cert->source, &cert->srcIdx, &cert->signatureOID,
cert->maxIdx)) < 0)
return ret;
if ( (ret = GetName(cert, ISSUER)) < 0)
return ret;
if ( (ret = GetValidity(cert, verify)) < 0)
badDate = ret;
if ( (ret = GetName(cert, SUBJECT)) < 0)
return ret;
if ( (ret = GetKey(cert)) < 0)
return ret;
if (badDate != 0)
return badDate;
return ret;
}
static int GetSignature(DecodedCert* cert)
{
int length;
byte b = cert->source[cert->srcIdx++];
if (b != ASN_BIT_STRING)
return ASN_BITSTR_E;
if (GetLength(cert->source, &cert->srcIdx, &length, cert->maxIdx) < 0)
return ASN_PARSE_E;
cert->sigLength = length;
b = cert->source[cert->srcIdx++];
if (b != 0x00)
return ASN_EXPECT_0_E;
cert->sigLength--;
cert->signature = &cert->source[cert->srcIdx];
cert->srcIdx += cert->sigLength;
return 0;
}
static word32 SetDigest(const byte* digest, word32 digSz, byte* output)
{
output[0] = ASN_OCTET_STRING;
output[1] = (byte)digSz;
XMEMCPY(&output[2], digest, digSz);
return digSz + 2;
}
static word32 BytePrecision(word32 value)
{
word32 i;
for (i = sizeof(value); i; --i)
if (value >> (i - 1) * 8)
break;
return i;
}
static word32 SetLength(word32 length, byte* output)
{
word32 i = 0, j;
if (length < ASN_LONG_LENGTH)
output[i++] = (byte)length;
else {
output[i++] = (byte)(BytePrecision(length) | ASN_LONG_LENGTH);
for (j = BytePrecision(length); j; --j) {
output[i] = (byte)(length >> (j - 1) * 8);
i++;
}
}
return i;
}
static word32 SetSequence(word32 len, byte* output)
{
output[0] = ASN_SEQUENCE | ASN_CONSTRUCTED;
return SetLength(len, output + 1) + 1;
}
static word32 SetAlgoID(int algoOID, byte* output, int type)
{
/* adding TAG_NULL and 0 to end */
/* hashTypes */
static const byte shaAlgoID[] = { 0x2b, 0x0e, 0x03, 0x02, 0x1a,
0x05, 0x00 };
static const byte sha256AlgoID[] = { 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
0x04, 0x02, 0x01, 0x05, 0x00 };
static const byte sha384AlgoID[] = { 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
0x04, 0x02, 0x02, 0x05, 0x00 };
static const byte sha512AlgoID[] = { 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
0x04, 0x02, 0x03, 0x05, 0x00 };
static const byte md5AlgoID[] = { 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
0x02, 0x05, 0x05, 0x00 };
static const byte md2AlgoID[] = { 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
0x02, 0x02, 0x05, 0x00};
/* sigTypes */
static const byte md5wRSA_AlgoID[] = { 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
0x01, 0x01, 0x04, 0x05, 0x00};
static const byte shawRSA_AlgoID[] = { 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
0x01, 0x01, 0x05, 0x05, 0x00};
static const byte sha256wRSA_AlgoID[] = { 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x01, 0x0b, 0x05, 0x00};
static const byte sha384wRSA_AlgoID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x01, 0x0c, 0x05, 0x00};
static const byte sha512wRSA_AlgoID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x01, 0x0d, 0x05, 0x00};
/* keyTypes */
static const byte RSA_AlgoID[] = { 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
0x01, 0x01, 0x01, 0x05, 0x00};
int algoSz = 0;
word32 idSz, seqSz;
const byte* algoName = 0;
byte ID_Length[MAX_LENGTH_SZ];
byte seqArray[MAX_SEQ_SZ + 1]; /* add object_id to end */
if (type == hashType) {
switch (algoOID) {
case SHAh:
algoSz = sizeof(shaAlgoID);
algoName = shaAlgoID;
break;
case SHA256h:
algoSz = sizeof(sha256AlgoID);
algoName = sha256AlgoID;
break;
case SHA384h:
algoSz = sizeof(sha384AlgoID);
algoName = sha384AlgoID;
break;
case SHA512h:
algoSz = sizeof(sha512AlgoID);
algoName = sha512AlgoID;
break;
case MD2h:
algoSz = sizeof(md2AlgoID);
algoName = md2AlgoID;
break;
case MD5h:
algoSz = sizeof(md5AlgoID);
algoName = md5AlgoID;
break;
default:
CYASSL_MSG("Unknown Hash Algo");
return 0; /* UNKOWN_HASH_E; */
}
}
else if (type == sigType) { /* sigType */
switch (algoOID) {
case CTC_MD5wRSA:
algoSz = sizeof(md5wRSA_AlgoID);
algoName = md5wRSA_AlgoID;
break;
case CTC_SHAwRSA:
algoSz = sizeof(shawRSA_AlgoID);
algoName = shawRSA_AlgoID;
break;
case CTC_SHA256wRSA:
algoSz = sizeof(sha256wRSA_AlgoID);
algoName = sha256wRSA_AlgoID;
break;
case CTC_SHA384wRSA:
algoSz = sizeof(sha384wRSA_AlgoID);
algoName = sha384wRSA_AlgoID;
break;
case CTC_SHA512wRSA:
algoSz = sizeof(sha512wRSA_AlgoID);
algoName = sha512wRSA_AlgoID;
break;
default:
CYASSL_MSG("Unknown Signature Algo");
return 0;
}
}
else if (type == keyType) { /* keyType */
switch (algoOID) {
case RSAk:
algoSz = sizeof(RSA_AlgoID);
algoName = RSA_AlgoID;
break;
default:
CYASSL_MSG("Unknown Key Algo");
return 0;
}
}
else {
CYASSL_MSG("Unknown Algo type");
return 0;
}
idSz = SetLength(algoSz - 2, ID_Length); /* don't include TAG_NULL/0 */
seqSz = SetSequence(idSz + algoSz + 1, seqArray);
seqArray[seqSz++] = ASN_OBJECT_ID;
XMEMCPY(output, seqArray, seqSz);
XMEMCPY(output + seqSz, ID_Length, idSz);
XMEMCPY(output + seqSz + idSz, algoName, algoSz);
return seqSz + idSz + algoSz;
}
word32 EncodeSignature(byte* out, const byte* digest, word32 digSz, int hashOID)
{
byte digArray[MAX_ENCODED_DIG_SZ];
byte algoArray[MAX_ALGO_SZ];
byte seqArray[MAX_SEQ_SZ];
word32 encDigSz, algoSz, seqSz;
encDigSz = SetDigest(digest, digSz, digArray);
algoSz = SetAlgoID(hashOID, algoArray, hashType);
seqSz = SetSequence(encDigSz + algoSz, seqArray);
XMEMCPY(out, seqArray, seqSz);
XMEMCPY(out + seqSz, algoArray, algoSz);
XMEMCPY(out + seqSz + algoSz, digArray, encDigSz);
return encDigSz + algoSz + seqSz;
}
#include <stdio.h>
/* return true (1) for Confirmation */
static int ConfirmSignature(const byte* buf, word32 bufSz,
const byte* key, word32 keySz, word32 keyOID,
const byte* sig, word32 sigSz, word32 sigOID,
void* heap)
{
#ifdef CYASSL_SHA512
byte digest[SHA512_DIGEST_SIZE]; /* max size */
#elif !defined(NO_SHA256)
byte digest[SHA256_DIGEST_SIZE]; /* max size */
#else
byte digest[SHA_DIGEST_SIZE]; /* max size */
#endif
int typeH, digestSz, ret;
if (sigOID == CTC_MD5wRSA) {
Md5 md5;
InitMd5(&md5);
Md5Update(&md5, buf, bufSz);
Md5Final(&md5, digest);
typeH = MD5h;
digestSz = MD5_DIGEST_SIZE;
}
#ifdef CYASSL_MD2
else if (sigOID == CTC_MD2wRSA) {
Md2 md2;
InitMd2(&md2);
Md2Update(&md2, buf, bufSz);
Md2Final(&md2, digest);
typeH = MD2h;
digestSz = MD2_DIGEST_SIZE;
}
#endif
else if (sigOID == CTC_SHAwRSA ||
sigOID == CTC_SHAwDSA ||
sigOID == CTC_SHAwECDSA) {
Sha sha;
InitSha(&sha);
ShaUpdate(&sha, buf, bufSz);
ShaFinal(&sha, digest);
typeH = SHAh;
digestSz = SHA_DIGEST_SIZE;
}
#ifndef NO_SHA256
else if (sigOID == CTC_SHA256wRSA ||
sigOID == CTC_SHA256wECDSA) {
Sha256 sha256;
InitSha256(&sha256);
Sha256Update(&sha256, buf, bufSz);
Sha256Final(&sha256, digest);
typeH = SHA256h;
digestSz = SHA256_DIGEST_SIZE;
}
#endif
#ifdef CYASSL_SHA512
else if (sigOID == CTC_SHA512wRSA ||
sigOID == CTC_SHA512wECDSA) {
Sha512 sha512;
InitSha512(&sha512);
Sha512Update(&sha512, buf, bufSz);
Sha512Final(&sha512, digest);
typeH = SHA512h;
digestSz = SHA512_DIGEST_SIZE;
}
#endif
#ifdef CYASSL_SHA384
else if (sigOID == CTC_SHA384wRSA ||
sigOID == CTC_SHA384wECDSA) {
Sha384 sha384;
InitSha384(&sha384);
Sha384Update(&sha384, buf, bufSz);
Sha384Final(&sha384, digest);
typeH = SHA384h;
digestSz = SHA384_DIGEST_SIZE;
}
#endif
else {
CYASSL_MSG("Verify Signautre has unsupported type");
return 0;
}
if (keyOID == RSAk) {
RsaKey pubKey;
byte encodedSig[MAX_ENCODED_SIG_SZ];
byte plain[MAX_ENCODED_SIG_SZ];
word32 idx = 0;
int encodedSigSz, verifySz;
byte* out;
if (sigSz > MAX_ENCODED_SIG_SZ) {
CYASSL_MSG("Verify Signautre is too big");
return 0;
}
InitRsaKey(&pubKey, heap);
if (RsaPublicKeyDecode(key, &idx, &pubKey, keySz) < 0) {
CYASSL_MSG("ASN Key decode error RSA");
ret = 0;
}
else {
XMEMCPY(plain, sig, sigSz);
if ( (verifySz = RsaSSL_VerifyInline(plain, sigSz, &out,
&pubKey)) < 0) {
CYASSL_MSG("Rsa SSL verify error");
ret = 0;
}
else {
/* make sure we're right justified */
encodedSigSz =
EncodeSignature(encodedSig, digest, digestSz, typeH);
if (encodedSigSz != verifySz ||
XMEMCMP(out, encodedSig, encodedSigSz) != 0) {
CYASSL_MSG("Rsa SSL verify match encode error");
ret = 0;
}
else
ret = 1; /* match */
#ifdef CYASSL_DEBUG_ENCODING
{
int x;
printf("cyassl encodedSig:\n");
for (x = 0; x < encodedSigSz; x++) {
printf("%02x ", encodedSig[x]);
if ( (x % 16) == 15)
printf("\n");
}
printf("\n");
printf("actual digest:\n");
for (x = 0; x < verifySz; x++) {
printf("%02x ", out[x]);
if ( (x % 16) == 15)
printf("\n");
}
printf("\n");
}
#endif /* CYASSL_DEBUG_ENCODING */
}
}
FreeRsaKey(&pubKey);
return ret;
}
#ifdef HAVE_ECC
else if (keyOID == ECDSAk) {
ecc_key pubKey;
int verify = 0;
if (ecc_import_x963(key, keySz, &pubKey) < 0) {
CYASSL_MSG("ASN Key import error ECC");
return 0;
}
ret = ecc_verify_hash(sig, sigSz, digest, digestSz, &verify, &pubKey);
ecc_free(&pubKey);
if (ret == 0 && verify == 1)
return 1; /* match */
CYASSL_MSG("ECC Verify didn't match");
return 0;
}
#endif /* HAVE_ECC */
else {
CYASSL_MSG("Verify Key type unknown");
return 0;
}
}
static void DecodeAltNames(byte* input, int sz, DecodedCert* cert)
{
word32 idx = 0;
int length = 0;
CYASSL_ENTER("DecodeAltNames");
if (GetSequence(input, &idx, &length, sz) < 0) {
CYASSL_MSG("\tBad Sequence");
return;
}
while (length > 0) {
DNS_entry* entry;
int strLen;
byte b = input[idx++];
length--;
if (b != (ASN_CONTEXT_SPECIFIC | ASN_DNS_TYPE)) {
CYASSL_MSG("\tNot DNS type");
return;
}
if (GetLength(input, &idx, &strLen, sz) < 0) {
CYASSL_MSG("\tfail: str length");
return;
}
entry = (DNS_entry*)XMALLOC(sizeof(DNS_entry), cert->heap,
DYNAMIC_TYPE_ALTNAME);
if (entry == NULL) {
CYASSL_MSG("\tOut of Memory");
return;
}
entry->name = (char*)XMALLOC(strLen + 1, cert->heap,
DYNAMIC_TYPE_ALTNAME);
if (entry->name == NULL) {
CYASSL_MSG("\tOut of Memory");
XFREE(entry, cert->heap, DYNAMIC_TYPE_ALTNAME);
return;
}
XMEMCPY(entry->name, &input[idx], strLen);
entry->name[strLen] = '\0';
entry->next = cert->altNames;
cert->altNames = entry;
length -= strLen;
idx += strLen;
}
}
static void DecodeBasicCaConstraint(byte* input, int sz, DecodedCert* cert)
{
word32 idx = 0;
int length = 0;
CYASSL_ENTER("DecodeBasicCaConstraint");
if (GetSequence(input, &idx, &length, sz) < 0) return;
if (length == 0) return;
/* If the basic ca constraint is false, this extension may be named, but
* left empty. So, if the length is 0, just return. */
if (input[idx++] != ASN_BOOLEAN)
{
CYASSL_MSG("\tfail: constraint not BOOLEAN");
return;
}
if (GetLength(input, &idx, &length, sz) < 0)
{
CYASSL_MSG("\tfail: length");
return;
}
if (input[idx])
cert->isCA = 1;
}
#define CRLDP_FULL_NAME 0
/* From RFC3280 SS4.2.1.14, Distribution Point Name*/
#define GENERALNAME_URI 6
/* From RFC3280 SS4.2.1.7, GeneralName */
static void DecodeCrlDist(byte* input, int sz, DecodedCert* cert)
{
word32 idx = 0;
int length = 0;
CYASSL_ENTER("DecodeCrlDist");
/* Unwrap the list of Distribution Points*/
if (GetSequence(input, &idx, &length, sz) < 0) return;
/* Unwrap a single Distribution Point */
if (GetSequence(input, &idx, &length, sz) < 0) return;
/* The Distribution Point has three explicit optional members
* First check for a DistributionPointName
*/
if (input[idx] == (ASN_CONSTRUCTED | ASN_CONTEXT_SPECIFIC | 0))
{
idx++;
if (GetLength(input, &idx, &length, sz) < 0) return;
if (input[idx] ==
(ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | CRLDP_FULL_NAME))
{
idx++;
if (GetLength(input, &idx, &length, sz) < 0) return;
if (input[idx] == (ASN_CONTEXT_SPECIFIC | GENERALNAME_URI))
{
idx++;
if (GetLength(input, &idx, &length, sz) < 0) return;
cert->extCrlInfoSz = length;
cert->extCrlInfo = input + idx;
idx += length;
}
else
/* This isn't a URI, skip it. */
idx += length;
}
else
/* This isn't a FULLNAME, skip it. */
idx += length;
}
/* Check for reasonFlags */
if (idx < (word32)sz &&
input[idx] == (ASN_CONSTRUCTED | ASN_CONTEXT_SPECIFIC | 1))
{
idx++;
if (GetLength(input, &idx, &length, sz) < 0) return;
idx += length;
}
/* Check for cRLIssuer */
if (idx < (word32)sz &&
input[idx] == (ASN_CONSTRUCTED | ASN_CONTEXT_SPECIFIC | 2))
{
idx++;
if (GetLength(input, &idx, &length, sz) < 0) return;
idx += length;
}
if (idx < (word32)sz)
{
CYASSL_MSG("\tThere are more CRL Distribution Point records, "
"but we only use the first one.");
}
return;
}
static void DecodeAuthInfo(byte* input, int sz, DecodedCert* cert)
/*
* Read the first of the Authority Information Access records. If there are
* any issues, return without saving the record.
*/
{
word32 idx = 0;
int length = 0;
word32 oid;
/* Unwrap the list of AIAs */
if (GetSequence(input, &idx, &length, sz) < 0) return;
/* Unwrap a single AIA */
if (GetSequence(input, &idx, &length, sz) < 0) return;
oid = 0;
if (GetObjectId(input, &idx, &oid, sz) < 0) return;
/* Only supporting URIs right now. */
if (input[idx] == (ASN_CONTEXT_SPECIFIC | GENERALNAME_URI))
{
idx++;
if (GetLength(input, &idx, &length, sz) < 0) return;
cert->extAuthInfoSz = length;
cert->extAuthInfo = input + idx;
idx += length;
}
else
{
/* Skip anything else. */
idx++;
if (GetLength(input, &idx, &length, sz) < 0) return;
idx += length;
}
if (idx < (word32)sz)
{
CYASSL_MSG("\tThere are more Authority Information Access records, "
"but we only use first one.");
}
return;
}
static void DecodeCertExtensions(DecodedCert* cert)
/*
* Processing the Certificate Extensions. This does not modify the current
* index. It is works starting with the recorded extensions pointer.
*/
{
word32 idx = 0;
int sz = cert->extensionsSz;
byte* input = cert->extensions;
int length;
word32 oid;
CYASSL_ENTER("DecodeCertExtensions");
if (input == NULL || sz == 0) return;
if (input[idx++] != ASN_EXTENSIONS) return;
if (GetLength(input, &idx, &length, sz) < 0) return;
if (GetSequence(input, &idx, &length, sz) < 0) return;
while (idx < (word32)sz) {
if (GetSequence(input, &idx, &length, sz) < 0) {
CYASSL_MSG("\tfail: should be a SEQUENCE");
return;
}
oid = 0;
if (GetObjectId(input, &idx, &oid, sz) < 0) {
CYASSL_MSG("\tfail: OBJECT ID");
return;
}
/* check for critical flag */
if (input[idx] == ASN_BOOLEAN) {
CYASSL_MSG("\tfound optional critical flag, moving past");
idx += (ASN_BOOL_SIZE + 1);
}
/* process the extension based on the OID */
if (input[idx++] != ASN_OCTET_STRING) {
CYASSL_MSG("\tfail: should be an OCTET STRING");
return;
}
if (GetLength(input, &idx, &length, sz) < 0) {
CYASSL_MSG("\tfail: extension data length");
return;
}
switch (oid) {
case BASIC_CA_OID:
DecodeBasicCaConstraint(&input[idx], length, cert);
break;
case CRL_DIST_OID:
DecodeCrlDist(&input[idx], length, cert);
break;
case AUTH_INFO_OID:
DecodeAuthInfo(&input[idx], length, cert);
break;
case ALT_NAMES_OID:
DecodeAltNames(&input[idx], length, cert);
default:
CYASSL_MSG("\tExtension type not handled, skipping");
break;
}
idx += length;
}
return;
}
int ParseCert(DecodedCert* cert, int type, int verify, void* cm)
{
int ret;
char* ptr;
ret = ParseCertRelative(cert, type, verify, cm);
if (ret < 0)
return ret;
if (cert->subjectCNLen > 0) {
ptr = (char*) XMALLOC(cert->subjectCNLen + 1, cert->heap,
DYNAMIC_TYPE_SUBJECT_CN);
if (ptr == NULL)
return MEMORY_E;
XMEMCPY(ptr, cert->subjectCN, cert->subjectCNLen);
ptr[cert->subjectCNLen] = '\0';
cert->subjectCN = ptr;
cert->subjectCNStored = 1;
}
if (cert->keyOID == RSAk && cert->pubKeySize > 0) {
ptr = (char*) XMALLOC(cert->pubKeySize, cert->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (ptr == NULL)
return MEMORY_E;
XMEMCPY(ptr, cert->publicKey, cert->pubKeySize);
cert->publicKey = (byte *)ptr;
cert->pubKeyStored = 1;
}
return ret;
}
/* from SSL proper, for locking can't do find here anymore */
#ifdef __cplusplus
extern "C" {
#endif
CYASSL_LOCAL Signer* GetCA(void* signers, byte* hash);
#ifdef __cplusplus
}
#endif
int ParseCertRelative(DecodedCert* cert, int type, int verify, void* cm)
{
word32 confirmOID;
int ret;
int badDate = 0;
if ((ret = DecodeToKey(cert, verify)) < 0) {
if (ret == ASN_BEFORE_DATE_E || ret == ASN_AFTER_DATE_E)
badDate = ret;
else
return ret;
}
if (cert->srcIdx != cert->sigIndex) {
if (cert->srcIdx < cert->sigIndex) {
/* save extensions */
cert->extensions = &cert->source[cert->srcIdx];
cert->extensionsSz = cert->sigIndex - cert->srcIdx;
cert->extensionsIdx = cert->srcIdx; /* for potential later use */
}
DecodeCertExtensions(cert);
/* advance past extensions */
cert->srcIdx = cert->sigIndex;
}
if ((ret = GetAlgoId(cert->source, &cert->srcIdx, &confirmOID,
cert->maxIdx)) < 0)
return ret;
if ((ret = GetSignature(cert)) < 0)
return ret;
if (confirmOID != cert->signatureOID)
return ASN_SIG_OID_E;
if (verify && type != CA_TYPE) {
Signer* ca = GetCA(cm, cert->issuerHash);
CYASSL_MSG("About to verify certificate signature");
if (ca) {
#ifdef HAVE_OCSP
/* Need the ca's public key hash for OCSP */
{
Sha sha;
InitSha(&sha);
ShaUpdate(&sha, ca->publicKey, ca->pubKeySize);
ShaFinal(&sha, cert->issuerKeyHash);
}
#endif /* HAVE_OCSP */
/* try to confirm/verify signature */
if (!ConfirmSignature(cert->source + cert->certBegin,
cert->sigIndex - cert->certBegin,
ca->publicKey, ca->pubKeySize, ca->keyOID,
cert->signature, cert->sigLength, cert->signatureOID,
cert->heap)) {
CYASSL_MSG("Confirm signature failed");
return ASN_SIG_CONFIRM_E;
}
}
else {
/* no signer */
CYASSL_MSG("No CA signer to verify with");
return ASN_SIG_CONFIRM_E;
}
}
if (badDate != 0)
return badDate;
return 0;
}
Signer* MakeSigner(void* heap)
{
Signer* signer = (Signer*) XMALLOC(sizeof(Signer), heap,
DYNAMIC_TYPE_SIGNER);
if (signer) {
signer->name = 0;
signer->publicKey = 0;
signer->next = 0;
}
(void)heap;
return signer;
}
void FreeSigners(Signer* signer, void* heap)
{
while (signer) {
Signer* next = signer->next;
XFREE(signer->name, heap, DYNAMIC_TYPE_SUBJECT_CN);
XFREE(signer->publicKey, heap, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(signer, heap, DYNAMIC_TYPE_SIGNER);
signer = next;
}
(void)heap;
}
void CTaoCryptErrorString(int error, char* buffer)
{
const int max = MAX_ERROR_SZ; /* shorthand */
#ifdef NO_ERROR_STRINGS
XSTRNCPY(buffer, "no support for error strings built in", max);
#else
switch (error) {
case OPEN_RAN_E :
XSTRNCPY(buffer, "opening random device error", max);
break;
case READ_RAN_E :
XSTRNCPY(buffer, "reading random device error", max);
break;
case WINCRYPT_E :
XSTRNCPY(buffer, "windows crypt init error", max);
break;
case CRYPTGEN_E :
XSTRNCPY(buffer, "windows crypt generation error", max);
break;
case RAN_BLOCK_E :
XSTRNCPY(buffer, "random device read would block error", max);
break;
case MP_INIT_E :
XSTRNCPY(buffer, "mp_init error state", max);
break;
case MP_READ_E :
XSTRNCPY(buffer, "mp_read error state", max);
break;
case MP_EXPTMOD_E :
XSTRNCPY(buffer, "mp_exptmod error state", max);
break;
case MP_TO_E :
XSTRNCPY(buffer, "mp_to_xxx error state, can't convert", max);
break;
case MP_SUB_E :
XSTRNCPY(buffer, "mp_sub error state, can't subtract", max);
break;
case MP_ADD_E :
XSTRNCPY(buffer, "mp_add error state, can't add", max);
break;
case MP_MUL_E :
XSTRNCPY(buffer, "mp_mul error state, can't multiply", max);
break;
case MP_MULMOD_E :
XSTRNCPY(buffer, "mp_mulmod error state, can't multiply mod", max);
break;
case MP_MOD_E :
XSTRNCPY(buffer, "mp_mod error state, can't mod", max);
break;
case MP_INVMOD_E :
XSTRNCPY(buffer, "mp_invmod error state, can't inv mod", max);
break;
case MP_CMP_E :
XSTRNCPY(buffer, "mp_cmp error state", max);
break;
case MP_ZERO_E :
XSTRNCPY(buffer, "mp zero result, not expected", max);
break;
case MEMORY_E :
XSTRNCPY(buffer, "out of memory error", max);
break;
case RSA_WRONG_TYPE_E :
XSTRNCPY(buffer, "RSA wrong block type for RSA function", max);
break;
case RSA_BUFFER_E :
XSTRNCPY(buffer, "RSA buffer error, output too small or input too big",
max);
break;
case BUFFER_E :
XSTRNCPY(buffer