| /* integer.c |
| * |
| * Copyright (C) 2006-2012 Sawtooth Consulting Ltd. |
| * |
| * This file is part of CyaSSL. |
| * |
| * CyaSSL is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * CyaSSL is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA |
| */ |
| |
| |
| /* |
| * Based on public domain LibTomMath 0.38 by Tom St Denis, tomstdenis@iahu.ca, |
| * http://math.libtomcrypt.com |
| */ |
| |
| |
| #ifdef HAVE_CONFIG_H |
| #include <config.h> |
| #endif |
| |
| /* in case user set USE_FAST_MATH there */ |
| #include <cyassl/ctaocrypt/settings.h> |
| |
| #ifndef USE_FAST_MATH |
| |
| #include <cyassl/ctaocrypt/integer.h> |
| |
| |
| /* math settings check */ |
| word32 CheckRunTimeSettings(void) |
| { |
| return CTC_SETTINGS; |
| } |
| |
| |
| /* handle up to 6 inits */ |
| int mp_init_multi(mp_int* a, mp_int* b, mp_int* c, mp_int* d, mp_int* e, |
| mp_int* f) |
| { |
| int res = MP_OKAY; |
| |
| if (a && ((res = mp_init(a)) != MP_OKAY)) |
| return res; |
| |
| if (b && ((res = mp_init(b)) != MP_OKAY)) { |
| mp_clear(a); |
| return res; |
| } |
| |
| if (c && ((res = mp_init(c)) != MP_OKAY)) { |
| mp_clear(a); mp_clear(b); |
| return res; |
| } |
| |
| if (d && ((res = mp_init(d)) != MP_OKAY)) { |
| mp_clear(a); mp_clear(b); mp_clear(c); |
| return res; |
| } |
| |
| if (e && ((res = mp_init(e)) != MP_OKAY)) { |
| mp_clear(a); mp_clear(b); mp_clear(c); mp_clear(d); |
| return res; |
| } |
| |
| if (f && ((res = mp_init(f)) != MP_OKAY)) { |
| mp_clear(a); mp_clear(b); mp_clear(c); mp_clear(d); mp_clear(e); |
| return res; |
| } |
| |
| return res; |
| } |
| |
| |
| /* init a new mp_int */ |
| int mp_init (mp_int * a) |
| { |
| int i; |
| |
| /* allocate memory required and clear it */ |
| a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC, 0, |
| DYNAMIC_TYPE_BIGINT); |
| if (a->dp == NULL) { |
| return MP_MEM; |
| } |
| |
| /* set the digits to zero */ |
| for (i = 0; i < MP_PREC; i++) { |
| a->dp[i] = 0; |
| } |
| |
| /* set the used to zero, allocated digits to the default precision |
| * and sign to positive */ |
| a->used = 0; |
| a->alloc = MP_PREC; |
| a->sign = MP_ZPOS; |
| |
| return MP_OKAY; |
| } |
| |
| |
| /* clear one (frees) */ |
| void |
| mp_clear (mp_int * a) |
| { |
| int i; |
| |
| /* only do anything if a hasn't been freed previously */ |
| if (a->dp != NULL) { |
| /* first zero the digits */ |
| for (i = 0; i < a->used; i++) { |
| a->dp[i] = 0; |
| } |
| |
| /* free ram */ |
| XFREE(a->dp, 0, DYNAMIC_TYPE_BIGINT); |
| |
| /* reset members to make debugging easier */ |
| a->dp = NULL; |
| a->alloc = a->used = 0; |
| a->sign = MP_ZPOS; |
| } |
| } |
| |
| |
| /* get the size for an unsigned equivalent */ |
| int mp_unsigned_bin_size (mp_int * a) |
| { |
| int size = mp_count_bits (a); |
| return (size / 8 + ((size & 7) != 0 ? 1 : 0)); |
| } |
| |
| |
| /* returns the number of bits in an int */ |
| int |
| mp_count_bits (mp_int * a) |
| { |
| int r; |
| mp_digit q; |
| |
| /* shortcut */ |
| if (a->used == 0) { |
| return 0; |
| } |
| |
| /* get number of digits and add that */ |
| r = (a->used - 1) * DIGIT_BIT; |
| |
| /* take the last digit and count the bits in it */ |
| q = a->dp[a->used - 1]; |
| while (q > ((mp_digit) 0)) { |
| ++r; |
| q >>= ((mp_digit) 1); |
| } |
| return r; |
| } |
| |
| |
| /* store in unsigned [big endian] format */ |
| int mp_to_unsigned_bin (mp_int * a, unsigned char *b) |
| { |
| int x, res; |
| mp_int t; |
| |
| if ((res = mp_init_copy (&t, a)) != MP_OKAY) { |
| return res; |
| } |
| |
| x = 0; |
| while (mp_iszero (&t) == 0) { |
| #ifndef MP_8BIT |
| b[x++] = (unsigned char) (t.dp[0] & 255); |
| #else |
| b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7)); |
| #endif |
| if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) { |
| mp_clear (&t); |
| return res; |
| } |
| } |
| bn_reverse (b, x); |
| mp_clear (&t); |
| return MP_OKAY; |
| } |
| |
| |
| /* creates "a" then copies b into it */ |
| int mp_init_copy (mp_int * a, mp_int * b) |
| { |
| int res; |
| |
| if ((res = mp_init (a)) != MP_OKAY) { |
| return res; |
| } |
| return mp_copy (b, a); |
| } |
| |
| |
| /* copy, b = a */ |
| int |
| mp_copy (mp_int * a, mp_int * b) |
| { |
| int res, n; |
| |
| /* if dst == src do nothing */ |
| if (a == b) { |
| return MP_OKAY; |
| } |
| |
| /* grow dest */ |
| if (b->alloc < a->used) { |
| if ((res = mp_grow (b, a->used)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* zero b and copy the parameters over */ |
| { |
| register mp_digit *tmpa, *tmpb; |
| |
| /* pointer aliases */ |
| |
| /* source */ |
| tmpa = a->dp; |
| |
| /* destination */ |
| tmpb = b->dp; |
| |
| /* copy all the digits */ |
| for (n = 0; n < a->used; n++) { |
| *tmpb++ = *tmpa++; |
| } |
| |
| /* clear high digits */ |
| for (; n < b->used; n++) { |
| *tmpb++ = 0; |
| } |
| } |
| |
| /* copy used count and sign */ |
| b->used = a->used; |
| b->sign = a->sign; |
| return MP_OKAY; |
| } |
| |
| |
| /* grow as required */ |
| int mp_grow (mp_int * a, int size) |
| { |
| int i; |
| mp_digit *tmp; |
| |
| /* if the alloc size is smaller alloc more ram */ |
| if (a->alloc < size) { |
| /* ensure there are always at least MP_PREC digits extra on top */ |
| size += (MP_PREC * 2) - (size % MP_PREC); |
| |
| /* reallocate the array a->dp |
| * |
| * We store the return in a temporary variable |
| * in case the operation failed we don't want |
| * to overwrite the dp member of a. |
| */ |
| tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size, 0, |
| DYNAMIC_TYPE_BIGINT); |
| if (tmp == NULL) { |
| /* reallocation failed but "a" is still valid [can be freed] */ |
| return MP_MEM; |
| } |
| |
| /* reallocation succeeded so set a->dp */ |
| a->dp = tmp; |
| |
| /* zero excess digits */ |
| i = a->alloc; |
| a->alloc = size; |
| for (; i < a->alloc; i++) { |
| a->dp[i] = 0; |
| } |
| } |
| return MP_OKAY; |
| } |
| |
| |
| /* reverse an array, used for radix code */ |
| void |
| bn_reverse (unsigned char *s, int len) |
| { |
| int ix, iy; |
| unsigned char t; |
| |
| ix = 0; |
| iy = len - 1; |
| while (ix < iy) { |
| t = s[ix]; |
| s[ix] = s[iy]; |
| s[iy] = t; |
| ++ix; |
| --iy; |
| } |
| } |
| |
| |
| /* shift right by a certain bit count (store quotient in c, optional |
| remainder in d) */ |
| int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d) |
| { |
| mp_digit D, r, rr; |
| int x, res; |
| mp_int t; |
| |
| |
| /* if the shift count is <= 0 then we do no work */ |
| if (b <= 0) { |
| res = mp_copy (a, c); |
| if (d != NULL) { |
| mp_zero (d); |
| } |
| return res; |
| } |
| |
| if ((res = mp_init (&t)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* get the remainder */ |
| if (d != NULL) { |
| if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) { |
| mp_clear (&t); |
| return res; |
| } |
| } |
| |
| /* copy */ |
| if ((res = mp_copy (a, c)) != MP_OKAY) { |
| mp_clear (&t); |
| return res; |
| } |
| |
| /* shift by as many digits in the bit count */ |
| if (b >= (int)DIGIT_BIT) { |
| mp_rshd (c, b / DIGIT_BIT); |
| } |
| |
| /* shift any bit count < DIGIT_BIT */ |
| D = (mp_digit) (b % DIGIT_BIT); |
| if (D != 0) { |
| register mp_digit *tmpc, mask, shift; |
| |
| /* mask */ |
| mask = (((mp_digit)1) << D) - 1; |
| |
| /* shift for lsb */ |
| shift = DIGIT_BIT - D; |
| |
| /* alias */ |
| tmpc = c->dp + (c->used - 1); |
| |
| /* carry */ |
| r = 0; |
| for (x = c->used - 1; x >= 0; x--) { |
| /* get the lower bits of this word in a temp */ |
| rr = *tmpc & mask; |
| |
| /* shift the current word and mix in the carry bits from the previous |
| word */ |
| *tmpc = (*tmpc >> D) | (r << shift); |
| --tmpc; |
| |
| /* set the carry to the carry bits of the current word found above */ |
| r = rr; |
| } |
| } |
| mp_clamp (c); |
| if (d != NULL) { |
| mp_exch (&t, d); |
| } |
| mp_clear (&t); |
| return MP_OKAY; |
| } |
| |
| |
| /* set to zero */ |
| void mp_zero (mp_int * a) |
| { |
| int n; |
| mp_digit *tmp; |
| |
| a->sign = MP_ZPOS; |
| a->used = 0; |
| |
| tmp = a->dp; |
| for (n = 0; n < a->alloc; n++) { |
| *tmp++ = 0; |
| } |
| } |
| |
| |
| /* trim unused digits |
| * |
| * This is used to ensure that leading zero digits are |
| * trimed and the leading "used" digit will be non-zero |
| * Typically very fast. Also fixes the sign if there |
| * are no more leading digits |
| */ |
| void |
| mp_clamp (mp_int * a) |
| { |
| /* decrease used while the most significant digit is |
| * zero. |
| */ |
| while (a->used > 0 && a->dp[a->used - 1] == 0) { |
| --(a->used); |
| } |
| |
| /* reset the sign flag if used == 0 */ |
| if (a->used == 0) { |
| a->sign = MP_ZPOS; |
| } |
| } |
| |
| |
| /* swap the elements of two integers, for cases where you can't simply swap the |
| * mp_int pointers around |
| */ |
| void |
| mp_exch (mp_int * a, mp_int * b) |
| { |
| mp_int t; |
| |
| t = *a; |
| *a = *b; |
| *b = t; |
| } |
| |
| |
| /* shift right a certain amount of digits */ |
| void mp_rshd (mp_int * a, int b) |
| { |
| int x; |
| |
| /* if b <= 0 then ignore it */ |
| if (b <= 0) { |
| return; |
| } |
| |
| /* if b > used then simply zero it and return */ |
| if (a->used <= b) { |
| mp_zero (a); |
| return; |
| } |
| |
| { |
| register mp_digit *bottom, *top; |
| |
| /* shift the digits down */ |
| |
| /* bottom */ |
| bottom = a->dp; |
| |
| /* top [offset into digits] */ |
| top = a->dp + b; |
| |
| /* this is implemented as a sliding window where |
| * the window is b-digits long and digits from |
| * the top of the window are copied to the bottom |
| * |
| * e.g. |
| |
| b-2 | b-1 | b0 | b1 | b2 | ... | bb | ----> |
| /\ | ----> |
| \-------------------/ ----> |
| */ |
| for (x = 0; x < (a->used - b); x++) { |
| *bottom++ = *top++; |
| } |
| |
| /* zero the top digits */ |
| for (; x < a->used; x++) { |
| *bottom++ = 0; |
| } |
| } |
| |
| /* remove excess digits */ |
| a->used -= b; |
| } |
| |
| |
| /* calc a value mod 2**b */ |
| int |
| mp_mod_2d (mp_int * a, int b, mp_int * c) |
| { |
| int x, res; |
| |
| /* if b is <= 0 then zero the int */ |
| if (b <= 0) { |
| mp_zero (c); |
| return MP_OKAY; |
| } |
| |
| /* if the modulus is larger than the value than return */ |
| if (b >= (int) (a->used * DIGIT_BIT)) { |
| res = mp_copy (a, c); |
| return res; |
| } |
| |
| /* copy */ |
| if ((res = mp_copy (a, c)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* zero digits above the last digit of the modulus */ |
| for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) { |
| c->dp[x] = 0; |
| } |
| /* clear the digit that is not completely outside/inside the modulus */ |
| c->dp[b / DIGIT_BIT] &= (mp_digit) ((((mp_digit) 1) << |
| (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1)); |
| mp_clamp (c); |
| return MP_OKAY; |
| } |
| |
| |
| /* reads a unsigned char array, assumes the msb is stored first [big endian] */ |
| int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c) |
| { |
| int res; |
| |
| /* make sure there are at least two digits */ |
| if (a->alloc < 2) { |
| if ((res = mp_grow(a, 2)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* zero the int */ |
| mp_zero (a); |
| |
| /* read the bytes in */ |
| while (c-- > 0) { |
| if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) { |
| return res; |
| } |
| |
| #ifndef MP_8BIT |
| a->dp[0] |= *b++; |
| a->used += 1; |
| #else |
| a->dp[0] = (*b & MP_MASK); |
| a->dp[1] |= ((*b++ >> 7U) & 1); |
| a->used += 2; |
| #endif |
| } |
| mp_clamp (a); |
| return MP_OKAY; |
| } |
| |
| |
| /* shift left by a certain bit count */ |
| int mp_mul_2d (mp_int * a, int b, mp_int * c) |
| { |
| mp_digit d; |
| int res; |
| |
| /* copy */ |
| if (a != c) { |
| if ((res = mp_copy (a, c)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) { |
| if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* shift by as many digits in the bit count */ |
| if (b >= (int)DIGIT_BIT) { |
| if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* shift any bit count < DIGIT_BIT */ |
| d = (mp_digit) (b % DIGIT_BIT); |
| if (d != 0) { |
| register mp_digit *tmpc, shift, mask, r, rr; |
| register int x; |
| |
| /* bitmask for carries */ |
| mask = (((mp_digit)1) << d) - 1; |
| |
| /* shift for msbs */ |
| shift = DIGIT_BIT - d; |
| |
| /* alias */ |
| tmpc = c->dp; |
| |
| /* carry */ |
| r = 0; |
| for (x = 0; x < c->used; x++) { |
| /* get the higher bits of the current word */ |
| rr = (*tmpc >> shift) & mask; |
| |
| /* shift the current word and OR in the carry */ |
| *tmpc = ((*tmpc << d) | r) & MP_MASK; |
| ++tmpc; |
| |
| /* set the carry to the carry bits of the current word */ |
| r = rr; |
| } |
| |
| /* set final carry */ |
| if (r != 0) { |
| c->dp[(c->used)++] = r; |
| } |
| } |
| mp_clamp (c); |
| return MP_OKAY; |
| } |
| |
| |
| /* shift left a certain amount of digits */ |
| int mp_lshd (mp_int * a, int b) |
| { |
| int x, res; |
| |
| /* if its less than zero return */ |
| if (b <= 0) { |
| return MP_OKAY; |
| } |
| |
| /* grow to fit the new digits */ |
| if (a->alloc < a->used + b) { |
| if ((res = mp_grow (a, a->used + b)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| { |
| register mp_digit *top, *bottom; |
| |
| /* increment the used by the shift amount then copy upwards */ |
| a->used += b; |
| |
| /* top */ |
| top = a->dp + a->used - 1; |
| |
| /* base */ |
| bottom = a->dp + a->used - 1 - b; |
| |
| /* much like mp_rshd this is implemented using a sliding window |
| * except the window goes the otherway around. Copying from |
| * the bottom to the top. see bn_mp_rshd.c for more info. |
| */ |
| for (x = a->used - 1; x >= b; x--) { |
| *top-- = *bottom--; |
| } |
| |
| /* zero the lower digits */ |
| top = a->dp; |
| for (x = 0; x < b; x++) { |
| *top++ = 0; |
| } |
| } |
| return MP_OKAY; |
| } |
| |
| |
| /* this is a shell function that calls either the normal or Montgomery |
| * exptmod functions. Originally the call to the montgomery code was |
| * embedded in the normal function but that wasted alot of stack space |
| * for nothing (since 99% of the time the Montgomery code would be called) |
| */ |
| int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) |
| { |
| int dr; |
| |
| /* modulus P must be positive */ |
| if (P->sign == MP_NEG) { |
| return MP_VAL; |
| } |
| |
| /* if exponent X is negative we have to recurse */ |
| if (X->sign == MP_NEG) { |
| #ifdef BN_MP_INVMOD_C |
| mp_int tmpG, tmpX; |
| int err; |
| |
| /* first compute 1/G mod P */ |
| if ((err = mp_init(&tmpG)) != MP_OKAY) { |
| return err; |
| } |
| if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { |
| mp_clear(&tmpG); |
| return err; |
| } |
| |
| /* now get |X| */ |
| if ((err = mp_init(&tmpX)) != MP_OKAY) { |
| mp_clear(&tmpG); |
| return err; |
| } |
| if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { |
| mp_clear(&tmpG); |
| mp_clear(&tmpX); |
| return err; |
| } |
| |
| /* and now compute (1/G)**|X| instead of G**X [X < 0] */ |
| err = mp_exptmod(&tmpG, &tmpX, P, Y); |
| mp_clear(&tmpG); |
| mp_clear(&tmpX); |
| return err; |
| #else |
| /* no invmod */ |
| return MP_VAL; |
| #endif |
| } |
| |
| /* modified diminished radix reduction */ |
| #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && \ |
| defined(BN_S_MP_EXPTMOD_C) |
| if (mp_reduce_is_2k_l(P) == MP_YES) { |
| return s_mp_exptmod(G, X, P, Y, 1); |
| } |
| #endif |
| |
| #ifdef BN_MP_DR_IS_MODULUS_C |
| /* is it a DR modulus? */ |
| dr = mp_dr_is_modulus(P); |
| #else |
| /* default to no */ |
| dr = 0; |
| #endif |
| |
| #ifdef BN_MP_REDUCE_IS_2K_C |
| /* if not, is it a unrestricted DR modulus? */ |
| if (dr == 0) { |
| dr = mp_reduce_is_2k(P) << 1; |
| } |
| #endif |
| |
| /* if the modulus is odd or dr != 0 use the montgomery method */ |
| #ifdef BN_MP_EXPTMOD_FAST_C |
| if (mp_isodd (P) == 1 || dr != 0) { |
| return mp_exptmod_fast (G, X, P, Y, dr); |
| } else { |
| #endif |
| #ifdef BN_S_MP_EXPTMOD_C |
| /* otherwise use the generic Barrett reduction technique */ |
| return s_mp_exptmod (G, X, P, Y, 0); |
| #else |
| /* no exptmod for evens */ |
| return MP_VAL; |
| #endif |
| #ifdef BN_MP_EXPTMOD_FAST_C |
| } |
| #endif |
| } |
| |
| |
| /* b = |a| |
| * |
| * Simple function copies the input and fixes the sign to positive |
| */ |
| int |
| mp_abs (mp_int * a, mp_int * b) |
| { |
| int res; |
| |
| /* copy a to b */ |
| if (a != b) { |
| if ((res = mp_copy (a, b)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* force the sign of b to positive */ |
| b->sign = MP_ZPOS; |
| |
| return MP_OKAY; |
| } |
| |
| |
| /* hac 14.61, pp608 */ |
| int mp_invmod (mp_int * a, mp_int * b, mp_int * c) |
| { |
| /* b cannot be negative */ |
| if (b->sign == MP_NEG || mp_iszero(b) == 1) { |
| return MP_VAL; |
| } |
| |
| #ifdef BN_FAST_MP_INVMOD_C |
| /* if the modulus is odd we can use a faster routine instead */ |
| if (mp_isodd (b) == 1) { |
| return fast_mp_invmod (a, b, c); |
| } |
| #endif |
| |
| #ifdef BN_MP_INVMOD_SLOW_C |
| return mp_invmod_slow(a, b, c); |
| #endif |
| } |
| |
| |
| /* computes the modular inverse via binary extended euclidean algorithm, |
| * that is c = 1/a mod b |
| * |
| * Based on slow invmod except this is optimized for the case where b is |
| * odd as per HAC Note 14.64 on pp. 610 |
| */ |
| int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) |
| { |
| mp_int x, y, u, v, B, D; |
| int res, neg; |
| |
| /* 2. [modified] b must be odd */ |
| if (mp_iseven (b) == 1) { |
| return MP_VAL; |
| } |
| |
| /* init all our temps */ |
| if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* x == modulus, y == value to invert */ |
| if ((res = mp_copy (b, &x)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| |
| /* we need y = |a| */ |
| if ((res = mp_mod (a, b, &y)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| |
| /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ |
| if ((res = mp_copy (&x, &u)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| if ((res = mp_copy (&y, &v)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| mp_set (&D, 1); |
| |
| top: |
| /* 4. while u is even do */ |
| while (mp_iseven (&u) == 1) { |
| /* 4.1 u = u/2 */ |
| if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| /* 4.2 if B is odd then */ |
| if (mp_isodd (&B) == 1) { |
| if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| /* B = B/2 */ |
| if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| |
| /* 5. while v is even do */ |
| while (mp_iseven (&v) == 1) { |
| /* 5.1 v = v/2 */ |
| if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| /* 5.2 if D is odd then */ |
| if (mp_isodd (&D) == 1) { |
| /* D = (D-x)/2 */ |
| if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| /* D = D/2 */ |
| if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| |
| /* 6. if u >= v then */ |
| if (mp_cmp (&u, &v) != MP_LT) { |
| /* u = u - v, B = B - D */ |
| if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| |
| if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } else { |
| /* v - v - u, D = D - B */ |
| if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| |
| if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| |
| /* if not zero goto step 4 */ |
| if (mp_iszero (&u) == 0) { |
| goto top; |
| } |
| |
| /* now a = C, b = D, gcd == g*v */ |
| |
| /* if v != 1 then there is no inverse */ |
| if (mp_cmp_d (&v, 1) != MP_EQ) { |
| res = MP_VAL; |
| goto LBL_ERR; |
| } |
| |
| /* b is now the inverse */ |
| neg = a->sign; |
| while (D.sign == MP_NEG) { |
| if ((res = mp_add (&D, b, &D)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| mp_exch (&D, c); |
| c->sign = neg; |
| res = MP_OKAY; |
| |
| LBL_ERR:mp_clear(&x); |
| mp_clear(&y); |
| mp_clear(&u); |
| mp_clear(&v); |
| mp_clear(&B); |
| mp_clear(&D); |
| return res; |
| } |
| |
| |
| /* hac 14.61, pp608 */ |
| int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c) |
| { |
| mp_int x, y, u, v, A, B, C, D; |
| int res; |
| |
| /* b cannot be negative */ |
| if (b->sign == MP_NEG || mp_iszero(b) == 1) { |
| return MP_VAL; |
| } |
| |
| /* init temps */ |
| if ((res = mp_init_multi(&x, &y, &u, &v, |
| &A, &B)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* init rest of tmps temps */ |
| if ((res = mp_init_multi(&C, &D, 0, 0, 0, 0)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* x = a, y = b */ |
| if ((res = mp_mod(a, b, &x)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| if ((res = mp_copy (b, &y)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| |
| /* 2. [modified] if x,y are both even then return an error! */ |
| if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { |
| res = MP_VAL; |
| goto LBL_ERR; |
| } |
| |
| /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ |
| if ((res = mp_copy (&x, &u)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| if ((res = mp_copy (&y, &v)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| mp_set (&A, 1); |
| mp_set (&D, 1); |
| |
| top: |
| /* 4. while u is even do */ |
| while (mp_iseven (&u) == 1) { |
| /* 4.1 u = u/2 */ |
| if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| /* 4.2 if A or B is odd then */ |
| if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { |
| /* A = (A+y)/2, B = (B-x)/2 */ |
| if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| /* A = A/2, B = B/2 */ |
| if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| |
| /* 5. while v is even do */ |
| while (mp_iseven (&v) == 1) { |
| /* 5.1 v = v/2 */ |
| if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| /* 5.2 if C or D is odd then */ |
| if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { |
| /* C = (C+y)/2, D = (D-x)/2 */ |
| if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| /* C = C/2, D = D/2 */ |
| if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| |
| /* 6. if u >= v then */ |
| if (mp_cmp (&u, &v) != MP_LT) { |
| /* u = u - v, A = A - C, B = B - D */ |
| if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| |
| if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| |
| if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } else { |
| /* v - v - u, C = C - A, D = D - B */ |
| if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| |
| if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| |
| if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| |
| /* if not zero goto step 4 */ |
| if (mp_iszero (&u) == 0) |
| goto top; |
| |
| /* now a = C, b = D, gcd == g*v */ |
| |
| /* if v != 1 then there is no inverse */ |
| if (mp_cmp_d (&v, 1) != MP_EQ) { |
| res = MP_VAL; |
| goto LBL_ERR; |
| } |
| |
| /* if its too low */ |
| while (mp_cmp_d(&C, 0) == MP_LT) { |
| if ((res = mp_add(&C, b, &C)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| |
| /* too big */ |
| while (mp_cmp_mag(&C, b) != MP_LT) { |
| if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| |
| /* C is now the inverse */ |
| mp_exch (&C, c); |
| res = MP_OKAY; |
| LBL_ERR:mp_clear(&x); |
| mp_clear(&y); |
| mp_clear(&u); |
| mp_clear(&v); |
| mp_clear(&A); |
| mp_clear(&B); |
| mp_clear(&C); |
| mp_clear(&D); |
| return res; |
| } |
| |
| |
| /* compare maginitude of two ints (unsigned) */ |
| int mp_cmp_mag (mp_int * a, mp_int * b) |
| { |
| int n; |
| mp_digit *tmpa, *tmpb; |
| |
| /* compare based on # of non-zero digits */ |
| if (a->used > b->used) { |
| return MP_GT; |
| } |
| |
| if (a->used < b->used) { |
| return MP_LT; |
| } |
| |
| /* alias for a */ |
| tmpa = a->dp + (a->used - 1); |
| |
| /* alias for b */ |
| tmpb = b->dp + (a->used - 1); |
| |
| /* compare based on digits */ |
| for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { |
| if (*tmpa > *tmpb) { |
| return MP_GT; |
| } |
| |
| if (*tmpa < *tmpb) { |
| return MP_LT; |
| } |
| } |
| return MP_EQ; |
| } |
| |
| |
| /* compare two ints (signed)*/ |
| int |
| mp_cmp (mp_int * a, mp_int * b) |
| { |
| /* compare based on sign */ |
| if (a->sign != b->sign) { |
| if (a->sign == MP_NEG) { |
| return MP_LT; |
| } else { |
| return MP_GT; |
| } |
| } |
| |
| /* compare digits */ |
| if (a->sign == MP_NEG) { |
| /* if negative compare opposite direction */ |
| return mp_cmp_mag(b, a); |
| } else { |
| return mp_cmp_mag(a, b); |
| } |
| } |
| |
| |
| /* compare a digit */ |
| int mp_cmp_d(mp_int * a, mp_digit b) |
| { |
| /* compare based on sign */ |
| if (a->sign == MP_NEG) { |
| return MP_LT; |
| } |
| |
| /* compare based on magnitude */ |
| if (a->used > 1) { |
| return MP_GT; |
| } |
| |
| /* compare the only digit of a to b */ |
| if (a->dp[0] > b) { |
| return MP_GT; |
| } else if (a->dp[0] < b) { |
| return MP_LT; |
| } else { |
| return MP_EQ; |
| } |
| } |
| |
| |
| /* set to a digit */ |
| void mp_set (mp_int * a, mp_digit b) |
| { |
| mp_zero (a); |
| a->dp[0] = b & MP_MASK; |
| a->used = (a->dp[0] != 0) ? 1 : 0; |
| } |
| |
| |
| /* c = a mod b, 0 <= c < b */ |
| int |
| mp_mod (mp_int * a, mp_int * b, mp_int * c) |
| { |
| mp_int t; |
| int res; |
| |
| if ((res = mp_init (&t)) != MP_OKAY) { |
| return res; |
| } |
| |
| if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) { |
| mp_clear (&t); |
| return res; |
| } |
| |
| if (t.sign != b->sign) { |
| res = mp_add (b, &t, c); |
| } else { |
| res = MP_OKAY; |
| mp_exch (&t, c); |
| } |
| |
| mp_clear (&t); |
| return res; |
| } |
| |
| |
| /* slower bit-bang division... also smaller */ |
| int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
| { |
| mp_int ta, tb, tq, q; |
| int res, n, n2; |
| |
| /* is divisor zero ? */ |
| if (mp_iszero (b) == 1) { |
| return MP_VAL; |
| } |
| |
| /* if a < b then q=0, r = a */ |
| if (mp_cmp_mag (a, b) == MP_LT) { |
| if (d != NULL) { |
| res = mp_copy (a, d); |
| } else { |
| res = MP_OKAY; |
| } |
| if (c != NULL) { |
| mp_zero (c); |
| } |
| return res; |
| } |
| |
| /* init our temps */ |
| if ((res = mp_init_multi(&ta, &tb, &tq, &q, 0, 0)) != MP_OKAY) { |
| return res; |
| } |
| |
| |
| mp_set(&tq, 1); |
| n = mp_count_bits(a) - mp_count_bits(b); |
| if (((res = mp_abs(a, &ta)) != MP_OKAY) || |
| ((res = mp_abs(b, &tb)) != MP_OKAY) || |
| ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || |
| ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { |
| goto LBL_ERR; |
| } |
| |
| while (n-- >= 0) { |
| if (mp_cmp(&tb, &ta) != MP_GT) { |
| if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || |
| ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { |
| goto LBL_ERR; |
| } |
| } |
| if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || |
| ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { |
| goto LBL_ERR; |
| } |
| } |
| |
| /* now q == quotient and ta == remainder */ |
| n = a->sign; |
| n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); |
| if (c != NULL) { |
| mp_exch(c, &q); |
| c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; |
| } |
| if (d != NULL) { |
| mp_exch(d, &ta); |
| d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; |
| } |
| LBL_ERR: |
| mp_clear(&ta); |
| mp_clear(&tb); |
| mp_clear(&tq); |
| mp_clear(&q); |
| return res; |
| } |
| |
| |
| /* b = a/2 */ |
| int mp_div_2(mp_int * a, mp_int * b) |
| { |
| int x, res, oldused; |
| |
| /* copy */ |
| if (b->alloc < a->used) { |
| if ((res = mp_grow (b, a->used)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| oldused = b->used; |
| b->used = a->used; |
| { |
| register mp_digit r, rr, *tmpa, *tmpb; |
| |
| /* source alias */ |
| tmpa = a->dp + b->used - 1; |
| |
| /* dest alias */ |
| tmpb = b->dp + b->used - 1; |
| |
| /* carry */ |
| r = 0; |
| for (x = b->used - 1; x >= 0; x--) { |
| /* get the carry for the next iteration */ |
| rr = *tmpa & 1; |
| |
| /* shift the current digit, add in carry and store */ |
| *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); |
| |
| /* forward carry to next iteration */ |
| r = rr; |
| } |
| |
| /* zero excess digits */ |
| tmpb = b->dp + b->used; |
| for (x = b->used; x < oldused; x++) { |
| *tmpb++ = 0; |
| } |
| } |
| b->sign = a->sign; |
| mp_clamp (b); |
| return MP_OKAY; |
| } |
| |
| |
| /* high level addition (handles signs) */ |
| int mp_add (mp_int * a, mp_int * b, mp_int * c) |
| { |
| int sa, sb, res; |
| |
| /* get sign of both inputs */ |
| sa = a->sign; |
| sb = b->sign; |
| |
| /* handle two cases, not four */ |
| if (sa == sb) { |
| /* both positive or both negative */ |
| /* add their magnitudes, copy the sign */ |
| c->sign = sa; |
| res = s_mp_add (a, b, c); |
| } else { |
| /* one positive, the other negative */ |
| /* subtract the one with the greater magnitude from */ |
| /* the one of the lesser magnitude. The result gets */ |
| /* the sign of the one with the greater magnitude. */ |
| if (mp_cmp_mag (a, b) == MP_LT) { |
| c->sign = sb; |
| res = s_mp_sub (b, a, c); |
| } else { |
| c->sign = sa; |
| res = s_mp_sub (a, b, c); |
| } |
| } |
| return res; |
| } |
| |
| |
| /* low level addition, based on HAC pp.594, Algorithm 14.7 */ |
| int |
| s_mp_add (mp_int * a, mp_int * b, mp_int * c) |
| { |
| mp_int *x; |
| int olduse, res, min, max; |
| |
| /* find sizes, we let |a| <= |b| which means we have to sort |
| * them. "x" will point to the input with the most digits |
| */ |
| if (a->used > b->used) { |
| min = b->used; |
| max = a->used; |
| x = a; |
| } else { |
| min = a->used; |
| max = b->used; |
| x = b; |
| } |
| |
| /* init result */ |
| if (c->alloc < max + 1) { |
| if ((res = mp_grow (c, max + 1)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* get old used digit count and set new one */ |
| olduse = c->used; |
| c->used = max + 1; |
| |
| { |
| register mp_digit u, *tmpa, *tmpb, *tmpc; |
| register int i; |
| |
| /* alias for digit pointers */ |
| |
| /* first input */ |
| tmpa = a->dp; |
| |
| /* second input */ |
| tmpb = b->dp; |
| |
| /* destination */ |
| tmpc = c->dp; |
| |
| /* zero the carry */ |
| u = 0; |
| for (i = 0; i < min; i++) { |
| /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ |
| *tmpc = *tmpa++ + *tmpb++ + u; |
| |
| /* U = carry bit of T[i] */ |
| u = *tmpc >> ((mp_digit)DIGIT_BIT); |
| |
| /* take away carry bit from T[i] */ |
| *tmpc++ &= MP_MASK; |
| } |
| |
| /* now copy higher words if any, that is in A+B |
| * if A or B has more digits add those in |
| */ |
| if (min != max) { |
| for (; i < max; i++) { |
| /* T[i] = X[i] + U */ |
| *tmpc = x->dp[i] + u; |
| |
| /* U = carry bit of T[i] */ |
| u = *tmpc >> ((mp_digit)DIGIT_BIT); |
| |
| /* take away carry bit from T[i] */ |
| *tmpc++ &= MP_MASK; |
| } |
| } |
| |
| /* add carry */ |
| *tmpc++ = u; |
| |
| /* clear digits above oldused */ |
| for (i = c->used; i < olduse; i++) { |
| *tmpc++ = 0; |
| } |
| } |
| |
| mp_clamp (c); |
| return MP_OKAY; |
| } |
| |
| |
| /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ |
| int |
| s_mp_sub (mp_int * a, mp_int * b, mp_int * c) |
| { |
| int olduse, res, min, max; |
| |
| /* find sizes */ |
| min = b->used; |
| max = a->used; |
| |
| /* init result */ |
| if (c->alloc < max) { |
| if ((res = mp_grow (c, max)) != MP_OKAY) { |
| return res; |
| } |
| } |
| olduse = c->used; |
| c->used = max; |
| |
| { |
| register mp_digit u, *tmpa, *tmpb, *tmpc; |
| register int i; |
| |
| /* alias for digit pointers */ |
| tmpa = a->dp; |
| tmpb = b->dp; |
| tmpc = c->dp; |
| |
| /* set carry to zero */ |
| u = 0; |
| for (i = 0; i < min; i++) { |
| /* T[i] = A[i] - B[i] - U */ |
| *tmpc = *tmpa++ - *tmpb++ - u; |
| |
| /* U = carry bit of T[i] |
| * Note this saves performing an AND operation since |
| * if a carry does occur it will propagate all the way to the |
| * MSB. As a result a single shift is enough to get the carry |
| */ |
| u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); |
| |
| /* Clear carry from T[i] */ |
| *tmpc++ &= MP_MASK; |
| } |
| |
| /* now copy higher words if any, e.g. if A has more digits than B */ |
| for (; i < max; i++) { |
| /* T[i] = A[i] - U */ |
| *tmpc = *tmpa++ - u; |
| |
| /* U = carry bit of T[i] */ |
| u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); |
| |
| /* Clear carry from T[i] */ |
| *tmpc++ &= MP_MASK; |
| } |
| |
| /* clear digits above used (since we may not have grown result above) */ |
| for (i = c->used; i < olduse; i++) { |
| *tmpc++ = 0; |
| } |
| } |
| |
| mp_clamp (c); |
| return MP_OKAY; |
| } |
| |
| |
| /* high level subtraction (handles signs) */ |
| int |
| mp_sub (mp_int * a, mp_int * b, mp_int * c) |
| { |
| int sa, sb, res; |
| |
| sa = a->sign; |
| sb = b->sign; |
| |
| if (sa != sb) { |
| /* subtract a negative from a positive, OR */ |
| /* subtract a positive from a negative. */ |
| /* In either case, ADD their magnitudes, */ |
| /* and use the sign of the first number. */ |
| c->sign = sa; |
| res = s_mp_add (a, b, c); |
| } else { |
| /* subtract a positive from a positive, OR */ |
| /* subtract a negative from a negative. */ |
| /* First, take the difference between their */ |
| /* magnitudes, then... */ |
| if (mp_cmp_mag (a, b) != MP_LT) { |
| /* Copy the sign from the first */ |
| c->sign = sa; |
| /* The first has a larger or equal magnitude */ |
| res = s_mp_sub (a, b, c); |
| } else { |
| /* The result has the *opposite* sign from */ |
| /* the first number. */ |
| c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS; |
| /* The second has a larger magnitude */ |
| res = s_mp_sub (b, a, c); |
| } |
| } |
| return res; |
| } |
| |
| |
| /* determines if reduce_2k_l can be used */ |
| int mp_reduce_is_2k_l(mp_int *a) |
| { |
| int ix, iy; |
| |
| if (a->used == 0) { |
| return MP_NO; |
| } else if (a->used == 1) { |
| return MP_YES; |
| } else if (a->used > 1) { |
| /* if more than half of the digits are -1 we're sold */ |
| for (iy = ix = 0; ix < a->used; ix++) { |
| if (a->dp[ix] == MP_MASK) { |
| ++iy; |
| } |
| } |
| return (iy >= (a->used/2)) ? MP_YES : MP_NO; |
| |
| } |
| return MP_NO; |
| } |
| |
| |
| /* determines if mp_reduce_2k can be used */ |
| int mp_reduce_is_2k(mp_int *a) |
| { |
| int ix, iy, iw; |
| mp_digit iz; |
| |
| if (a->used == 0) { |
| return MP_NO; |
| } else if (a->used == 1) { |
| return MP_YES; |
| } else if (a->used > 1) { |
| iy = mp_count_bits(a); |
| iz = 1; |
| iw = 1; |
| |
| /* Test every bit from the second digit up, must be 1 */ |
| for (ix = DIGIT_BIT; ix < iy; ix++) { |
| if ((a->dp[iw] & iz) == 0) { |
| return MP_NO; |
| } |
| iz <<= 1; |
| if (iz > (mp_digit)MP_MASK) { |
| ++iw; |
| iz = 1; |
| } |
| } |
| } |
| return MP_YES; |
| } |
| |
| |
| /* determines if a number is a valid DR modulus */ |
| int mp_dr_is_modulus(mp_int *a) |
| { |
| int ix; |
| |
| /* must be at least two digits */ |
| if (a->used < 2) { |
| return 0; |
| } |
| |
| /* must be of the form b**k - a [a <= b] so all |
| * but the first digit must be equal to -1 (mod b). |
| */ |
| for (ix = 1; ix < a->used; ix++) { |
| if (a->dp[ix] != MP_MASK) { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| |
| /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 |
| * |
| * Uses a left-to-right k-ary sliding window to compute the modular |
| * exponentiation. |
| * The value of k changes based on the size of the exponent. |
| * |
| * Uses Montgomery or Diminished Radix reduction [whichever appropriate] |
| */ |
| |
| #ifdef MP_LOW_MEM |
| #define TAB_SIZE 32 |
| #else |
| #define TAB_SIZE 256 |
| #endif |
| |
| int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, |
| int redmode) |
| { |
| mp_int M[TAB_SIZE], res; |
| mp_digit buf, mp; |
| int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; |
| |
| /* use a pointer to the reduction algorithm. This allows us to use |
| * one of many reduction algorithms without modding the guts of |
| * the code with if statements everywhere. |
| */ |
| int (*redux)(mp_int*,mp_int*,mp_digit); |
| |
| /* find window size */ |
| x = mp_count_bits (X); |
| if (x <= 7) { |
| winsize = 2; |
| } else if (x <= 36) { |
| winsize = 3; |
| } else if (x <= 140) { |
| winsize = 4; |
| } else if (x <= 450) { |
| winsize = 5; |
| } else if (x <= 1303) { |
| winsize = 6; |
| } else if (x <= 3529) { |
| winsize = 7; |
| } else { |
| winsize = 8; |
| } |
| |
| #ifdef MP_LOW_MEM |
| if (winsize > 5) { |
| winsize = 5; |
| } |
| #endif |
| |
| /* init M array */ |
| /* init first cell */ |
| if ((err = mp_init(&M[1])) != MP_OKAY) { |
| return err; |
| } |
| |
| /* now init the second half of the array */ |
| for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
| if ((err = mp_init(&M[x])) != MP_OKAY) { |
| for (y = 1<<(winsize-1); y < x; y++) { |
| mp_clear (&M[y]); |
| } |
| mp_clear(&M[1]); |
| return err; |
| } |
| } |
| |
| /* determine and setup reduction code */ |
| if (redmode == 0) { |
| #ifdef BN_MP_MONTGOMERY_SETUP_C |
| /* now setup montgomery */ |
| if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { |
| goto LBL_M; |
| } |
| #else |
| err = MP_VAL; |
| goto LBL_M; |
| #endif |
| |
| /* automatically pick the comba one if available (saves quite a few |
| calls/ifs) */ |
| #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C |
| if (((P->used * 2 + 1) < MP_WARRAY) && |
| P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
| redux = fast_mp_montgomery_reduce; |
| } else |
| #endif |
| { |
| #ifdef BN_MP_MONTGOMERY_REDUCE_C |
| /* use slower baseline Montgomery method */ |
| redux = mp_montgomery_reduce; |
| #else |
| err = MP_VAL; |
| goto LBL_M; |
| #endif |
| } |
| } else if (redmode == 1) { |
| #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C) |
| /* setup DR reduction for moduli of the form B**k - b */ |
| mp_dr_setup(P, &mp); |
| redux = mp_dr_reduce; |
| #else |
| err = MP_VAL; |
| goto LBL_M; |
| #endif |
| } else { |
| #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C) |
| /* setup DR reduction for moduli of the form 2**k - b */ |
| if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { |
| goto LBL_M; |
| } |
| redux = mp_reduce_2k; |
| #else |
| err = MP_VAL; |
| goto LBL_M; |
| #endif |
| } |
| |
| /* setup result */ |
| if ((err = mp_init (&res)) != MP_OKAY) { |
| goto LBL_M; |
| } |
| |
| /* create M table |
| * |
| |
| * |
| * The first half of the table is not computed though accept for M[0] and M[1] |
| */ |
| |
| if (redmode == 0) { |
| #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C |
| /* now we need R mod m */ |
| if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| #else |
| err = MP_VAL; |
| goto LBL_RES; |
| #endif |
| |
| /* now set M[1] to G * R mod m */ |
| if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| } else { |
| mp_set(&res, 1); |
| if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| } |
| |
| /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times*/ |
| if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| |
| for (x = 0; x < (winsize - 1); x++) { |
| if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| } |
| |
| /* create upper table */ |
| for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { |
| if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| if ((err = redux (&M[x], P, mp)) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| } |
| |
| /* set initial mode and bit cnt */ |
| mode = 0; |
| bitcnt = 1; |
| buf = 0; |
| digidx = X->used - 1; |
| bitcpy = 0; |
| bitbuf = 0; |
| |
| for (;;) { |
| /* grab next digit as required */ |
| if (--bitcnt == 0) { |
| /* if digidx == -1 we are out of digits so break */ |
| if (digidx == -1) { |
| break; |
| } |
| /* read next digit and reset bitcnt */ |
| buf = X->dp[digidx--]; |
| bitcnt = (int)DIGIT_BIT; |
| } |
| |
| /* grab the next msb from the exponent */ |
| y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1; |
| buf <<= (mp_digit)1; |
| |
| /* if the bit is zero and mode == 0 then we ignore it |
| * These represent the leading zero bits before the first 1 bit |
| * in the exponent. Technically this opt is not required but it |
| * does lower the # of trivial squaring/reductions used |
| */ |
| if (mode == 0 && y == 0) { |
| continue; |
| } |
| |
| /* if the bit is zero and mode == 1 then we square */ |
| if (mode == 1 && y == 0) { |
| if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| if ((err = redux (&res, P, mp)) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| continue; |
| } |
| |
| /* else we add it to the window */ |
| bitbuf |= (y << (winsize - ++bitcpy)); |
| mode = 2; |
| |
| if (bitcpy == winsize) { |
| /* ok window is filled so square as required and multiply */ |
| /* square first */ |
| for (x = 0; x < winsize; x++) { |
| if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| if ((err = redux (&res, P, mp)) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| } |
| |
| /* then multiply */ |
| if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| if ((err = redux (&res, P, mp)) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| |
| /* empty window and reset */ |
| bitcpy = 0; |
| bitbuf = 0; |
| mode = 1; |
| } |
| } |
| |
| /* if bits remain then square/multiply */ |
| if (mode == 2 && bitcpy > 0) { |
| /* square then multiply if the bit is set */ |
| for (x = 0; x < bitcpy; x++) { |
| if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| if ((err = redux (&res, P, mp)) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| |
| /* get next bit of the window */ |
| bitbuf <<= 1; |
| if ((bitbuf & (1 << winsize)) != 0) { |
| /* then multiply */ |
| if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| if ((err = redux (&res, P, mp)) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| } |
| } |
| } |
| |
| if (redmode == 0) { |
| /* fixup result if Montgomery reduction is used |
| * recall that any value in a Montgomery system is |
| * actually multiplied by R mod n. So we have |
| * to reduce one more time to cancel out the factor |
| * of R. |
| */ |
| if ((err = redux(&res, P, mp)) != MP_OKAY) { |
| goto LBL_RES; |
| } |
| } |
| |
| /* swap res with Y */ |
| mp_exch (&res, Y); |
| err = MP_OKAY; |
| LBL_RES:mp_clear (&res); |
| LBL_M: |
| mp_clear(&M[1]); |
| for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
| mp_clear (&M[x]); |
| } |
| return err; |
| } |
| |
| |
| /* setups the montgomery reduction stuff */ |
| int |
| mp_montgomery_setup (mp_int * n, mp_digit * rho) |
| { |
| mp_digit x, b; |
| |
| /* fast inversion mod 2**k |
| * |
| * Based on the fact that |
| * |
| * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n) |
| * => 2*X*A - X*X*A*A = 1 |
| * => 2*(1) - (1) = 1 |
| */ |
| b = n->dp[0]; |
| |
| if ((b & 1) == 0) { |
| return MP_VAL; |
| } |
| |
| x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ |
| x *= 2 - b * x; /* here x*a==1 mod 2**8 */ |
| #if !defined(MP_8BIT) |
| x *= 2 - b * x; /* here x*a==1 mod 2**16 */ |
| #endif |
| #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT)) |
| x *= 2 - b * x; /* here x*a==1 mod 2**32 */ |
| #endif |
| #ifdef MP_64BIT |
| x *= 2 - b * x; /* here x*a==1 mod 2**64 */ |
| #endif |
| |
| /* rho = -1/m mod b */ |
| /* TAO, switched mp_word casts to mp_digit to shut up compiler */ |
| *rho = (((mp_digit)1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK; |
| |
| return MP_OKAY; |
| } |
| |
| |
| /* computes xR**-1 == x (mod N) via Montgomery Reduction |
| * |
| * This is an optimized implementation of montgomery_reduce |
| * which uses the comba method to quickly calculate the columns of the |
| * reduction. |
| * |
| * Based on Algorithm 14.32 on pp.601 of HAC. |
| */ |
| int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) |
| { |
| int ix, res, olduse; |
| #ifdef CYASSL_SMALL_STACK |
| mp_word* W; /* uses dynamic memory and slower */ |
| #else |
| mp_word W[MP_WARRAY]; |
| #endif |
| |
| /* get old used count */ |
| olduse = x->used; |
| |
| /* grow a as required */ |
| if (x->alloc < n->used + 1) { |
| if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| #ifdef CYASSL_SMALL_STACK |
| W = (mp_word*)XMALLOC(sizeof(mp_word) * MP_WARRAY, 0, DYNAMIC_TYPE_BIGINT); |
| if (W == NULL) |
| return MP_MEM; |
| #endif |
| |
| /* first we have to get the digits of the input into |
| * an array of double precision words W[...] |
| */ |
| { |
| register mp_word *_W; |
| register mp_digit *tmpx; |
| |
| /* alias for the W[] array */ |
| _W = W; |
| |
| /* alias for the digits of x*/ |
| tmpx = x->dp; |
| |
| /* copy the digits of a into W[0..a->used-1] */ |
| for (ix = 0; ix < x->used; ix++) { |
| *_W++ = *tmpx++; |
| } |
| |
| /* zero the high words of W[a->used..m->used*2] */ |
| for (; ix < n->used * 2 + 1; ix++) { |
| *_W++ = 0; |
| } |
| } |
| |
| /* now we proceed to zero successive digits |
| * from the least significant upwards |
| */ |
| for (ix = 0; ix < n->used; ix++) { |
| /* mu = ai * m' mod b |
| * |
| * We avoid a double precision multiplication (which isn't required) |
| * by casting the value down to a mp_digit. Note this requires |
| * that W[ix-1] have the carry cleared (see after the inner loop) |
| */ |
| register mp_digit mu; |
| mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK); |
| |
| /* a = a + mu * m * b**i |
| * |
| * This is computed in place and on the fly. The multiplication |
| * by b**i is handled by offseting which columns the results |
| * are added to. |
| * |
| * Note the comba method normally doesn't handle carries in the |
| * inner loop In this case we fix the carry from the previous |
| * column since the Montgomery reduction requires digits of the |
| * result (so far) [see above] to work. This is |
| * handled by fixing up one carry after the inner loop. The |
| * carry fixups are done in order so after these loops the |
| * first m->used words of W[] have the carries fixed |
| */ |
| { |
| register int iy; |
| register mp_digit *tmpn; |
| register mp_word *_W; |
| |
| /* alias for the digits of the modulus */ |
| tmpn = n->dp; |
| |
| /* Alias for the columns set by an offset of ix */ |
| _W = W + ix; |
| |
| /* inner loop */ |
| for (iy = 0; iy < n->used; iy++) { |
| *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++); |
| } |
| } |
| |
| /* now fix carry for next digit, W[ix+1] */ |
| W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT); |
| } |
| |
| /* now we have to propagate the carries and |
| * shift the words downward [all those least |
| * significant digits we zeroed]. |
| */ |
| { |
| register mp_digit *tmpx; |
| register mp_word *_W, *_W1; |
| |
| /* nox fix rest of carries */ |
| |
| /* alias for current word */ |
| _W1 = W + ix; |
| |
| /* alias for next word, where the carry goes */ |
| _W = W + ++ix; |
| |
| for (; ix <= n->used * 2 + 1; ix++) { |
| *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT); |
| } |
| |
| /* copy out, A = A/b**n |
| * |
| * The result is A/b**n but instead of converting from an |
| * array of mp_word to mp_digit than calling mp_rshd |
| * we just copy them in the right order |
| */ |
| |
| /* alias for destination word */ |
| tmpx = x->dp; |
| |
| /* alias for shifted double precision result */ |
| _W = W + n->used; |
| |
| for (ix = 0; ix < n->used + 1; ix++) { |
| *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK)); |
| } |
| |
| /* zero oldused digits, if the input a was larger than |
| * m->used+1 we'll have to clear the digits |
| */ |
| for (; ix < olduse; ix++) { |
| *tmpx++ = 0; |
| } |
| } |
| |
| /* set the max used and clamp */ |
| x->used = n->used + 1; |
| mp_clamp (x); |
| |
| #ifdef CYASSL_SMALL_STACK |
| XFREE(W, 0, DYNAMIC_TYPE_BIGINT); |
| #endif |
| |
| /* if A >= m then A = A - m */ |
| if (mp_cmp_mag (x, n) != MP_LT) { |
| return s_mp_sub (x, n, x); |
| } |
| return MP_OKAY; |
| } |
| |
| |
| /* computes xR**-1 == x (mod N) via Montgomery Reduction */ |
| int |
| mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) |
| { |
| int ix, res, digs; |
| mp_digit mu; |
| |
| /* can the fast reduction [comba] method be used? |
| * |
| * Note that unlike in mul you're safely allowed *less* |
| * than the available columns [255 per default] since carries |
| * are fixed up in the inner loop. |
| */ |
| digs = n->used * 2 + 1; |
| if ((digs < MP_WARRAY) && |
| n->used < |
| (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
| return fast_mp_montgomery_reduce (x, n, rho); |
| } |
| |
| /* grow the input as required */ |
| if (x->alloc < digs) { |
| if ((res = mp_grow (x, digs)) != MP_OKAY) { |
| return res; |
| } |
| } |
| x->used = digs; |
| |
| for (ix = 0; ix < n->used; ix++) { |
| /* mu = ai * rho mod b |
| * |
| * The value of rho must be precalculated via |
| * montgomery_setup() such that |
| * it equals -1/n0 mod b this allows the |
| * following inner loop to reduce the |
| * input one digit at a time |
| */ |
| mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK); |
| |
| /* a = a + mu * m * b**i */ |
| { |
| register int iy; |
| register mp_digit *tmpn, *tmpx, u; |
| register mp_word r; |
| |
| /* alias for digits of the modulus */ |
| tmpn = n->dp; |
| |
| /* alias for the digits of x [the input] */ |
| tmpx = x->dp + ix; |
| |
| /* set the carry to zero */ |
| u = 0; |
| |
| /* Multiply and add in place */ |
| for (iy = 0; iy < n->used; iy++) { |
| /* compute product and sum */ |
| r = ((mp_word)mu) * ((mp_word)*tmpn++) + |
| ((mp_word) u) + ((mp_word) * tmpx); |
| |
| /* get carry */ |
| u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); |
| |
| /* fix digit */ |
| *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK)); |
| } |
| /* At this point the ix'th digit of x should be zero */ |
| |
| |
| /* propagate carries upwards as required*/ |
| while (u) { |
| *tmpx += u; |
| u = *tmpx >> DIGIT_BIT; |
| *tmpx++ &= MP_MASK; |
| } |
| } |
| } |
| |
| /* at this point the n.used'th least |
| * significant digits of x are all zero |
| * which means we can shift x to the |
| * right by n.used digits and the |
| * residue is unchanged. |
| */ |
| |
| /* x = x/b**n.used */ |
| mp_clamp(x); |
| mp_rshd (x, n->used); |
| |
| /* if x >= n then x = x - n */ |
| if (mp_cmp_mag (x, n) != MP_LT) { |
| return s_mp_sub (x, n, x); |
| } |
| |
| return MP_OKAY; |
| } |
| |
| |
| /* determines the setup value */ |
| void mp_dr_setup(mp_int *a, mp_digit *d) |
| { |
| /* the casts are required if DIGIT_BIT is one less than |
| * the number of bits in a mp_digit [e.g. DIGIT_BIT==31] |
| */ |
| *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - |
| ((mp_word)a->dp[0])); |
| } |
| |
| |
| /* reduce "x" in place modulo "n" using the Diminished Radix algorithm. |
| * |
| * Based on algorithm from the paper |
| * |
| * "Generating Efficient Primes for Discrete Log Cryptosystems" |
| * Chae Hoon Lim, Pil Joong Lee, |
| * POSTECH Information Research Laboratories |
| * |
| * The modulus must be of a special format [see manual] |
| * |
| * Has been modified to use algorithm 7.10 from the LTM book instead |
| * |
| * Input x must be in the range 0 <= x <= (n-1)**2 |
| */ |
| int |
| mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k) |
| { |
| int err, i, m; |
| mp_word r; |
| mp_digit mu, *tmpx1, *tmpx2; |
| |
| /* m = digits in modulus */ |
| m = n->used; |
| |
| /* ensure that "x" has at least 2m digits */ |
| if (x->alloc < m + m) { |
| if ((err = mp_grow (x, m + m)) != MP_OKAY) { |
| return err; |
| } |
| } |
| |
| /* top of loop, this is where the code resumes if |
| * another reduction pass is required. |
| */ |
| top: |
| /* aliases for digits */ |
| /* alias for lower half of x */ |
| tmpx1 = x->dp; |
| |
| /* alias for upper half of x, or x/B**m */ |
| tmpx2 = x->dp + m; |
| |
| /* set carry to zero */ |
| mu = 0; |
| |
| /* compute (x mod B**m) + k * [x/B**m] inline and inplace */ |
| for (i = 0; i < m; i++) { |
| r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu; |
| *tmpx1++ = (mp_digit)(r & MP_MASK); |
| mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); |
| } |
| |
| /* set final carry */ |
| *tmpx1++ = mu; |
| |
| /* zero words above m */ |
| for (i = m + 1; i < x->used; i++) { |
| *tmpx1++ = 0; |
| } |
| |
| /* clamp, sub and return */ |
| mp_clamp (x); |
| |
| /* if x >= n then subtract and reduce again |
| * Each successive "recursion" makes the input smaller and smaller. |
| */ |
| if (mp_cmp_mag (x, n) != MP_LT) { |
| s_mp_sub(x, n, x); |
| goto top; |
| } |
| return MP_OKAY; |
| } |
| |
| |
| /* reduces a modulo n where n is of the form 2**p - d */ |
| int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d) |
| { |
| mp_int q; |
| int p, res; |
| |
| if ((res = mp_init(&q)) != MP_OKAY) { |
| return res; |
| } |
| |
| p = mp_count_bits(n); |
| top: |
| /* q = a/2**p, a = a mod 2**p */ |
| if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { |
| goto ERR; |
| } |
| |
| if (d != 1) { |
| /* q = q * d */ |
| if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { |
| goto ERR; |
| } |
| } |
| |
| /* a = a + q */ |
| if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { |
| goto ERR; |
| } |
| |
| if (mp_cmp_mag(a, n) != MP_LT) { |
| s_mp_sub(a, n, a); |
| goto top; |
| } |
| |
| ERR: |
| mp_clear(&q); |
| return res; |
| } |
| |
| |
| /* determines the setup value */ |
| int mp_reduce_2k_setup(mp_int *a, mp_digit *d) |
| { |
| int res, p; |
| mp_int tmp; |
| |
| if ((res = mp_init(&tmp)) != MP_OKAY) { |
| return res; |
| } |
| |
| p = mp_count_bits(a); |
| if ((res = mp_2expt(&tmp, p)) != MP_OKAY) { |
| mp_clear(&tmp); |
| return res; |
| } |
| |
| if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) { |
| mp_clear(&tmp); |
| return res; |
| } |
| |
| *d = tmp.dp[0]; |
| mp_clear(&tmp); |
| return MP_OKAY; |
| } |
| |
| |
| /* computes a = 2**b |
| * |
| * Simple algorithm which zeroes the int, grows it then just sets one bit |
| * as required. |
| */ |
| int |
| mp_2expt (mp_int * a, int b) |
| { |
| int res; |
| |
| /* zero a as per default */ |
| mp_zero (a); |
| |
| /* grow a to accomodate the single bit */ |
| if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* set the used count of where the bit will go */ |
| a->used = b / DIGIT_BIT + 1; |
| |
| /* put the single bit in its place */ |
| a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT); |
| |
| return MP_OKAY; |
| } |
| |
| |
| /* multiply by a digit */ |
| int |
| mp_mul_d (mp_int * a, mp_digit b, mp_int * c) |
| { |
| mp_digit u, *tmpa, *tmpc; |
| mp_word r; |
| int ix, res, olduse; |
| |
| /* make sure c is big enough to hold a*b */ |
| if (c->alloc < a->used + 1) { |
| if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* get the original destinations used count */ |
| olduse = c->used; |
| |
| /* set the sign */ |
| c->sign = a->sign; |
| |
| /* alias for a->dp [source] */ |
| tmpa = a->dp; |
| |
| /* alias for c->dp [dest] */ |
| tmpc = c->dp; |
| |
| /* zero carry */ |
| u = 0; |
| |
| /* compute columns */ |
| for (ix = 0; ix < a->used; ix++) { |
| /* compute product and carry sum for this term */ |
| r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b); |
| |
| /* mask off higher bits to get a single digit */ |
| *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
| |
| /* send carry into next iteration */ |
| u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); |
| } |
| |
| /* store final carry [if any] and increment ix offset */ |
| *tmpc++ = u; |
| ++ix; |
| |
| /* now zero digits above the top */ |
| while (ix++ < olduse) { |
| *tmpc++ = 0; |
| } |
| |
| /* set used count */ |
| c->used = a->used + 1; |
| mp_clamp(c); |
| |
| return MP_OKAY; |
| } |
| |
| |
| /* d = a * b (mod c) */ |
| int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
| { |
| int res; |
| mp_int t; |
| |
| if ((res = mp_init (&t)) != MP_OKAY) { |
| return res; |
| } |
| |
| if ((res = mp_mul (a, b, &t)) != MP_OKAY) { |
| mp_clear (&t); |
| return res; |
| } |
| res = mp_mod (&t, c, d); |
| mp_clear (&t); |
| return res; |
| } |
| |
| |
| /* computes b = a*a */ |
| int |
| mp_sqr (mp_int * a, mp_int * b) |
| { |
| int res; |
| |
| { |
| #ifdef BN_FAST_S_MP_SQR_C |
| /* can we use the fast comba multiplier? */ |
| if ((a->used * 2 + 1) < MP_WARRAY && |
| a->used < |
| (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) { |
| res = fast_s_mp_sqr (a, b); |
| } else |
| #endif |
| #ifdef BN_S_MP_SQR_C |
| res = s_mp_sqr (a, b); |
| #else |
| res = MP_VAL; |
| #endif |
| } |
| b->sign = MP_ZPOS; |
| return res; |
| } |
| |
| |
| /* high level multiplication (handles sign) */ |
| int mp_mul (mp_int * a, mp_int * b, mp_int * c) |
| { |
| int res, neg; |
| neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; |
| |
| { |
| /* can we use the fast multiplier? |
| * |
| * The fast multiplier can be used if the output will |
| * have less than MP_WARRAY digits and the number of |
| * digits won't affect carry propagation |
| */ |
| int digs = a->used + b->used + 1; |
| |
| #ifdef BN_FAST_S_MP_MUL_DIGS_C |
| if ((digs < MP_WARRAY) && |
| MIN(a->used, b->used) <= |
| (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
| res = fast_s_mp_mul_digs (a, b, c, digs); |
| } else |
| #endif |
| #ifdef BN_S_MP_MUL_DIGS_C |
| res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */ |
| #else |
| res = MP_VAL; |
| #endif |
| |
| } |
| c->sign = (c->used > 0) ? neg : MP_ZPOS; |
| return res; |
| } |
| |
| |
| /* b = a*2 */ |
| int mp_mul_2(mp_int * a, mp_int * b) |
| { |
| int x, res, oldused; |
| |
| /* grow to accomodate result */ |
| if (b->alloc < a->used + 1) { |
| if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| oldused = b->used; |
| b->used = a->used; |
| |
| { |
| register mp_digit r, rr, *tmpa, *tmpb; |
| |
| /* alias for source */ |
| tmpa = a->dp; |
| |
| /* alias for dest */ |
| tmpb = b->dp; |
| |
| /* carry */ |
| r = 0; |
| for (x = 0; x < a->used; x++) { |
| |
| /* get what will be the *next* carry bit from the |
| * MSB of the current digit |
| */ |
| rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1)); |
| |
| /* now shift up this digit, add in the carry [from the previous] */ |
| *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK; |
| |
| /* copy the carry that would be from the source |
| * digit into the next iteration |
| */ |
| r = rr; |
| } |
| |
| /* new leading digit? */ |
| if (r != 0) { |
| /* add a MSB which is always 1 at this point */ |
| *tmpb = 1; |
| ++(b->used); |
| } |
| |
| /* now zero any excess digits on the destination |
| * that we didn't write to |
| */ |
| tmpb = b->dp + b->used; |
| for (x = b->used; x < oldused; x++) { |
| *tmpb++ = 0; |
| } |
| } |
| b->sign = a->sign; |
| return MP_OKAY; |
| } |
| |
| |
| /* divide by three (based on routine from MPI and the GMP manual) */ |
| int |
| mp_div_3 (mp_int * a, mp_int *c, mp_digit * d) |
| { |
| mp_int q; |
| mp_word w, t; |
| mp_digit b; |
| int res, ix; |
| |
| /* b = 2**DIGIT_BIT / 3 */ |
| b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3); |
| |
| if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { |
| return res; |
| } |
| |
| q.used = a->used; |
| q.sign = a->sign; |
| w = 0; |
| for (ix = a->used - 1; ix >= 0; ix--) { |
| w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]); |
| |
| if (w >= 3) { |
| /* multiply w by [1/3] */ |
| t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT); |
| |
| /* now subtract 3 * [w/3] from w, to get the remainder */ |
| w -= t+t+t; |
| |
| /* fixup the remainder as required since |
| * the optimization is not exact. |
| */ |
| while (w >= 3) { |
| t += 1; |
| w -= 3; |
| } |
| } else { |
| t = 0; |
| } |
| q.dp[ix] = (mp_digit)t; |
| } |
| |
| /* [optional] store the remainder */ |
| if (d != NULL) { |
| *d = (mp_digit)w; |
| } |
| |
| /* [optional] store the quotient */ |
| if (c != NULL) { |
| mp_clamp(&q); |
| mp_exch(&q, c); |
| } |
| mp_clear(&q); |
| |
| return res; |
| } |
| |
| |
| /* init an mp_init for a given size */ |
| int mp_init_size (mp_int * a, int size) |
| { |
| int x; |
| |
| /* pad size so there are always extra digits */ |
| size += (MP_PREC * 2) - (size % MP_PREC); |
| |
| /* alloc mem */ |
| a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size, 0, |
| DYNAMIC_TYPE_BIGINT); |
| if (a->dp == NULL) { |
| return MP_MEM; |
| } |
| |
| /* set the members */ |
| a->used = 0; |
| a->alloc = size; |
| a->sign = MP_ZPOS; |
| |
| /* zero the digits */ |
| for (x = 0; x < size; x++) { |
| a->dp[x] = 0; |
| } |
| |
| return MP_OKAY; |
| } |
| |
| |
| /* the jist of squaring... |
| * you do like mult except the offset of the tmpx [one that |
| * starts closer to zero] can't equal the offset of tmpy. |
| * So basically you set up iy like before then you min it with |
| * (ty-tx) so that it never happens. You double all those |
| * you add in the inner loop |
| |
| After that loop you do the squares and add them in. |
| */ |
| |
| int fast_s_mp_sqr (mp_int * a, mp_int * b) |
| { |
| int olduse, res, pa, ix, iz; |
| #ifdef CYASSL_SMALL_STACK |
| mp_digit* W; /* uses dynamic memory and slower */ |
| #else |
| mp_digit W[MP_WARRAY]; |
| #endif |
| mp_digit *tmpx; |
| mp_word W1; |
| |
| /* grow the destination as required */ |
| pa = a->used + a->used; |
| if (b->alloc < pa) { |
| if ((res = mp_grow (b, pa)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| if (pa > MP_WARRAY) |
| return MP_RANGE; /* TAO range check */ |
| |
| #ifdef CYASSL_SMALL_STACK |
| W = (mp_digit*)XMALLOC(sizeof(mp_digit) * MP_WARRAY, 0, DYNAMIC_TYPE_BIGINT); |
| if (W == NULL) |
| return MP_MEM; |
| #endif |
| |
| /* number of output digits to produce */ |
| W1 = 0; |
| for (ix = 0; ix < pa; ix++) { |
| int tx, ty, iy; |
| mp_word _W; |
| mp_digit *tmpy; |
| |
| /* clear counter */ |
| _W = 0; |
| |
| /* get offsets into the two bignums */ |
| ty = MIN(a->used-1, ix); |
| tx = ix - ty; |
| |
| /* setup temp aliases */ |
| tmpx = a->dp + tx; |
| tmpy = a->dp + ty; |
| |
| /* this is the number of times the loop will iterrate, essentially |
| while (tx++ < a->used && ty-- >= 0) { ... } |
| */ |
| iy = MIN(a->used-tx, ty+1); |
| |
| /* now for squaring tx can never equal ty |
| * we halve the distance since they approach at a rate of 2x |
| * and we have to round because odd cases need to be executed |
| */ |
| iy = MIN(iy, (ty-tx+1)>>1); |
| |
| /* execute loop */ |
| for (iz = 0; iz < iy; iz++) { |
| _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); |
| } |
| |
| /* double the inner product and add carry */ |
| _W = _W + _W + W1; |
| |
| /* even columns have the square term in them */ |
| if ((ix&1) == 0) { |
| _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]); |
| } |
| |
| /* store it */ |
| W[ix] = (mp_digit)(_W & MP_MASK); |
| |
| /* make next carry */ |
| W1 = _W >> ((mp_word)DIGIT_BIT); |
| } |
| |
| /* setup dest */ |
| olduse = b->used; |
| b->used = a->used+a->used; |
| |
| { |
| mp_digit *tmpb; |
| tmpb = b->dp; |
| for (ix = 0; ix < pa; ix++) { |
| *tmpb++ = W[ix] & MP_MASK; |
| } |
| |
| /* clear unused digits [that existed in the old copy of c] */ |
| for (; ix < olduse; ix++) { |
| *tmpb++ = 0; |
| } |
| } |
| mp_clamp (b); |
| |
| #ifdef CYASSL_SMALL_STACK |
| XFREE(W, 0, DYNAMIC_TYPE_BIGINT); |
| #endif |
| |
| return MP_OKAY; |
| } |
| |
| |
| /* Fast (comba) multiplier |
| * |
| * This is the fast column-array [comba] multiplier. It is |
| * designed to compute the columns of the product first |
| * then handle the carries afterwards. This has the effect |
| * of making the nested loops that compute the columns very |
| * simple and schedulable on super-scalar processors. |
| * |
| * This has been modified to produce a variable number of |
| * digits of output so if say only a half-product is required |
| * you don't have to compute the upper half (a feature |
| * required for fast Barrett reduction). |
| * |
| * Based on Algorithm 14.12 on pp.595 of HAC. |
| * |
| */ |
| int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) |
| { |
| int olduse, res, pa, ix, iz; |
| #ifdef CYASSL_SMALL_STACK |
| mp_digit* W; /* uses dynamic memory and slower */ |
| #else |
| mp_digit W[MP_WARRAY]; |
| #endif |
| register mp_word _W; |
| |
| /* grow the destination as required */ |
| if (c->alloc < digs) { |
| if ((res = mp_grow (c, digs)) != MP_OKAY) { |
| return res; |
| } |
| } |
| |
| /* number of output digits to produce */ |
| pa = MIN(digs, a->used + b->used); |
| if (pa > MP_WARRAY) |
| return MP_RANGE; /* TAO range check */ |
| |
| #ifdef CYASSL_SMALL_STACK |
| W = (mp_digit*)XMALLOC(sizeof(mp_digit) * MP_WARRAY, 0, DYNAMIC_TYPE_BIGINT); |
| if (W == NULL) |
| return MP_MEM; |
| #endif |
| |
| /* clear the carry */ |
| _W = 0; |
| for (ix = 0; ix < pa; ix++) { |
| int tx, ty; |
| int iy; |
| mp_digit *tmpx, *tmpy; |
| |
| /* get offsets into the two bignums */ |
| ty = MIN(b->used-1, ix); |
| tx = ix - ty; |
| |
| /* setup temp aliases */ |
| tmpx = a->dp + tx; |
| tmpy = b->dp + ty; |
| |
| /* this is the number of times the loop will iterrate, essentially |
| while (tx++ < a->used && ty-- >= 0) { ... } |
| */ |
| iy = MIN(a->used-tx, ty+1); |
| |
| /* execute loop */ |
| for (iz = 0; iz < iy; ++iz) { |
| _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); |
| |
| } |
| |
| /* store term */ |
| W[ix] = ((mp_digit)_W) & MP_MASK; |
| |
| /* make next carry */ |
| _W = _W >> ((mp_word)DIGIT_BIT); |
| } |
| |
| /* setup dest */ |
| olduse = c->used; |
| c->used = pa; |
| |
| { |
| register mp_digit *tmpc; |
| tmpc = c->dp; |
| for (ix = 0; ix < pa+1; ix++) { |
| /* now extract the previous digit [below the carry] */ |
| *tmpc++ = W[ix]; |
| } |
| |
| /* clear unused digits [that existed in the old copy of c] */ |
| for (; ix < olduse; ix++) { |
| *tmpc++ = 0; |
| } |
| } |
| mp_clamp (c); |
| |
| #ifdef CYASSL_SMALL_STACK |
| XFREE(W, 0, DYNAMIC_TYPE_BIGINT); |
| #endif |
| |
| return MP_OKAY; |
| } |
| |
| |
| /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ |
| int s_mp_sqr (mp_int * a, mp_int * b) |
| { |
| mp_int t; |
| int res, ix, iy, pa; |
| mp_word r; |
| mp_digit u, tmpx, *tmpt; |
| |
| pa = a->used; |
| if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* default used is maximum possible size */ |
| t.used = 2*pa + 1; |
| |
| for (ix = 0; ix < pa; ix++) { |
| /* first calculate the digit at 2*ix */ |
| /* calculate double precision result */ |
| r = ((mp_word) t.dp[2*ix]) + |
| ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]); |
| |
| /* store lower part in result */ |
| t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK)); |
| |
| /* get the carry */ |
| u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); |
| |
| /* left hand side of A[ix] * A[iy] */ |
| tmpx = a->dp[ix]; |
| |
| /* alias for where to store the results */ |
| tmpt = t.dp + (2*ix + 1); |
| |
| for (iy = ix + 1; iy < pa; iy++) { |
| /* first calculate the product */ |
| r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); |
| |
| /* now calculate the double precision result, note we use |
| * addition instead of *2 since it's easier to optimize |
| */ |
| r = ((mp_word) *tmpt) + r + r + ((mp_word) u); |
| |
| /* store lower part */ |
| *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
| |
| /* get carry */ |
| u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); |
| } |
| /* propagate upwards */ |
| while (u != ((mp_digit) 0)) { |
| r = ((mp_word) *tmpt) + ((mp_word) u); |
| *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
| u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); |
| } |
| } |
| |
| mp_clamp (&t); |
| mp_exch (&t, b); |
| mp_clear (&t); |
| return MP_OKAY; |
| } |
| |
| |
| /* multiplies |a| * |b| and only computes upto digs digits of result |
| * HAC pp. 595, Algorithm 14.12 Modified so you can control how |
| * many digits of output are created. |
| */ |
| int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) |
| { |
| mp_int t; |
| int res, pa, pb, ix, iy; |
| mp_digit u; |
| mp_word r; |
| mp_digit tmpx, *tmpt, *tmpy; |
| |
| /* can we use the fast multiplier? */ |
| if (((digs) < MP_WARRAY) && |
| MIN (a->used, b->used) < |
| (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
| return fast_s_mp_mul_digs (a, b, c, digs); |
| } |
| |
| if ((res = mp_init_size (&t, digs)) != MP_OKAY) { |
| return res; |
| } |
| t.used = digs; |
| |
| /* compute the digits of the product directly */ |
| pa = a->used; |
| for (ix = 0; ix < pa; ix++) { |
| /* set the carry to zero */ |
| u = 0; |
| |
| /* limit ourselves to making digs digits of output */ |
| pb = MIN (b->used, digs - ix); |
| |
| /* setup some aliases */ |
| /* copy of the digit from a used within the nested loop */ |
| tmpx = a->dp[ix]; |
| |
| /* an alias for the destination shifted ix places */ |
| tmpt = t.dp + ix; |
| |
| /* an alias for the digits of b */ |
| tmpy = b->dp; |
| |
| /* compute the columns of the output and propagate the carry */ |
| for (iy = 0; iy < pb; iy++) { |
| /* compute the column as a mp_word */ |
| r = ((mp_word)*tmpt) + |
| ((mp_word)tmpx) * ((mp_word)*tmpy++) + |
| ((mp_word) u); |
| |
| /* the new column is the lower part of the result */ |
| *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
| |
| /* get the carry word from the result */ |
| u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); |
| } |
| /* set carry if it is placed below digs */ |
| if (ix + iy < digs) { |
| *tmpt = u; |
| } |
| } |
| |
| mp_clamp (&t); |
| mp_exch (&t, c); |
| |
| mp_clear (&t); |
| return MP_OKAY; |
| } |
| |
| |
| /* |
| * shifts with subtractions when the result is greater than b. |
| * |
| * The method is slightly modified to shift B unconditionally upto just under |
| * the leading bit of b. This saves alot of multiple precision shifting. |
| */ |
| int mp_montgomery_calc_normalization (mp_int * a, mp_int * b) |
| { |
| int x, bits, res; |
| |
| /* how many bits of last digit does b use */ |
| bits = mp_count_bits (b) % DIGIT_BIT; |
| |
| if (b->used > 1) { |
| if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) { |
| return res; |
| } |
| } else { |
| mp_set(a, 1); |
| bits = 1; |
| } |
| |
| |
| /* now compute C = A * B mod b */ |
| for (x = bits - 1; x < (int)DIGIT_BIT; x++) { |
| if ((res = mp_mul_2 (a, a)) != MP_OKAY) { |
| return res; |
| } |
| if (mp_cmp_mag (a, b) != MP_LT) { |
| if ((res = s_mp_sub (a, b, a)) != MP_OKAY) { |
| return res; |
| } |
| } |
| } |
| |
| return MP_OKAY; |
| } |
| |
| |
| #ifdef MP_LOW_MEM |
| #define TAB_SIZE 32 |