blob: 7f511df1c5c86d2f999b5bad639cfed4194b73a9 [file] [log] [blame]
/* rsa.c
*
* Copyright (C) 2006-2012 Sawtooth Consulting Ltd.
*
* This file is part of CyaSSL.
*
* CyaSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* CyaSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <cyassl/ctaocrypt/rsa.h>
#include <cyassl/ctaocrypt/random.h>
#include <cyassl/ctaocrypt/error.h>
#include <cyassl/ctaocrypt/logging.h>
#ifdef SHOW_GEN
#include <stdio.h>
#endif
enum {
RSA_PUBLIC_ENCRYPT = 0,
RSA_PUBLIC_DECRYPT = 1,
RSA_PRIVATE_ENCRYPT = 2,
RSA_PRIVATE_DECRYPT = 3,
RSA_BLOCK_TYPE_1 = 1,
RSA_BLOCK_TYPE_2 = 2,
RSA_MIN_SIZE = 512,
RSA_MAX_SIZE = 4096,
RSA_MIN_PAD_SZ = 11 /* seperator + 0 + pad value + 8 pads */
};
void InitRsaKey(RsaKey* key, void* heap)
{
key->type = -1; /* haven't decided yet */
key->heap = heap;
/* TomsFastMath doesn't use memory allocation */
#ifndef USE_FAST_MATH
key->n.dp = key->e.dp = 0; /* public alloc parts */
key->d.dp = key->p.dp = 0; /* private alloc parts */
key->q.dp = key->dP.dp = 0;
key->u.dp = key->dQ.dp = 0;
#endif
}
void FreeRsaKey(RsaKey* key)
{
(void)key;
/* TomsFastMath doesn't use memory allocation */
#ifndef USE_FAST_MATH
if (key->type == RSA_PRIVATE) {
mp_clear(&key->u);
mp_clear(&key->dQ);
mp_clear(&key->dP);
mp_clear(&key->q);
mp_clear(&key->p);
mp_clear(&key->d);
}
mp_clear(&key->e);
mp_clear(&key->n);
#endif
}
static void RsaPad(const byte* input, word32 inputLen, byte* pkcsBlock,
word32 pkcsBlockLen, byte padValue, RNG* rng)
{
if (inputLen == 0) return;
pkcsBlock[0] = 0x0; /* set first byte to zero and advance */
pkcsBlock++; pkcsBlockLen--;
pkcsBlock[0] = padValue; /* insert padValue */
if (padValue == RSA_BLOCK_TYPE_1)
/* pad with 0xff bytes */
XMEMSET(&pkcsBlock[1], 0xFF, pkcsBlockLen - inputLen - 2);
else {
/* pad with non-zero random bytes */
word32 padLen = pkcsBlockLen - inputLen - 1, i;
RNG_GenerateBlock(rng, &pkcsBlock[1], padLen);
/* remove zeros */
for (i = 1; i < padLen; i++)
if (pkcsBlock[i] == 0) pkcsBlock[i] = 0x01;
}
pkcsBlock[pkcsBlockLen-inputLen-1] = 0; /* separator */
XMEMCPY(pkcsBlock+pkcsBlockLen-inputLen, input, inputLen);
}
static word32 RsaUnPad(const byte *pkcsBlock, unsigned int pkcsBlockLen,
byte **output, byte padValue)
{
word32 maxOutputLen = (pkcsBlockLen > 10) ? (pkcsBlockLen - 10) : 0,
invalid = 0,
i = 1,
outputLen;
if (pkcsBlock[0] != 0x0) /* skip past zero */
invalid = 1;
pkcsBlock++; pkcsBlockLen--;
/* Require block type padValue */
invalid = (pkcsBlock[0] != padValue) || invalid;
/* skip past the padding until we find the separator */
while (i<pkcsBlockLen && pkcsBlock[i++]) { /* null body */
}
if(!(i==pkcsBlockLen || pkcsBlock[i-1]==0)) {
CYASSL_MSG("RsaUnPad error, bad formatting");
return 0;
}
outputLen = pkcsBlockLen - i;
invalid = (outputLen > maxOutputLen) || invalid;
if (invalid) {
CYASSL_MSG("RsaUnPad error, bad formatting");
return 0;
}
*output = (byte *)(pkcsBlock + i);
return outputLen;
}
static int RsaFunction(const byte* in, word32 inLen, byte* out, word32* outLen,
int type, RsaKey* key)
{
#define ERROR_OUT(x) { ret = x; goto done;}
mp_int tmp;
int ret = 0;
word32 keyLen, len;
if (mp_init(&tmp) != MP_OKAY)
return MP_INIT_E;
if (mp_read_unsigned_bin(&tmp, (byte*)in, inLen) != MP_OKAY)
ERROR_OUT(MP_READ_E);
if (type == RSA_PRIVATE_DECRYPT || type == RSA_PRIVATE_ENCRYPT) {
#ifdef RSA_LOW_MEM /* half as much memory but twice as slow */
if (mp_exptmod(&tmp, &key->d, &key->n, &tmp) != MP_OKAY)
ERROR_OUT(MP_EXPTMOD_E);
#else
#define INNER_ERROR_OUT(x) { ret = x; goto inner_done; }
mp_int tmpa, tmpb;
if (mp_init(&tmpa) != MP_OKAY)
ERROR_OUT(MP_INIT_E);
if (mp_init(&tmpb) != MP_OKAY) {
mp_clear(&tmpa);
ERROR_OUT(MP_INIT_E);
}
/* tmpa = tmp^dP mod p */
if (mp_exptmod(&tmp, &key->dP, &key->p, &tmpa) != MP_OKAY)
INNER_ERROR_OUT(MP_EXPTMOD_E);
/* tmpb = tmp^dQ mod q */
if (mp_exptmod(&tmp, &key->dQ, &key->q, &tmpb) != MP_OKAY)
INNER_ERROR_OUT(MP_EXPTMOD_E);
/* tmp = (tmpa - tmpb) * qInv (mod p) */
if (mp_sub(&tmpa, &tmpb, &tmp) != MP_OKAY)
INNER_ERROR_OUT(MP_SUB_E);
if (mp_mulmod(&tmp, &key->u, &key->p, &tmp) != MP_OKAY)
INNER_ERROR_OUT(MP_MULMOD_E);
/* tmp = tmpb + q * tmp */
if (mp_mul(&tmp, &key->q, &tmp) != MP_OKAY)
INNER_ERROR_OUT(MP_MUL_E);
if (mp_add(&tmp, &tmpb, &tmp) != MP_OKAY)
INNER_ERROR_OUT(MP_ADD_E);
inner_done:
mp_clear(&tmpa);
mp_clear(&tmpb);
if (ret != 0) return ret;
#endif /* RSA_LOW_MEM */
}
else if (type == RSA_PUBLIC_ENCRYPT || type == RSA_PUBLIC_DECRYPT) {
if (mp_exptmod(&tmp, &key->e, &key->n, &tmp) != MP_OKAY)
ERROR_OUT(MP_EXPTMOD_E);
}
else
ERROR_OUT(RSA_WRONG_TYPE_E);
keyLen = mp_unsigned_bin_size(&key->n);
if (keyLen > *outLen)
ERROR_OUT(RSA_BUFFER_E);
len = mp_unsigned_bin_size(&tmp);
/* pad front w/ zeros to match key length */
while (len < keyLen) {
*out++ = 0x00;
len++;
}
*outLen = keyLen;
/* convert */
if (mp_to_unsigned_bin(&tmp, out) != MP_OKAY)
ERROR_OUT(MP_TO_E);
done:
mp_clear(&tmp);
return ret;
}
int RsaPublicEncrypt(const byte* in, word32 inLen, byte* out, word32 outLen,
RsaKey* key, RNG* rng)
{
int sz = mp_unsigned_bin_size(&key->n), ret;
if (sz > (int)outLen)
return RSA_BUFFER_E;
if (inLen > (word32)(sz - RSA_MIN_PAD_SZ))
return RSA_BUFFER_E;
RsaPad(in, inLen, out, sz, RSA_BLOCK_TYPE_2, rng);
if ((ret = RsaFunction(out, sz, out, &outLen, RSA_PUBLIC_ENCRYPT, key)) < 0)
sz = ret;
return sz;
}
int RsaPrivateDecryptInline(byte* in, word32 inLen, byte** out, RsaKey* key)
{
int plainLen, ret;
if ((ret = RsaFunction(in, inLen, in, &inLen, RSA_PRIVATE_DECRYPT, key))
< 0) {
return ret;
}
plainLen = RsaUnPad(in, inLen, out, RSA_BLOCK_TYPE_2);
return plainLen;
}
int RsaPrivateDecrypt(const byte* in, word32 inLen, byte* out, word32 outLen,
RsaKey* key)
{
int plainLen, ret;
byte* tmp;
byte* pad = 0;
tmp = (byte*)XMALLOC(inLen, key->heap, DYNAMIC_TYPE_RSA);
if (tmp == NULL) {
return MEMORY_E;
}
XMEMCPY(tmp, in, inLen);
if ((ret = plainLen = RsaPrivateDecryptInline(tmp, inLen, &pad, key))
< 0) {
XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA);
return ret;
}
if (plainLen > (int)outLen)
plainLen = BAD_FUNC_ARG;
else
XMEMCPY(out, pad, plainLen);
XMEMSET(tmp, 0x00, inLen);
XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA);
return plainLen;
}
/* for Rsa Verify */
int RsaSSL_VerifyInline(byte* in, word32 inLen, byte** out, RsaKey* key)
{
int plainLen, ret;
if ((ret = RsaFunction(in, inLen, in, &inLen, RSA_PUBLIC_DECRYPT, key))
< 0) {
return ret;
}
plainLen = RsaUnPad(in, inLen, out, RSA_BLOCK_TYPE_1);
return plainLen;
}
int RsaSSL_Verify(const byte* in, word32 inLen, byte* out, word32 outLen,
RsaKey* key)
{
int plainLen, ret;
byte* tmp;
byte* pad = 0;
tmp = (byte*)XMALLOC(inLen, key->heap, DYNAMIC_TYPE_RSA);
if (tmp == NULL) {
return MEMORY_E;
}
XMEMCPY(tmp, in, inLen);
if ((ret = plainLen = RsaSSL_VerifyInline(tmp, inLen, &pad, key))
< 0) {
XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA);
return ret;
}
if (plainLen > (int)outLen)
plainLen = BAD_FUNC_ARG;
else
XMEMCPY(out, pad, plainLen);
XMEMSET(tmp, 0x00, inLen);
XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA);
return plainLen;
}
/* for Rsa Sign */
int RsaSSL_Sign(const byte* in, word32 inLen, byte* out, word32 outLen,
RsaKey* key, RNG* rng)
{
int sz = mp_unsigned_bin_size(&key->n), ret;
if (sz > (int)outLen)
return RSA_BUFFER_E;
if (inLen > (word32)(sz - RSA_MIN_PAD_SZ))
return RSA_BUFFER_E;
RsaPad(in, inLen, out, sz, RSA_BLOCK_TYPE_1, rng);
if ((ret = RsaFunction(out, sz, out, &outLen, RSA_PRIVATE_ENCRYPT,key)) < 0)
sz = ret;
return sz;
}
int RsaEncryptSize(RsaKey* key)
{
return mp_unsigned_bin_size(&key->n);
}
#ifdef CYASSL_KEY_GEN
static const int USE_BBS = 1;
static int rand_prime(mp_int* N, int len, RNG* rng, void* heap)
{
int err, res, type;
byte* buf;
(void)heap;
if (N == NULL || rng == NULL)
return BAD_FUNC_ARG;
/* get type */
if (len < 0) {
type = USE_BBS;
len = -len;
} else {
type = 0;
}
/* allow sizes between 2 and 512 bytes for a prime size */
if (len < 2 || len > 512) {
return BAD_FUNC_ARG;
}
/* allocate buffer to work with */
buf = (byte*)XMALLOC(len, heap, DYNAMIC_TYPE_RSA);
if (buf == NULL) {
return MEMORY_E;
}
XMEMSET(buf, 0, len);
do {
#ifdef SHOW_GEN
printf(".");
fflush(stdout);
#endif
/* generate value */
RNG_GenerateBlock(rng, buf, len);
/* munge bits */
buf[0] |= 0x80 | 0x40;
buf[len-1] |= 0x01 | ((type & USE_BBS) ? 0x02 : 0x00);
/* load value */
if ((err = mp_read_unsigned_bin(N, buf, len)) != MP_OKAY) {
XFREE(buf, heap, DYNAMIC_TYPE_RSA);
return err;
}
/* test */
if ((err = mp_prime_is_prime(N, 8, &res)) != MP_OKAY) {
XFREE(buf, heap, DYNAMIC_TYPE_RSA);
return err;
}
} while (res == MP_NO);
#ifdef LTC_CLEAN_STACK
XMEMSET(buf, 0, len);
#endif
XFREE(buf, heap, DYNAMIC_TYPE_RSA);
return 0;
}
/* Make an RSA key for size bits, with e specified, 65537 is a good e */
int MakeRsaKey(RsaKey* key, int size, long e, RNG* rng)
{
mp_int p, q, tmp1, tmp2, tmp3;
int err;
if (key == NULL || rng == NULL)
return BAD_FUNC_ARG;
if (size < RSA_MIN_SIZE || size > RSA_MAX_SIZE)
return BAD_FUNC_ARG;
if (e < 3 || (e & 1) == 0)
return BAD_FUNC_ARG;
if ((err = mp_init_multi(&p, &q, &tmp1, &tmp2, &tmp3, NULL)) != MP_OKAY)
return err;
err = mp_set_int(&tmp3, e);
/* make p */
if (err == MP_OKAY) {
do {
err = rand_prime(&p, size/16, rng, key->heap); /* size in bytes/2 */
if (err == MP_OKAY)
err = mp_sub_d(&p, 1, &tmp1); /* tmp1 = p-1 */
if (err == MP_OKAY)
err = mp_gcd(&tmp1, &tmp3, &tmp2); /* tmp2 = gcd(p-1, e) */
} while (err == MP_OKAY && mp_cmp_d(&tmp2, 1) != 0); /* e divdes p-1 */
}
/* make q */
if (err == MP_OKAY) {
do {
err = rand_prime(&q, size/16, rng, key->heap); /* size in bytes/2 */
if (err == MP_OKAY)
err = mp_sub_d(&q, 1, &tmp1); /* tmp1 = q-1 */
if (err == MP_OKAY)
err = mp_gcd(&tmp1, &tmp3, &tmp2); /* tmp2 = gcd(q-1, e) */
} while (err == MP_OKAY && mp_cmp_d(&tmp2, 1) != 0); /* e divdes q-1 */
}
if (err == MP_OKAY)
err = mp_init_multi(&key->n, &key->e, &key->d, &key->p, &key->q, NULL);
if (err == MP_OKAY)
err = mp_init_multi(&key->dP, &key->dP, &key->u, NULL, NULL, NULL);
if (err == MP_OKAY)
err = mp_sub_d(&p, 1, &tmp2); /* tmp2 = p-1 */
if (err == MP_OKAY)
err = mp_lcm(&tmp1, &tmp2, &tmp1); /* tmp1 = lcm(p-1, q-1),last loop */
/* make key */
if (err == MP_OKAY)
err = mp_set_int(&key->e, e); /* key->e = e */
if (err == MP_OKAY) /* key->d = 1/e mod lcm(p-1, q-1) */
err = mp_invmod(&key->e, &tmp1, &key->d);
if (err == MP_OKAY)
err = mp_mul(&p, &q, &key->n); /* key->n = pq */
if (err == MP_OKAY)
err = mp_sub_d(&p, 1, &tmp1);
if (err == MP_OKAY)
err = mp_sub_d(&q, 1, &tmp2);
if (err == MP_OKAY)
err = mp_mod(&key->d, &tmp1, &key->dP);
if (err == MP_OKAY)
err = mp_mod(&key->d, &tmp2, &key->dQ);
if (err == MP_OKAY)
err = mp_invmod(&q, &p, &key->u);
if (err == MP_OKAY)
err = mp_copy(&p, &key->p);
if (err == MP_OKAY)
err = mp_copy(&q, &key->q);
if (err == MP_OKAY)
key->type = RSA_PRIVATE;
mp_clear(&tmp3);
mp_clear(&tmp2);
mp_clear(&tmp1);
mp_clear(&q);
mp_clear(&p);
if (err != MP_OKAY) {
FreeRsaKey(key);
return err;
}
return 0;
}
#endif /* CYASLS_KEY_GEN */