| /* tfm.h |
| * |
| * Copyright (C) 2006-2012 Sawtooth Consulting Ltd. |
| * |
| * This file is part of CyaSSL. |
| * |
| * CyaSSL is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * CyaSSL is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA |
| */ |
| |
| |
| /* |
| * Based on public domain TomsFastMath 0.10 by Tom St Denis, tomstdenis@iahu.ca, |
| * http://math.libtomcrypt.com |
| */ |
| |
| |
| /** |
| * Edited by Moisés Guimarães (moises.guimaraes@phoebus.com.br) |
| * to fit CyaSSL's needs. |
| */ |
| |
| |
| #ifndef CTAO_CRYPT_TFM_H |
| #define CTAO_CRYPT_TFM_H |
| |
| #include <cyassl/ctaocrypt/types.h> |
| #ifndef CHAR_BIT |
| #include <limits.h> |
| #endif |
| |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #ifndef MIN |
| #define MIN(x,y) ((x)<(y)?(x):(y)) |
| #endif |
| |
| #ifndef MAX |
| #define MAX(x,y) ((x)>(y)?(x):(y)) |
| #endif |
| |
| |
| /* autodetect x86-64 and make sure we are using 64-bit digits with x86-64 asm */ |
| #if defined(__x86_64__) |
| #if defined(TFM_X86) || defined(TFM_SSE2) || defined(TFM_ARM) |
| #error x86-64 detected, x86-32/SSE2/ARM optimizations are not valid! |
| #endif |
| #if !defined(TFM_X86_64) && !defined(TFM_NO_ASM) |
| #define TFM_X86_64 |
| #endif |
| #endif |
| #if defined(TFM_X86_64) |
| #if !defined(FP_64BIT) |
| #define FP_64BIT |
| #endif |
| #endif |
| /* use 64-bit digit even if not using asm on x86_64 */ |
| #if defined(__x86_64__) && !defined(FP_64BIT) |
| #define FP_64BIT |
| #endif |
| |
| /* try to detect x86-32 */ |
| #if defined(__i386__) && !defined(TFM_SSE2) |
| #if defined(TFM_X86_64) || defined(TFM_ARM) |
| #error x86-32 detected, x86-64/ARM optimizations are not valid! |
| #endif |
| #if !defined(TFM_X86) && !defined(TFM_NO_ASM) |
| #define TFM_X86 |
| #endif |
| #endif |
| |
| /* make sure we're 32-bit for x86-32/sse/arm/ppc32 */ |
| #if (defined(TFM_X86) || defined(TFM_SSE2) || defined(TFM_ARM) || defined(TFM_PPC32)) && defined(FP_64BIT) |
| #warning x86-32, SSE2 and ARM, PPC32 optimizations require 32-bit digits (undefining) |
| #undef FP_64BIT |
| #endif |
| |
| /* multi asms? */ |
| #ifdef TFM_X86 |
| #define TFM_ASM |
| #endif |
| #ifdef TFM_X86_64 |
| #ifdef TFM_ASM |
| #error TFM_ASM already defined! |
| #endif |
| #define TFM_ASM |
| #endif |
| #ifdef TFM_SSE2 |
| #ifdef TFM_ASM |
| #error TFM_ASM already defined! |
| #endif |
| #define TFM_ASM |
| #endif |
| #ifdef TFM_ARM |
| #ifdef TFM_ASM |
| #error TFM_ASM already defined! |
| #endif |
| #define TFM_ASM |
| #endif |
| #ifdef TFM_PPC32 |
| #ifdef TFM_ASM |
| #error TFM_ASM already defined! |
| #endif |
| #define TFM_ASM |
| #endif |
| #ifdef TFM_PPC64 |
| #ifdef TFM_ASM |
| #error TFM_ASM already defined! |
| #endif |
| #define TFM_ASM |
| #endif |
| #ifdef TFM_AVR32 |
| #ifdef TFM_ASM |
| #error TFM_ASM already defined! |
| #endif |
| #define TFM_ASM |
| #endif |
| |
| /* we want no asm? */ |
| #ifdef TFM_NO_ASM |
| #undef TFM_X86 |
| #undef TFM_X86_64 |
| #undef TFM_SSE2 |
| #undef TFM_ARM |
| #undef TFM_PPC32 |
| #undef TFM_PPC64 |
| #undef TFM_AVR32 |
| #undef TFM_ASM |
| #endif |
| |
| /* ECC helpers */ |
| #ifdef TFM_ECC192 |
| #ifdef FP_64BIT |
| #define TFM_MUL3 |
| #define TFM_SQR3 |
| #else |
| #define TFM_MUL6 |
| #define TFM_SQR6 |
| #endif |
| #endif |
| |
| #ifdef TFM_ECC224 |
| #ifdef FP_64BIT |
| #define TFM_MUL4 |
| #define TFM_SQR4 |
| #else |
| #define TFM_MUL7 |
| #define TFM_SQR7 |
| #endif |
| #endif |
| |
| #ifdef TFM_ECC256 |
| #ifdef FP_64BIT |
| #define TFM_MUL4 |
| #define TFM_SQR4 |
| #else |
| #define TFM_MUL8 |
| #define TFM_SQR8 |
| #endif |
| #endif |
| |
| #ifdef TFM_ECC384 |
| #ifdef FP_64BIT |
| #define TFM_MUL6 |
| #define TFM_SQR6 |
| #else |
| #define TFM_MUL12 |
| #define TFM_SQR12 |
| #endif |
| #endif |
| |
| #ifdef TFM_ECC521 |
| #ifdef FP_64BIT |
| #define TFM_MUL9 |
| #define TFM_SQR9 |
| #else |
| #define TFM_MUL17 |
| #define TFM_SQR17 |
| #endif |
| #endif |
| |
| |
| /* some default configurations. |
| */ |
| #if defined(FP_64BIT) |
| /* for GCC only on supported platforms */ |
| #ifndef CRYPT |
| typedef unsigned long ulong64; |
| #endif |
| typedef ulong64 fp_digit; |
| typedef unsigned long fp_word __attribute__ ((mode(TI))); |
| #else |
| /* this is to make porting into LibTomCrypt easier :-) */ |
| #ifndef CRYPT |
| #if defined(_MSC_VER) || defined(__BORLANDC__) |
| typedef unsigned __int64 ulong64; |
| typedef signed __int64 long64; |
| #else |
| typedef unsigned long long ulong64; |
| typedef signed long long long64; |
| #endif |
| #endif |
| typedef unsigned int fp_digit; |
| typedef ulong64 fp_word; |
| #endif |
| |
| /* # of digits this is */ |
| #define DIGIT_BIT (int)((CHAR_BIT) * sizeof(fp_digit)) |
| |
| /* Max size of any number in bits. Basically the largest size you will be |
| * multiplying should be half [or smaller] of FP_MAX_SIZE-four_digit |
| * |
| * It defaults to 4096-bits [allowing multiplications upto 2048x2048 bits ] |
| */ |
| #ifndef FP_MAX_BITS |
| #define FP_MAX_BITS 4096 |
| #endif |
| #define FP_MAX_SIZE (FP_MAX_BITS+(8*DIGIT_BIT)) |
| |
| /* will this lib work? */ |
| #if (CHAR_BIT & 7) |
| #error CHAR_BIT must be a multiple of eight. |
| #endif |
| #if FP_MAX_BITS % CHAR_BIT |
| #error FP_MAX_BITS must be a multiple of CHAR_BIT |
| #endif |
| |
| #define FP_MASK (fp_digit)(-1) |
| #define FP_SIZE (FP_MAX_SIZE/DIGIT_BIT) |
| |
| /* signs */ |
| #define FP_ZPOS 0 |
| #define FP_NEG 1 |
| |
| /* return codes */ |
| #define FP_OKAY 0 |
| #define FP_VAL 1 |
| #define FP_MEM 2 |
| |
| /* equalities */ |
| #define FP_LT -1 /* less than */ |
| #define FP_EQ 0 /* equal to */ |
| #define FP_GT 1 /* greater than */ |
| |
| /* replies */ |
| #define FP_YES 1 /* yes response */ |
| #define FP_NO 0 /* no response */ |
| |
| /* a FP type */ |
| typedef struct { |
| fp_digit dp[FP_SIZE]; |
| int used, |
| sign; |
| } fp_int; |
| |
| /* externally define this symbol to ignore the default settings, useful for changing the build from the make process */ |
| #ifndef TFM_ALREADY_SET |
| |
| /* do we want the large set of small multiplications ? |
| Enable these if you are going to be doing a lot of small (<= 16 digit) multiplications say in ECC |
| Or if you're on a 64-bit machine doing RSA as a 1024-bit integer == 16 digits ;-) |
| */ |
| /* need to refactor the function */ |
| /*#define TFM_SMALL_SET */ |
| |
| /* do we want huge code |
| Enable these if you are doing 20, 24, 28, 32, 48, 64 digit multiplications (useful for RSA) |
| Less important on 64-bit machines as 32 digits == 2048 bits |
| */ |
| #if 0 |
| #define TFM_MUL3 |
| #define TFM_MUL4 |
| #define TFM_MUL6 |
| #define TFM_MUL7 |
| #define TFM_MUL8 |
| #define TFM_MUL9 |
| #define TFM_MUL12 |
| #define TFM_MUL17 |
| #endif |
| #ifdef TFM_SMALL_SET |
| #define TFM_MUL20 |
| #define TFM_MUL24 |
| #define TFM_MUL28 |
| #define TFM_MUL32 |
| #if (FP_MAX_BITS >= 6144) && defined(FP_64BIT) |
| #define TFM_MUL48 |
| #endif |
| #if (FP_MAX_BITS >= 8192) && defined(FP_64BIT) |
| #define TFM_MUL64 |
| #endif |
| #endif |
| |
| #if 0 |
| #define TFM_SQR3 |
| #define TFM_SQR4 |
| #define TFM_SQR6 |
| #define TFM_SQR7 |
| #define TFM_SQR8 |
| #define TFM_SQR9 |
| #define TFM_SQR12 |
| #define TFM_SQR17 |
| #endif |
| #ifdef TFM_SMALL_SET |
| #define TFM_SQR20 |
| #define TFM_SQR24 |
| #define TFM_SQR28 |
| #define TFM_SQR32 |
| #define TFM_SQR48 |
| #define TFM_SQR64 |
| #endif |
| |
| /* do we want some overflow checks |
| Not required if you make sure your numbers are within range (e.g. by default a modulus for fp_exptmod() can only be upto 2048 bits long) |
| */ |
| /* #define TFM_CHECK */ |
| |
| /* Is the target a P4 Prescott |
| */ |
| /* #define TFM_PRESCOTT */ |
| |
| /* Do we want timing resistant fp_exptmod() ? |
| * This makes it slower but also timing invariant with respect to the exponent |
| */ |
| /* #define TFM_TIMING_RESISTANT */ |
| |
| #endif /* TFM_ALREADY_SET */ |
| |
| /* functions */ |
| |
| /* returns a TFM ident string useful for debugging... */ |
| /*const char *fp_ident(void);*/ |
| |
| /* initialize [or zero] an fp int */ |
| #define fp_init(a) (void)XMEMSET((a), 0, sizeof(fp_int)) |
| #define fp_zero(a) fp_init(a) |
| |
| /* zero/even/odd ? */ |
| #define fp_iszero(a) (((a)->used == 0) ? FP_YES : FP_NO) |
| #define fp_iseven(a) (((a)->used >= 0 && (((a)->dp[0] & 1) == 0)) ? FP_YES : FP_NO) |
| #define fp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? FP_YES : FP_NO) |
| |
| /* set to a small digit */ |
| void fp_set(fp_int *a, fp_digit b); |
| |
| /* copy from a to b */ |
| #define fp_copy(a, b) (void)(((a) != (b)) ? (XMEMCPY((b), (a), sizeof(fp_int))) : (void)0) |
| #define fp_init_copy(a, b) fp_copy(b, a) |
| |
| /* clamp digits */ |
| #define fp_clamp(a) { while ((a)->used && (a)->dp[(a)->used-1] == 0) --((a)->used); (a)->sign = (a)->used ? (a)->sign : FP_ZPOS; } |
| |
| /* negate and absolute */ |
| #define fp_neg(a, b) { fp_copy(a, b); (b)->sign ^= 1; fp_clamp(b); } |
| #define fp_abs(a, b) { fp_copy(a, b); (b)->sign = 0; } |
| |
| /* right shift x digits */ |
| void fp_rshd(fp_int *a, int x); |
| |
| /* left shift x digits */ |
| void fp_lshd(fp_int *a, int x); |
| |
| /* signed comparison */ |
| int fp_cmp(fp_int *a, fp_int *b); |
| |
| /* unsigned comparison */ |
| int fp_cmp_mag(fp_int *a, fp_int *b); |
| |
| /* power of 2 operations */ |
| void fp_div_2d(fp_int *a, int b, fp_int *c, fp_int *d); |
| void fp_mod_2d(fp_int *a, int b, fp_int *c); |
| void fp_mul_2d(fp_int *a, int b, fp_int *c); |
| void fp_2expt (fp_int *a, int b); |
| void fp_mul_2(fp_int *a, fp_int *c); |
| void fp_div_2(fp_int *a, fp_int *c); |
| |
| /* Counts the number of lsbs which are zero before the first zero bit */ |
| /*int fp_cnt_lsb(fp_int *a);*/ |
| |
| /* c = a + b */ |
| void fp_add(fp_int *a, fp_int *b, fp_int *c); |
| |
| /* c = a - b */ |
| void fp_sub(fp_int *a, fp_int *b, fp_int *c); |
| |
| /* c = a * b */ |
| void fp_mul(fp_int *a, fp_int *b, fp_int *c); |
| |
| /* b = a*a */ |
| void fp_sqr(fp_int *a, fp_int *b); |
| |
| /* a/b => cb + d == a */ |
| int fp_div(fp_int *a, fp_int *b, fp_int *c, fp_int *d); |
| |
| /* c = a mod b, 0 <= c < b */ |
| int fp_mod(fp_int *a, fp_int *b, fp_int *c); |
| |
| /* compare against a single digit */ |
| int fp_cmp_d(fp_int *a, fp_digit b); |
| |
| /* c = a + b */ |
| void fp_add_d(fp_int *a, fp_digit b, fp_int *c); |
| |
| /* c = a - b */ |
| void fp_sub_d(fp_int *a, fp_digit b, fp_int *c); |
| |
| /* c = a * b */ |
| void fp_mul_d(fp_int *a, fp_digit b, fp_int *c); |
| |
| /* a/b => cb + d == a */ |
| /*int fp_div_d(fp_int *a, fp_digit b, fp_int *c, fp_digit *d);*/ |
| |
| /* c = a mod b, 0 <= c < b */ |
| /*int fp_mod_d(fp_int *a, fp_digit b, fp_digit *c);*/ |
| |
| /* ---> number theory <--- */ |
| /* d = a + b (mod c) */ |
| /*int fp_addmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);*/ |
| |
| /* d = a - b (mod c) */ |
| /*int fp_submod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);*/ |
| |
| /* d = a * b (mod c) */ |
| int fp_mulmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d); |
| |
| /* c = a * a (mod b) */ |
| int fp_sqrmod(fp_int *a, fp_int *b, fp_int *c); |
| |
| /* c = 1/a (mod b) */ |
| int fp_invmod(fp_int *a, fp_int *b, fp_int *c); |
| |
| /* c = (a, b) */ |
| /*void fp_gcd(fp_int *a, fp_int *b, fp_int *c);*/ |
| |
| /* c = [a, b] */ |
| /*void fp_lcm(fp_int *a, fp_int *b, fp_int *c);*/ |
| |
| /* setups the montgomery reduction */ |
| int fp_montgomery_setup(fp_int *a, fp_digit *mp); |
| |
| /* computes a = B**n mod b without division or multiplication useful for |
| * normalizing numbers in a Montgomery system. |
| */ |
| void fp_montgomery_calc_normalization(fp_int *a, fp_int *b); |
| |
| /* computes x/R == x (mod N) via Montgomery Reduction */ |
| void fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp); |
| |
| /* d = a**b (mod c) */ |
| int fp_exptmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d); |
| |
| /* primality stuff */ |
| |
| /* perform a Miller-Rabin test of a to the base b and store result in "result" */ |
| /*void fp_prime_miller_rabin (fp_int * a, fp_int * b, int *result);*/ |
| |
| /* 256 trial divisions + 8 Miller-Rabins, returns FP_YES if probable prime */ |
| /*int fp_isprime(fp_int *a);*/ |
| |
| /* Primality generation flags */ |
| /*#define TFM_PRIME_BBS 0x0001 */ /* BBS style prime */ |
| /*#define TFM_PRIME_SAFE 0x0002 */ /* Safe prime (p-1)/2 == prime */ |
| /*#define TFM_PRIME_2MSB_OFF 0x0004 */ /* force 2nd MSB to 0 */ |
| /*#define TFM_PRIME_2MSB_ON 0x0008 */ /* force 2nd MSB to 1 */ |
| |
| /* callback for fp_prime_random, should fill dst with random bytes and return how many read [upto len] */ |
| /*typedef int tfm_prime_callback(unsigned char *dst, int len, void *dat);*/ |
| |
| /*#define fp_prime_random(a, t, size, bbs, cb, dat) fp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?TFM_PRIME_BBS:0, cb, dat)*/ |
| |
| /*int fp_prime_random_ex(fp_int *a, int t, int size, int flags, tfm_prime_callback cb, void *dat);*/ |
| |
| /* radix conersions */ |
| int fp_count_bits(fp_int *a); |
| |
| int fp_unsigned_bin_size(fp_int *a); |
| void fp_read_unsigned_bin(fp_int *a, unsigned char *b, int c); |
| void fp_to_unsigned_bin(fp_int *a, unsigned char *b); |
| |
| /*int fp_signed_bin_size(fp_int *a);*/ |
| /*void fp_read_signed_bin(fp_int *a, unsigned char *b, int c);*/ |
| /*void fp_to_signed_bin(fp_int *a, unsigned char *b);*/ |
| |
| /*int fp_read_radix(fp_int *a, char *str, int radix);*/ |
| /*int fp_toradix(fp_int *a, char *str, int radix);*/ |
| /*int fp_toradix_n(fp_int * a, char *str, int radix, int maxlen);*/ |
| |
| |
| /* VARIOUS LOW LEVEL STUFFS */ |
| void s_fp_add(fp_int *a, fp_int *b, fp_int *c); |
| void s_fp_sub(fp_int *a, fp_int *b, fp_int *c); |
| void fp_reverse(unsigned char *s, int len); |
| |
| void fp_mul_comba(fp_int *A, fp_int *B, fp_int *C); |
| |
| #ifdef TFM_SMALL_SET |
| void fp_mul_comba_small(fp_int *A, fp_int *B, fp_int *C); |
| #endif |
| |
| #ifdef TFM_MUL3 |
| void fp_mul_comba3(fp_int *A, fp_int *B, fp_int *C); |
| #endif |
| #ifdef TFM_MUL4 |
| void fp_mul_comba4(fp_int *A, fp_int *B, fp_int *C); |
| #endif |
| #ifdef TFM_MUL6 |
| void fp_mul_comba6(fp_int *A, fp_int *B, fp_int *C); |
| #endif |
| #ifdef TFM_MUL7 |
| void fp_mul_comba7(fp_int *A, fp_int *B, fp_int *C); |
| #endif |
| #ifdef TFM_MUL8 |
| void fp_mul_comba8(fp_int *A, fp_int *B, fp_int *C); |
| #endif |
| #ifdef TFM_MUL9 |
| void fp_mul_comba9(fp_int *A, fp_int *B, fp_int *C); |
| #endif |
| #ifdef TFM_MUL12 |
| void fp_mul_comba12(fp_int *A, fp_int *B, fp_int *C); |
| #endif |
| #ifdef TFM_MUL17 |
| void fp_mul_comba17(fp_int *A, fp_int *B, fp_int *C); |
| #endif |
| |
| #ifdef TFM_MUL20 |
| void fp_mul_comba20(fp_int *A, fp_int *B, fp_int *C); |
| #endif |
| #ifdef TFM_MUL24 |
| void fp_mul_comba24(fp_int *A, fp_int *B, fp_int *C); |
| #endif |
| #ifdef TFM_MUL28 |
| void fp_mul_comba28(fp_int *A, fp_int *B, fp_int *C); |
| #endif |
| #ifdef TFM_MUL32 |
| void fp_mul_comba32(fp_int *A, fp_int *B, fp_int *C); |
| #endif |
| #ifdef TFM_MUL48 |
| void fp_mul_comba48(fp_int *A, fp_int *B, fp_int *C); |
| #endif |
| #ifdef TFM_MUL64 |
| void fp_mul_comba64(fp_int *A, fp_int *B, fp_int *C); |
| #endif |
| |
| void fp_sqr_comba(fp_int *A, fp_int *B); |
| |
| #ifdef TFM_SMALL_SET |
| void fp_sqr_comba_small(fp_int *A, fp_int *B); |
| #endif |
| |
| #ifdef TFM_SQR3 |
| void fp_sqr_comba3(fp_int *A, fp_int *B); |
| #endif |
| #ifdef TFM_SQR4 |
| void fp_sqr_comba4(fp_int *A, fp_int *B); |
| #endif |
| #ifdef TFM_SQR6 |
| void fp_sqr_comba6(fp_int *A, fp_int *B); |
| #endif |
| #ifdef TFM_SQR7 |
| void fp_sqr_comba7(fp_int *A, fp_int *B); |
| #endif |
| #ifdef TFM_SQR8 |
| void fp_sqr_comba8(fp_int *A, fp_int *B); |
| #endif |
| #ifdef TFM_SQR9 |
| void fp_sqr_comba9(fp_int *A, fp_int *B); |
| #endif |
| #ifdef TFM_SQR12 |
| void fp_sqr_comba12(fp_int *A, fp_int *B); |
| #endif |
| #ifdef TFM_SQR17 |
| void fp_sqr_comba17(fp_int *A, fp_int *B); |
| #endif |
| |
| #ifdef TFM_SQR20 |
| void fp_sqr_comba20(fp_int *A, fp_int *B); |
| #endif |
| #ifdef TFM_SQR24 |
| void fp_sqr_comba24(fp_int *A, fp_int *B); |
| #endif |
| #ifdef TFM_SQR28 |
| void fp_sqr_comba28(fp_int *A, fp_int *B); |
| #endif |
| #ifdef TFM_SQR32 |
| void fp_sqr_comba32(fp_int *A, fp_int *B); |
| #endif |
| #ifdef TFM_SQR48 |
| void fp_sqr_comba48(fp_int *A, fp_int *B); |
| #endif |
| #ifdef TFM_SQR64 |
| void fp_sqr_comba64(fp_int *A, fp_int *B); |
| #endif |
| /*extern const char *fp_s_rmap;*/ |
| |
| |
| /** |
| * Used by CyaSSL |
| */ |
| |
| /* Types */ |
| typedef fp_digit mp_digit; |
| typedef fp_word mp_word; |
| typedef fp_int mp_int; |
| |
| /* Constants */ |
| #define MP_LT FP_LT /* less than */ |
| #define MP_EQ FP_EQ /* equal to */ |
| #define MP_GT FP_GT /* greater than */ |
| #define MP_OKAY FP_OKAY /* ok result */ |
| #define MP_NO FP_NO /* yes/no result */ |
| #define MP_YES FP_YES /* yes/no result */ |
| |
| /* Prototypes */ |
| int mp_init (mp_int * a); |
| void mp_clear (mp_int * a); |
| int mp_init_multi(mp_int* a, mp_int* b, mp_int* c, mp_int* d, mp_int* e, mp_int* f); |
| |
| int mp_add (mp_int * a, mp_int * b, mp_int * c); |
| int mp_sub (mp_int * a, mp_int * b, mp_int * c); |
| int mp_add_d (mp_int * a, mp_digit b, mp_int * c); |
| |
| int mp_mul (mp_int * a, mp_int * b, mp_int * c); |
| int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d); |
| int mp_mod(mp_int *a, mp_int *b, mp_int *c); |
| int mp_invmod(mp_int *a, mp_int *b, mp_int *c); |
| int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y); |
| |
| int mp_cmp(mp_int *a, mp_int *b); |
| int mp_cmp_d(mp_int *a, mp_digit b); |
| |
| int mp_unsigned_bin_size(mp_int * a); |
| int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c); |
| int mp_to_unsigned_bin (mp_int * a, unsigned char *b); |
| |
| int mp_sub_d(fp_int *a, fp_digit b, fp_int *c); |
| int mp_copy(fp_int* a, fp_int* b); |
| int mp_isodd(mp_int* a); |
| int mp_iszero(mp_int* a); |
| int mp_count_bits(mp_int *a); |
| int mp_set_int(fp_int *a, fp_digit b); |
| |
| #ifdef HAVE_ECC |
| int mp_read_radix(mp_int* a, const char* str, int radix); |
| int mp_set(fp_int *a, fp_digit b); |
| int mp_sqr(fp_int *A, fp_int *B); |
| int mp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp); |
| int mp_montgomery_setup(fp_int *a, fp_digit *rho); |
| int mp_div_2(fp_int * a, fp_int * b); |
| int mp_init_copy(fp_int * a, fp_int * b); |
| #endif |
| |
| #if defined(HAVE_ECC) || defined(CYASSL_KEY_GEN) |
| int mp_sqrmod(mp_int* a, mp_int* b, mp_int* c); |
| int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); |
| #endif |
| |
| #ifdef CYASSL_KEY_GEN |
| int mp_gcd(fp_int *a, fp_int *b, fp_int *c); |
| int mp_lcm(fp_int *a, fp_int *b, fp_int *c); |
| int mp_prime_is_prime(mp_int* a, int t, int* result); |
| #endif /* CYASSL_KEY_GEN */ |
| |
| CYASSL_API word32 CheckRunTimeFastMath(void); |
| |
| /* If user uses RSA, DH, DSA, or ECC math lib directly then fast math FP_SIZE |
| must match, return 1 if a match otherwise 0 */ |
| #define CheckFastMathSettings() (FP_SIZE == CheckRunTimeFastMath()) |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| |
| #endif /* CTAO_CRYPT_TFM_H */ |