blob: 1579863fe90679fac89d9d6801d54afa0bf3d487 [file] [log] [blame]
/**
*
* \file
*
* \brief KS8851SNL driver for SAM.
*
* Copyright (c) 2013-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "spi_master.h"
#include "ksz8851snl.h"
#include "ksz8851snl_reg.h"
#include "delay.h"
#include "pio.h"
#include "pio_handler.h"
#include "pdc.h"
#include "conf_eth.h"
/* Clock polarity. */
#define SPI_CLK_POLARITY 0
/* Clock phase. */
#define SPI_CLK_PHASE 1
/* SPI PDC register base. */
Pdc *g_p_spi_pdc = 0;
int lUDPLoggingPrintf( const char *pcFormatString, ... );
/* Temporary buffer for PDC reception. */
uint8_t tmpbuf[1536] __attribute__ ((aligned (16)));
union {
uint64_t ul[2];
uint8_t uc[16];
} cmdBuf, respBuf;
void dbg_add_line( const char *pcFormat, ... );
static void spi_clear_ovres( void );
/**
* \brief Read register content, set bitmask and write back to register.
*
* \param reg the register address to modify.
* \param bits_to_set bitmask to apply.
*/
void ksz8851_reg_setbits(uint16_t reg, uint16_t bits_to_set)
{
uint16_t temp;
temp = ksz8851_reg_read(reg);
temp |= bits_to_set;
ksz8851_reg_write(reg, temp);
}
/**
* \brief Read register content, clear bitmask and write back to register.
*
* \param reg the register address to modify.
* \param bits_to_set bitmask to apply.
*/
void ksz8851_reg_clrbits(uint16_t reg, uint16_t bits_to_clr)
{
uint16_t temp;
temp = ksz8851_reg_read(reg);
temp &= ~(uint32_t) bits_to_clr;
ksz8851_reg_write(reg, temp);
}
/**
* \brief Configure the INTN interrupt.
*/
void configure_intn(void (*p_handler) (uint32_t, uint32_t))
{
// gpio_configure_pin(KSZ8851SNL_INTN_GPIO, PIO_INPUT);
// pio_set_input(PIOA, PIO_PA11_IDX, PIO_PULLUP);
/* Configure PIO clock. */
pmc_enable_periph_clk(INTN_ID);
/* Adjust PIO debounce filter parameters, uses 10 Hz filter. */
pio_set_debounce_filter(INTN_PIO, INTN_PIN_MSK, 10);
/* Initialize PIO interrupt handlers, see PIO definition in board.h. */
pio_handler_set(INTN_PIO, INTN_ID, INTN_PIN_MSK,
INTN_ATTR, p_handler);
/* Enable NVIC interrupts. */
NVIC_SetPriority(INTN_IRQn, INT_PRIORITY_PIO);
NVIC_EnableIRQ((IRQn_Type)INTN_ID);
/* Enable PIO interrupts. */
pio_enable_interrupt(INTN_PIO, INTN_PIN_MSK);
}
/**
* \brief Read a register value.
*
* \param reg the register address to modify.
*
* \return the register value.
*/
uint16_t ksz8851_reg_read(uint16_t reg)
{
pdc_packet_t g_pdc_spi_tx_packet;
pdc_packet_t g_pdc_spi_rx_packet;
uint16_t cmd = 0;
uint16_t res = 0;
int iTryCount = 3;
while( iTryCount-- > 0 )
{
uint32_t ulStatus;
spi_clear_ovres();
/* Move register address to cmd bits 9-2, make 32-bit address. */
cmd = (reg << 2) & REG_ADDR_MASK;
/* Last 2 bits still under "don't care bits" handled with byte enable. */
/* Select byte enable for command. */
if (reg & 2) {
/* Odd word address writes bytes 2 and 3 */
cmd |= (0xc << 10);
} else {
/* Even word address write bytes 0 and 1 */
cmd |= (0x3 << 10);
}
/* Add command read code. */
cmd |= CMD_READ;
cmdBuf.uc[0] = cmd >> 8;
cmdBuf.uc[1] = cmd & 0xff;
cmdBuf.uc[2] = CONFIG_SPI_MASTER_DUMMY;
cmdBuf.uc[3] = CONFIG_SPI_MASTER_DUMMY;
/* Prepare PDC transfer. */
g_pdc_spi_tx_packet.ul_addr = (uint32_t) cmdBuf.uc;
g_pdc_spi_tx_packet.ul_size = 4;
g_pdc_spi_rx_packet.ul_addr = (uint32_t) tmpbuf;
g_pdc_spi_rx_packet.ul_size = 4;
pdc_disable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTDIS | PERIPH_PTCR_TXTDIS);
pdc_tx_init(g_p_spi_pdc, &g_pdc_spi_tx_packet, NULL);
pdc_rx_init(g_p_spi_pdc, &g_pdc_spi_rx_packet, NULL);
gpio_set_pin_low(KSZ8851SNL_CSN_GPIO);
spi_disable_interrupt( KSZ8851SNL_SPI, ~0ul );
pdc_enable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTEN | PERIPH_PTCR_TXTEN);
for( ;; )
{
ulStatus = spi_read_status( KSZ8851SNL_SPI );
if( ( ulStatus & ( SPI_SR_OVRES | SPI_SR_ENDRX ) ) != 0 )
{
break;
}
}
gpio_set_pin_high( KSZ8851SNL_CSN_GPIO );
if( ( ulStatus & SPI_SR_OVRES ) == 0 )
{
break;
}
pdc_disable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTDIS | PERIPH_PTCR_TXTDIS);
lUDPLoggingPrintf( "ksz8851_reg_read: SPI_SR_OVRES\n" );
}
res = (tmpbuf[3] << 8) | tmpbuf[2];
return res;
}
/**
* \brief Write a register value.
*
* \param reg the register address to modify.
* \param wrdata the new register value.
*/
void ksz8851_reg_write(uint16_t reg, uint16_t wrdata)
{
pdc_packet_t g_pdc_spi_tx_packet;
pdc_packet_t g_pdc_spi_rx_packet;
uint16_t cmd = 0;
int iTryCount = 3;
while( iTryCount-- > 0 )
{
uint32_t ulStatus;
spi_clear_ovres();
/* Move register address to cmd bits 9-2, make 32-bit address. */
cmd = (reg << 2) & REG_ADDR_MASK;
/* Last 2 bits still under "don't care bits" handled with byte enable. */
/* Select byte enable for command. */
if (reg & 2) {
/* Odd word address writes bytes 2 and 3 */
cmd |= (0xc << 10);
} else {
/* Even word address write bytes 0 and 1 */
cmd |= (0x3 << 10);
}
/* Add command write code. */
cmd |= CMD_WRITE;
cmdBuf.uc[0] = cmd >> 8;
cmdBuf.uc[1] = cmd & 0xff;
cmdBuf.uc[2] = wrdata & 0xff;
cmdBuf.uc[3] = wrdata >> 8;
/* Prepare PDC transfer. */
g_pdc_spi_tx_packet.ul_addr = (uint32_t) cmdBuf.uc;
g_pdc_spi_tx_packet.ul_size = 4;
g_pdc_spi_rx_packet.ul_addr = (uint32_t) tmpbuf;
g_pdc_spi_rx_packet.ul_size = 4;
pdc_disable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTDIS | PERIPH_PTCR_TXTDIS);
pdc_tx_init(g_p_spi_pdc, &g_pdc_spi_tx_packet, NULL);
pdc_rx_init(g_p_spi_pdc, &g_pdc_spi_rx_packet, NULL);
gpio_set_pin_low(KSZ8851SNL_CSN_GPIO);
spi_disable_interrupt( KSZ8851SNL_SPI, ~0ul );
pdc_enable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTEN | PERIPH_PTCR_TXTEN);
for( ;; )
{
ulStatus = spi_read_status( KSZ8851SNL_SPI );
if( ( ulStatus & ( SPI_SR_OVRES | SPI_SR_ENDRX ) ) != 0 )
{
break;
}
}
gpio_set_pin_high( KSZ8851SNL_CSN_GPIO );
if( ( ulStatus & SPI_SR_OVRES ) == 0 )
{
break;
}
pdc_disable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTDIS | PERIPH_PTCR_TXTDIS);
lUDPLoggingPrintf( "ksz8851_reg_write: SPI_SR_OVRES\n" );
}
}
static void spi_clear_ovres( void )
{
volatile uint32_t rc;
rc = KSZ8851SNL_SPI->SPI_RDR;
spi_read_status( KSZ8851SNL_SPI );
}
/**
* \brief Read internal fifo buffer.
*
* \param buf the buffer to store the data from the fifo buffer.
* \param len the amount of data to read.
*/
void ksz8851_fifo_read(uint8_t *buf, uint32_t len)
{
pdc_packet_t g_pdc_spi_tx_packet;
pdc_packet_t g_pdc_spi_rx_packet;
pdc_packet_t g_pdc_spi_tx_npacket;
pdc_packet_t g_pdc_spi_rx_npacket;
memset( cmdBuf.uc, '\0', sizeof cmdBuf );
cmdBuf.uc[0] = FIFO_READ;
spi_clear_ovres();
/* Prepare PDC transfer. */
g_pdc_spi_tx_packet.ul_addr = (uint32_t) cmdBuf.uc;
g_pdc_spi_tx_packet.ul_size = 9;
g_pdc_spi_rx_packet.ul_addr = (uint32_t) respBuf.uc;
g_pdc_spi_rx_packet.ul_size = 9;
g_pdc_spi_tx_npacket.ul_addr = (uint32_t) buf;
g_pdc_spi_tx_npacket.ul_size = len;
g_pdc_spi_rx_npacket.ul_addr = (uint32_t) buf;
g_pdc_spi_rx_npacket.ul_size = len;
pdc_disable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTDIS | PERIPH_PTCR_TXTDIS);
pdc_tx_init(g_p_spi_pdc, &g_pdc_spi_tx_packet, &g_pdc_spi_tx_npacket);
pdc_rx_init(g_p_spi_pdc, &g_pdc_spi_rx_packet, &g_pdc_spi_rx_npacket);
spi_enable_interrupt(KSZ8851SNL_SPI, SPI_IER_RXBUFF | SPI_IER_OVRES);
pdc_enable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTEN | PERIPH_PTCR_TXTEN);
}
/**
* \brief Write internal fifo buffer.
*
* \param buf the buffer to send to the fifo buffer.
* \param ulActualLength the total amount of data to write.
* \param ulFIFOLength the size of the first pbuf to write from the pbuf chain.
*/
void ksz8851_fifo_write(uint8_t *buf, uint32_t ulActualLength, uint32_t ulFIFOLength)
{
static uint8_t frameID = 0;
pdc_packet_t g_pdc_spi_tx_packet;
pdc_packet_t g_pdc_spi_rx_packet;
pdc_packet_t g_pdc_spi_tx_npacket;
pdc_packet_t g_pdc_spi_rx_npacket;
/* Prepare control word and byte count. */
cmdBuf.uc[0] = FIFO_WRITE;
cmdBuf.uc[1] = frameID++ & 0x3f;
cmdBuf.uc[2] = 0;
cmdBuf.uc[3] = ulActualLength & 0xff;
cmdBuf.uc[4] = ulActualLength >> 8;
spi_clear_ovres();
/* Prepare PDC transfer. */
g_pdc_spi_tx_packet.ul_addr = (uint32_t) cmdBuf.uc;
g_pdc_spi_tx_packet.ul_size = 5;
g_pdc_spi_rx_packet.ul_addr = (uint32_t) respBuf.uc;
g_pdc_spi_rx_packet.ul_size = 5;
g_pdc_spi_tx_npacket.ul_addr = (uint32_t) buf;
g_pdc_spi_tx_npacket.ul_size = ulFIFOLength;
g_pdc_spi_rx_npacket.ul_addr = (uint32_t) tmpbuf;
g_pdc_spi_rx_npacket.ul_size = ulFIFOLength;
pdc_disable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTDIS | PERIPH_PTCR_TXTDIS);
pdc_tx_init(g_p_spi_pdc, &g_pdc_spi_tx_packet, &g_pdc_spi_tx_npacket);
#if( TX_USES_RECV == 1 )
pdc_rx_init(g_p_spi_pdc, &g_pdc_spi_rx_packet, &g_pdc_spi_rx_npacket);
spi_enable_interrupt(KSZ8851SNL_SPI, SPI_IER_ENDRX | SPI_IER_OVRES);
pdc_enable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTEN | PERIPH_PTCR_TXTEN);
#else
spi_enable_interrupt(KSZ8851SNL_SPI, SPI_SR_TXBUFE | SPI_IER_OVRES);
pdc_enable_transfer(g_p_spi_pdc, PERIPH_PTCR_TXTEN);
#endif
}
/**
* \brief Write dummy data to the internal fifo buffer.
*
* \param len the amount of dummy data to write.
*/
void ksz8851_fifo_dummy(uint32_t len)
{
pdc_packet_t g_pdc_spi_tx_packet;
pdc_packet_t g_pdc_spi_rx_packet;
/* Prepare PDC transfer. */
g_pdc_spi_tx_packet.ul_addr = (uint32_t) tmpbuf;
g_pdc_spi_tx_packet.ul_size = len;
g_pdc_spi_rx_packet.ul_addr = (uint32_t) tmpbuf;
g_pdc_spi_rx_packet.ul_size = len;
pdc_disable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTDIS | PERIPH_PTCR_TXTDIS);
pdc_tx_init(g_p_spi_pdc, &g_pdc_spi_tx_packet, NULL);
pdc_rx_init(g_p_spi_pdc, &g_pdc_spi_rx_packet, NULL);
pdc_enable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTEN | PERIPH_PTCR_TXTEN);
while (!(spi_read_status(KSZ8851SNL_SPI) & SPI_SR_ENDRX))
;
}
void ksz8851snl_set_registers(void)
{
/* Init step2-4: write QMU MAC address (low, middle then high). */
ksz8851_reg_write(REG_MAC_ADDR_0, (ETHERNET_CONF_ETHADDR4 << 8) | ETHERNET_CONF_ETHADDR5);
ksz8851_reg_write(REG_MAC_ADDR_2, (ETHERNET_CONF_ETHADDR2 << 8) | ETHERNET_CONF_ETHADDR3);
ksz8851_reg_write(REG_MAC_ADDR_4, (ETHERNET_CONF_ETHADDR0 << 8) | ETHERNET_CONF_ETHADDR1);
/* Init step5: enable QMU Transmit Frame Data Pointer Auto Increment. */
ksz8851_reg_write(REG_TX_ADDR_PTR, ADDR_PTR_AUTO_INC);
/* Init step6: configure QMU transmit control register. */
ksz8851_reg_write(REG_TX_CTRL,
TX_CTRL_ICMP_CHECKSUM |
TX_CTRL_UDP_CHECKSUM |
TX_CTRL_TCP_CHECKSUM |
TX_CTRL_IP_CHECKSUM |
TX_CTRL_FLOW_ENABLE |
TX_CTRL_PAD_ENABLE |
TX_CTRL_CRC_ENABLE
);
/* Init step7: enable QMU Receive Frame Data Pointer Auto Increment. */
ksz8851_reg_write(REG_RX_ADDR_PTR, ADDR_PTR_AUTO_INC);
/* Init step8: configure QMU Receive Frame Threshold for one frame. */
ksz8851_reg_write(REG_RX_FRAME_CNT_THRES, 1);
/* Init step9: configure QMU receive control register1. */
ksz8851_reg_write(REG_RX_CTRL1,
RX_CTRL_UDP_CHECKSUM |
RX_CTRL_TCP_CHECKSUM |
RX_CTRL_IP_CHECKSUM |
RX_CTRL_MAC_FILTER |
RX_CTRL_FLOW_ENABLE |
RX_CTRL_BROADCAST |
RX_CTRL_ALL_MULTICAST|
RX_CTRL_UNICAST);
// ksz8851_reg_write(REG_RX_CTRL1,
// RX_CTRL_UDP_CHECKSUM |
// RX_CTRL_TCP_CHECKSUM |
// RX_CTRL_IP_CHECKSUM |
// RX_CTRL_FLOW_ENABLE |
// RX_CTRL_PROMISCUOUS);
ksz8851_reg_write(REG_RX_CTRL2,
RX_CTRL_IPV6_UDP_NOCHECKSUM |
RX_CTRL_UDP_LITE_CHECKSUM |
RX_CTRL_ICMP_CHECKSUM |
RX_CTRL_BURST_LEN_FRAME);
//#define RXQ_TWOBYTE_OFFSET (0x0200) /* Enable adding 2-byte before frame header for IP aligned with DWORD */
#warning Remember to try the above option to get a 2-byte offset
/* Init step11: configure QMU receive queue: trigger INT and auto-dequeue frame. */
ksz8851_reg_write( REG_RXQ_CMD, RXQ_CMD_CNTL | RXQ_TWOBYTE_OFFSET );
/* Init step12: adjust SPI data output delay. */
ksz8851_reg_write(REG_BUS_CLOCK_CTRL, BUS_CLOCK_166 | BUS_CLOCK_DIVIDEDBY_1);
/* Init step13: restart auto-negotiation. */
ksz8851_reg_setbits(REG_PORT_CTRL, PORT_AUTO_NEG_RESTART);
/* Init step13.1: force link in half duplex if auto-negotiation failed. */
if ((ksz8851_reg_read(REG_PORT_CTRL) & PORT_AUTO_NEG_RESTART) != PORT_AUTO_NEG_RESTART)
{
ksz8851_reg_clrbits(REG_PORT_CTRL, PORT_FORCE_FULL_DUPLEX);
}
/* Init step14: clear interrupt status. */
ksz8851_reg_write(REG_INT_STATUS, 0xFFFF);
/* Init step15: set interrupt mask. */
ksz8851_reg_write(REG_INT_MASK, INT_RX);
/* Init step16: enable QMU Transmit. */
ksz8851_reg_setbits(REG_TX_CTRL, TX_CTRL_ENABLE);
/* Init step17: enable QMU Receive. */
ksz8851_reg_setbits(REG_RX_CTRL1, RX_CTRL_ENABLE);
}
/**
* \brief KSZ8851SNL initialization function.
*
* \return 0 on success, 1 on communication error.
*/
uint32_t ksz8851snl_init(void)
{
uint32_t count = 10;
uint16_t dev_id = 0;
uint8_t id_ok = 0;
/* Configure the SPI peripheral. */
spi_enable_clock(KSZ8851SNL_SPI);
spi_disable(KSZ8851SNL_SPI);
spi_reset(KSZ8851SNL_SPI);
spi_set_master_mode(KSZ8851SNL_SPI);
spi_disable_mode_fault_detect(KSZ8851SNL_SPI);
spi_set_peripheral_chip_select_value(KSZ8851SNL_SPI, ~(uint32_t)(1UL << KSZ8851SNL_CS_PIN));
spi_set_fixed_peripheral_select(KSZ8851SNL_SPI);
//spi_disable_peripheral_select_decode(KSZ8851SNL_SPI);
spi_set_clock_polarity(KSZ8851SNL_SPI, KSZ8851SNL_CS_PIN, SPI_CLK_POLARITY);
spi_set_clock_phase(KSZ8851SNL_SPI, KSZ8851SNL_CS_PIN, SPI_CLK_PHASE);
spi_set_bits_per_transfer(KSZ8851SNL_SPI, KSZ8851SNL_CS_PIN,
SPI_CSR_BITS_8_BIT);
spi_set_baudrate_div(KSZ8851SNL_SPI, KSZ8851SNL_CS_PIN, (sysclk_get_cpu_hz() / KSZ8851SNL_CLOCK_SPEED));
// spi_set_transfer_delay(KSZ8851SNL_SPI, KSZ8851SNL_CS_PIN, CONFIG_SPI_MASTER_DELAY_BS,
// CONFIG_SPI_MASTER_DELAY_BCT);
spi_set_transfer_delay(KSZ8851SNL_SPI, KSZ8851SNL_CS_PIN, 0, 0);
spi_enable(KSZ8851SNL_SPI);
/* Get pointer to UART PDC register base. */
g_p_spi_pdc = spi_get_pdc_base(KSZ8851SNL_SPI);
pdc_enable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTEN | PERIPH_PTCR_TXTEN);
/* Control RSTN and CSN pin from the driver. */
gpio_configure_pin(KSZ8851SNL_CSN_GPIO, KSZ8851SNL_CSN_FLAGS);
gpio_set_pin_high(KSZ8851SNL_CSN_GPIO);
gpio_configure_pin(KSZ8851SNL_RSTN_GPIO, KSZ8851SNL_RSTN_FLAGS);
/* Reset the Micrel in a proper state. */
while( count-- )
{
/* Perform hardware reset with respect to the reset timing from the datasheet. */
gpio_set_pin_low(KSZ8851SNL_RSTN_GPIO);
vTaskDelay(2);
gpio_set_pin_high(KSZ8851SNL_RSTN_GPIO);
vTaskDelay(2);
/* Init step1: read chip ID. */
dev_id = ksz8851_reg_read(REG_CHIP_ID);
if( ( dev_id & 0xFFF0 ) == CHIP_ID_8851_16 )
{
id_ok = 1;
break;
}
}
if( id_ok != 0 )
{
ksz8851snl_set_registers();
}
return id_ok ? 1 : -1;
}
uint32_t ksz8851snl_reinit(void)
{
uint32_t count = 10;
uint16_t dev_id = 0;
uint8_t id_ok = 0;
/* Reset the Micrel in a proper state. */
while( count-- )
{
/* Perform hardware reset with respect to the reset timing from the datasheet. */
gpio_set_pin_low(KSZ8851SNL_RSTN_GPIO);
vTaskDelay(2);
gpio_set_pin_high(KSZ8851SNL_RSTN_GPIO);
vTaskDelay(2);
/* Init step1: read chip ID. */
dev_id = ksz8851_reg_read(REG_CHIP_ID);
if( ( dev_id & 0xFFF0 ) == CHIP_ID_8851_16 )
{
id_ok = 1;
break;
}
}
if( id_ok != 0 )
{
ksz8851snl_set_registers();
}
return id_ok ? 1 : -1;
}
uint32_t ksz8851snl_reset_rx( void )
{
uint16_t usValue;
usValue = ksz8851_reg_read(REG_RX_CTRL1);
usValue &= ~( ( uint16_t ) RX_CTRL_ENABLE | RX_CTRL_FLUSH_QUEUE );
ksz8851_reg_write( REG_RX_CTRL1, usValue ); vTaskDelay( 2 );
ksz8851_reg_write( REG_RX_CTRL1, usValue | RX_CTRL_FLUSH_QUEUE ); vTaskDelay( 1 );
ksz8851_reg_write( REG_RX_CTRL1, usValue ); vTaskDelay( 1 );
ksz8851_reg_write( REG_RX_CTRL1, usValue | RX_CTRL_ENABLE ); vTaskDelay( 1 );
return ( uint32_t )usValue;
}
uint32_t ksz8851snl_reset_tx( void )
{
uint16_t usValue;
usValue = ksz8851_reg_read( REG_TX_CTRL );
usValue &= ~( ( uint16_t ) TX_CTRL_ENABLE | TX_CTRL_FLUSH_QUEUE );
ksz8851_reg_write( REG_TX_CTRL, usValue ); vTaskDelay( 2 );
ksz8851_reg_write( REG_TX_CTRL, usValue | TX_CTRL_FLUSH_QUEUE ); vTaskDelay( 1 );
ksz8851_reg_write( REG_TX_CTRL, usValue ); vTaskDelay( 1 );
ksz8851_reg_write( REG_TX_CTRL, usValue | TX_CTRL_ENABLE ); vTaskDelay( 1 );
return ( uint32_t )usValue;
}