| /* sha.c |
| * |
| * Copyright (C) 2006-2015 wolfSSL Inc. |
| * |
| * This file is part of wolfSSL. (formerly known as CyaSSL) |
| * |
| * wolfSSL is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * wolfSSL is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA |
| */ |
| |
| |
| #ifdef HAVE_CONFIG_H |
| #include <config.h> |
| #endif |
| |
| #include <wolfssl/wolfcrypt/settings.h> |
| |
| #if !defined(NO_SHA) |
| |
| #include <wolfssl/wolfcrypt/sha.h> |
| #include <wolfssl/wolfcrypt/logging.h> |
| #include <wolfssl/wolfcrypt/error-crypt.h> |
| |
| #ifdef NO_INLINE |
| #include <wolfssl/wolfcrypt/misc.h> |
| #else |
| #include <wolfcrypt/src/misc.c> |
| #endif |
| |
| /* fips wrapper calls, user can call direct */ |
| #ifdef HAVE_FIPS |
| int wc_InitSha(Sha* sha) |
| { |
| return InitSha_fips(sha); |
| } |
| |
| |
| int wc_ShaUpdate(Sha* sha, const byte* data, word32 len) |
| { |
| return ShaUpdate_fips(sha, data, len); |
| } |
| |
| |
| int wc_ShaFinal(Sha* sha, byte* out) |
| { |
| return ShaFinal_fips(sha,out); |
| } |
| |
| int wc_ShaHash(const byte* data, word32 sz, byte* out) |
| { |
| return ShaHash(data, sz, out); |
| } |
| |
| #else /* else build without fips */ |
| |
| #if defined(WOLFSSL_TI_HASH) |
| /* #include <wolfcrypt/src/port/ti/ti-hash.c> included by wc_port.c */ |
| #else |
| |
| #ifdef WOLFSSL_PIC32MZ_HASH |
| #define wc_InitSha wc_InitSha_sw |
| #define wc_ShaUpdate wc_ShaUpdate_sw |
| #define wc_ShaFinal wc_ShaFinal_sw |
| #endif |
| |
| |
| #ifdef FREESCALE_MMCAU |
| #include "cau_api.h" |
| #define XTRANSFORM(S,B) cau_sha1_hash_n((B), 1, ((S))->digest) |
| #else |
| #define XTRANSFORM(S,B) Transform((S)) |
| #endif |
| |
| #ifdef STM32F2_HASH |
| /* |
| * STM32F2 hardware SHA1 support through the STM32F2 standard peripheral |
| * library. Documentation located in STM32F2xx Standard Peripheral Library |
| * document (See note in README). |
| */ |
| #include "stm32f2xx.h" |
| #include "stm32f2xx_hash.h" |
| |
| int wc_InitSha(Sha* sha) |
| { |
| /* STM32F2 struct notes: |
| * sha->buffer = first 4 bytes used to hold partial block if needed |
| * sha->buffLen = num bytes currently stored in sha->buffer |
| * sha->loLen = num bytes that have been written to STM32 FIFO |
| */ |
| XMEMSET(sha->buffer, 0, SHA_REG_SIZE); |
| sha->buffLen = 0; |
| sha->loLen = 0; |
| |
| /* initialize HASH peripheral */ |
| HASH_DeInit(); |
| |
| /* configure algo used, algo mode, datatype */ |
| HASH->CR &= ~ (HASH_CR_ALGO | HASH_CR_DATATYPE | HASH_CR_MODE); |
| HASH->CR |= (HASH_AlgoSelection_SHA1 | HASH_AlgoMode_HASH |
| | HASH_DataType_8b); |
| |
| /* reset HASH processor */ |
| HASH->CR |= HASH_CR_INIT; |
| |
| return 0; |
| } |
| |
| int wc_ShaUpdate(Sha* sha, const byte* data, word32 len) |
| { |
| word32 i = 0; |
| word32 fill = 0; |
| word32 diff = 0; |
| |
| /* if saved partial block is available */ |
| if (sha->buffLen) { |
| fill = 4 - sha->buffLen; |
| |
| /* if enough data to fill, fill and push to FIFO */ |
| if (fill <= len) { |
| XMEMCPY((byte*)sha->buffer + sha->buffLen, data, fill); |
| HASH_DataIn(*(uint32_t*)sha->buffer); |
| |
| data += fill; |
| len -= fill; |
| sha->loLen += 4; |
| sha->buffLen = 0; |
| } else { |
| /* append partial to existing stored block */ |
| XMEMCPY((byte*)sha->buffer + sha->buffLen, data, len); |
| sha->buffLen += len; |
| return; |
| } |
| } |
| |
| /* write input block in the IN FIFO */ |
| for(i = 0; i < len; i += 4) |
| { |
| diff = len - i; |
| if ( diff < 4) { |
| /* store incomplete last block, not yet in FIFO */ |
| XMEMSET(sha->buffer, 0, SHA_REG_SIZE); |
| XMEMCPY((byte*)sha->buffer, data, diff); |
| sha->buffLen = diff; |
| } else { |
| HASH_DataIn(*(uint32_t*)data); |
| data+=4; |
| } |
| } |
| |
| /* keep track of total data length thus far */ |
| sha->loLen += (len - sha->buffLen); |
| |
| return 0; |
| } |
| |
| int wc_ShaFinal(Sha* sha, byte* hash) |
| { |
| __IO uint16_t nbvalidbitsdata = 0; |
| |
| /* finish reading any trailing bytes into FIFO */ |
| if (sha->buffLen) { |
| HASH_DataIn(*(uint32_t*)sha->buffer); |
| sha->loLen += sha->buffLen; |
| } |
| |
| /* calculate number of valid bits in last word of input data */ |
| nbvalidbitsdata = 8 * (sha->loLen % SHA_REG_SIZE); |
| |
| /* configure number of valid bits in last word of the data */ |
| HASH_SetLastWordValidBitsNbr(nbvalidbitsdata); |
| |
| /* start HASH processor */ |
| HASH_StartDigest(); |
| |
| /* wait until Busy flag == RESET */ |
| while (HASH_GetFlagStatus(HASH_FLAG_BUSY) != RESET) {} |
| |
| /* read message digest */ |
| sha->digest[0] = HASH->HR[0]; |
| sha->digest[1] = HASH->HR[1]; |
| sha->digest[2] = HASH->HR[2]; |
| sha->digest[3] = HASH->HR[3]; |
| sha->digest[4] = HASH->HR[4]; |
| |
| ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE); |
| |
| XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE); |
| |
| return wc_InitSha(sha); /* reset state */ |
| } |
| |
| #else /* wc_ software implementation */ |
| |
| #ifndef WOLFSSL_HAVE_MIN |
| #define WOLFSSL_HAVE_MIN |
| |
| static INLINE word32 min(word32 a, word32 b) |
| { |
| return a > b ? b : a; |
| } |
| |
| #endif /* WOLFSSL_HAVE_MIN */ |
| |
| |
| int wc_InitSha(Sha* sha) |
| { |
| #ifdef FREESCALE_MMCAU |
| cau_sha1_initialize_output(sha->digest); |
| #else |
| sha->digest[0] = 0x67452301L; |
| sha->digest[1] = 0xEFCDAB89L; |
| sha->digest[2] = 0x98BADCFEL; |
| sha->digest[3] = 0x10325476L; |
| sha->digest[4] = 0xC3D2E1F0L; |
| #endif |
| |
| sha->buffLen = 0; |
| sha->loLen = 0; |
| sha->hiLen = 0; |
| |
| return 0; |
| } |
| |
| #ifndef FREESCALE_MMCAU |
| |
| #define blk0(i) (W[i] = sha->buffer[i]) |
| #define blk1(i) (W[(i)&15] = \ |
| rotlFixed(W[((i)+13)&15]^W[((i)+8)&15]^W[((i)+2)&15]^W[(i)&15],1)) |
| |
| #define f1(x,y,z) ((z)^((x) &((y)^(z)))) |
| #define f2(x,y,z) ((x)^(y)^(z)) |
| #define f3(x,y,z) (((x)&(y))|((z)&((x)|(y)))) |
| #define f4(x,y,z) ((x)^(y)^(z)) |
| |
| /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ |
| #define R0(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk0((i)) + 0x5A827999+ \ |
| rotlFixed((v),5); (w) = rotlFixed((w),30); |
| #define R1(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk1((i)) + 0x5A827999+ \ |
| rotlFixed((v),5); (w) = rotlFixed((w),30); |
| #define R2(v,w,x,y,z,i) (z)+= f2((w),(x),(y)) + blk1((i)) + 0x6ED9EBA1+ \ |
| rotlFixed((v),5); (w) = rotlFixed((w),30); |
| #define R3(v,w,x,y,z,i) (z)+= f3((w),(x),(y)) + blk1((i)) + 0x8F1BBCDC+ \ |
| rotlFixed((v),5); (w) = rotlFixed((w),30); |
| #define R4(v,w,x,y,z,i) (z)+= f4((w),(x),(y)) + blk1((i)) + 0xCA62C1D6+ \ |
| rotlFixed((v),5); (w) = rotlFixed((w),30); |
| |
| static void Transform(Sha* sha) |
| { |
| word32 W[SHA_BLOCK_SIZE / sizeof(word32)]; |
| |
| /* Copy context->state[] to working vars */ |
| word32 a = sha->digest[0]; |
| word32 b = sha->digest[1]; |
| word32 c = sha->digest[2]; |
| word32 d = sha->digest[3]; |
| word32 e = sha->digest[4]; |
| |
| #ifdef USE_SLOW_SHA |
| word32 t, i; |
| |
| for (i = 0; i < 16; i++) { |
| R0(a, b, c, d, e, i); |
| t = e; e = d; d = c; c = b; b = a; a = t; |
| } |
| |
| for (; i < 20; i++) { |
| R1(a, b, c, d, e, i); |
| t = e; e = d; d = c; c = b; b = a; a = t; |
| } |
| |
| for (; i < 40; i++) { |
| R2(a, b, c, d, e, i); |
| t = e; e = d; d = c; c = b; b = a; a = t; |
| } |
| |
| for (; i < 60; i++) { |
| R3(a, b, c, d, e, i); |
| t = e; e = d; d = c; c = b; b = a; a = t; |
| } |
| |
| for (; i < 80; i++) { |
| R4(a, b, c, d, e, i); |
| t = e; e = d; d = c; c = b; b = a; a = t; |
| } |
| #else |
| /* nearly 1 K bigger in code size but 25% faster */ |
| /* 4 rounds of 20 operations each. Loop unrolled. */ |
| R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); |
| R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); |
| R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); |
| R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); |
| |
| R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); |
| |
| R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); |
| R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); |
| R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); |
| R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); |
| R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); |
| |
| R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); |
| R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); |
| R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); |
| R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); |
| R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); |
| |
| R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); |
| R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); |
| R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); |
| R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); |
| R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); |
| #endif |
| |
| /* Add the working vars back into digest state[] */ |
| sha->digest[0] += a; |
| sha->digest[1] += b; |
| sha->digest[2] += c; |
| sha->digest[3] += d; |
| sha->digest[4] += e; |
| } |
| |
| #endif /* FREESCALE_MMCAU */ |
| |
| |
| static INLINE void AddLength(Sha* sha, word32 len) |
| { |
| word32 tmp = sha->loLen; |
| if ( (sha->loLen += len) < tmp) |
| sha->hiLen++; /* carry low to high */ |
| } |
| |
| |
| int wc_ShaUpdate(Sha* sha, const byte* data, word32 len) |
| { |
| /* do block size increments */ |
| byte* local = (byte*)sha->buffer; |
| |
| while (len) { |
| word32 add = min(len, SHA_BLOCK_SIZE - sha->buffLen); |
| XMEMCPY(&local[sha->buffLen], data, add); |
| |
| sha->buffLen += add; |
| data += add; |
| len -= add; |
| |
| if (sha->buffLen == SHA_BLOCK_SIZE) { |
| #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU) |
| ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE); |
| #endif |
| XTRANSFORM(sha, local); |
| AddLength(sha, SHA_BLOCK_SIZE); |
| sha->buffLen = 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| int wc_ShaFinal(Sha* sha, byte* hash) |
| { |
| byte* local = (byte*)sha->buffer; |
| |
| AddLength(sha, sha->buffLen); /* before adding pads */ |
| |
| local[sha->buffLen++] = 0x80; /* add 1 */ |
| |
| /* pad with zeros */ |
| if (sha->buffLen > SHA_PAD_SIZE) { |
| XMEMSET(&local[sha->buffLen], 0, SHA_BLOCK_SIZE - sha->buffLen); |
| sha->buffLen += SHA_BLOCK_SIZE - sha->buffLen; |
| |
| #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU) |
| ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE); |
| #endif |
| XTRANSFORM(sha, local); |
| sha->buffLen = 0; |
| } |
| XMEMSET(&local[sha->buffLen], 0, SHA_PAD_SIZE - sha->buffLen); |
| |
| /* put lengths in bits */ |
| sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) + |
| (sha->hiLen << 3); |
| sha->loLen = sha->loLen << 3; |
| |
| /* store lengths */ |
| #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU) |
| ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE); |
| #endif |
| /* ! length ordering dependent on digest endian type ! */ |
| XMEMCPY(&local[SHA_PAD_SIZE], &sha->hiLen, sizeof(word32)); |
| XMEMCPY(&local[SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32)); |
| |
| #ifdef FREESCALE_MMCAU |
| /* Kinetis requires only these bytes reversed */ |
| ByteReverseWords(&sha->buffer[SHA_PAD_SIZE/sizeof(word32)], |
| &sha->buffer[SHA_PAD_SIZE/sizeof(word32)], |
| 2 * sizeof(word32)); |
| #endif |
| |
| XTRANSFORM(sha, local); |
| #ifdef LITTLE_ENDIAN_ORDER |
| ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE); |
| #endif |
| XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE); |
| |
| return wc_InitSha(sha); /* reset state */ |
| } |
| |
| #endif /* STM32F2_HASH */ |
| |
| |
| int wc_ShaHash(const byte* data, word32 len, byte* hash) |
| { |
| int ret = 0; |
| #ifdef WOLFSSL_SMALL_STACK |
| Sha* sha; |
| #else |
| Sha sha[1]; |
| #endif |
| |
| #ifdef WOLFSSL_SMALL_STACK |
| sha = (Sha*)XMALLOC(sizeof(Sha), NULL, DYNAMIC_TYPE_TMP_BUFFER); |
| if (sha == NULL) |
| return MEMORY_E; |
| #endif |
| |
| if ((ret = wc_InitSha(sha)) != 0) { |
| WOLFSSL_MSG("wc_InitSha failed"); |
| } |
| else { |
| wc_ShaUpdate(sha, data, len); |
| wc_ShaFinal(sha, hash); |
| } |
| |
| #ifdef WOLFSSL_SMALL_STACK |
| XFREE(sha, NULL, DYNAMIC_TYPE_TMP_BUFFER); |
| #endif |
| |
| return ret; |
| |
| } |
| |
| #endif /* HAVE_FIPS */ |
| #endif /* WOLFSSL_TI_HASH */ |
| #endif /* NO_SHA */ |
| |