| /* | |
| * FreeRTOS Kernel V10.0.1 | |
| * Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. | |
| * | |
| * Permission is hereby granted, free of charge, to any person obtaining a copy of | |
| * this software and associated documentation files (the "Software"), to deal in | |
| * the Software without restriction, including without limitation the rights to | |
| * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | |
| * the Software, and to permit persons to whom the Software is furnished to do so, | |
| * subject to the following conditions: | |
| * | |
| * The above copyright notice and this permission notice shall be included in all | |
| * copies or substantial portions of the Software. | |
| * | |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS | |
| * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | |
| * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
| * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
| * | |
| * http://www.FreeRTOS.org | |
| * http://aws.amazon.com/freertos | |
| * | |
| * 1 tab == 4 spaces! | |
| */ | |
| #include <stdlib.h> | |
| #include <string.h> | |
| /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining | |
| all the API functions to use the MPU wrappers. That should only be done when | |
| task.h is included from an application file. */ | |
| #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE | |
| #include "FreeRTOS.h" | |
| #include "task.h" | |
| #include "queue.h" | |
| #if ( configQUEUE_CREATION_INFO == 1 ) | |
| #include <nlbacktrace.h> | |
| #if (configUSE_TRACE_FACILITY == 0) | |
| #error QUEUE_CREATION_INFO requires USE_TRACE_FACILITY | |
| #endif /* configUSE_TRACE_FACILITY */ | |
| #endif /*configQUEUE_CREATION_INFO */ | |
| #if ( configUSE_CO_ROUTINES == 1 ) | |
| #include "croutine.h" | |
| #endif | |
| /* Lint e961 and e750 are suppressed as a MISRA exception justified because the | |
| MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the | |
| header files above, but not in this file, in order to generate the correct | |
| privileged Vs unprivileged linkage and placement. */ | |
| #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */ | |
| /* Constants used with the cRxLock and cTxLock structure members. */ | |
| #define queueUNLOCKED ( ( int8_t ) -1 ) | |
| #define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 ) | |
| /* When the Queue_t structure is used to represent a base queue its pcHead and | |
| pcTail members are used as pointers into the queue storage area. When the | |
| Queue_t structure is used to represent a mutex pcHead and pcTail pointers are | |
| not necessary, and the pcHead pointer is set to NULL to indicate that the | |
| pcTail pointer actually points to the mutex holder (if any). Map alternative | |
| names to the pcHead and pcTail structure members to ensure the readability of | |
| the code is maintained despite this dual use of two structure members. An | |
| alternative implementation would be to use a union, but use of a union is | |
| against the coding standard (although an exception to the standard has been | |
| permitted where the dual use also significantly changes the type of the | |
| structure member). */ | |
| #define pxMutexHolder pcTail | |
| #define uxQueueType pcHead | |
| #define queueQUEUE_IS_MUTEX NULL | |
| /* Semaphores do not actually store or copy data, so have an item size of | |
| zero. */ | |
| #define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 ) | |
| #define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U ) | |
| #if( configUSE_PREEMPTION == 0 ) | |
| /* If the cooperative scheduler is being used then a yield should not be | |
| performed just because a higher priority task has been woken. */ | |
| #define queueYIELD_IF_USING_PREEMPTION() | |
| #else | |
| #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API() | |
| #endif | |
| /* | |
| * Definition of the queue used by the scheduler. | |
| * Items are queued by copy, not reference. See the following link for the | |
| * rationale: http://www.freertos.org/Embedded-RTOS-Queues.html | |
| */ | |
| typedef struct QueueDefinition | |
| { | |
| int8_t *pcHead; /*< Points to the beginning of the queue storage area. */ | |
| int8_t *pcTail; /*< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */ | |
| int8_t *pcWriteTo; /*< Points to the free next place in the storage area. */ | |
| union /* Use of a union is an exception to the coding standard to ensure two mutually exclusive structure members don't appear simultaneously (wasting RAM). */ | |
| { | |
| int8_t *pcReadFrom; /*< Points to the last place that a queued item was read from when the structure is used as a queue. */ | |
| UBaseType_t uxRecursiveCallCount;/*< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */ | |
| } u; | |
| List_t xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */ | |
| List_t xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */ | |
| volatile UBaseType_t uxMessagesWaiting;/*< The number of items currently in the queue. */ | |
| UBaseType_t uxLength; /*< The length of the queue defined as the number of items it will hold, not the number of bytes. */ | |
| UBaseType_t uxItemSize; /*< The size of each items that the queue will hold. */ | |
| volatile int8_t cRxLock; /*< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */ | |
| volatile int8_t cTxLock; /*< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */ | |
| #if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) | |
| uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */ | |
| #endif | |
| #if ( configUSE_QUEUE_SETS == 1 ) | |
| struct QueueDefinition *pxQueueSetContainer; | |
| #endif | |
| #if ( configUSE_TRACE_FACILITY == 1 ) | |
| UBaseType_t uxQueueNumber; | |
| uint8_t ucQueueType; | |
| #endif | |
| #if ( configQUEUE_METRICS == 1 ) | |
| volatile UBaseType_t uxMaxMessagesWaiting; /*< The greatest number of items ever in the queue. */ | |
| struct QueueDefinition *next; /*< Used to link queues together for vQueueGetMetrics */ | |
| #if ( configQUEUE_CREATION_INFO == 1 ) | |
| char creating_task[configMAX_TASK_NAME_LEN]; | |
| uint32_t creating_backtrace[configMAX_BACKTRACE_LEVELS]; | |
| #endif /* configQUEUE_CREATION_INFO == 1 */ | |
| #endif /* configQUEUE_METRICS == 1 */ | |
| } xQUEUE; | |
| /* The old xQUEUE name is maintained above then typedefed to the new Queue_t | |
| name below to enable the use of older kernel aware debuggers. */ | |
| typedef xQUEUE Queue_t; | |
| /*************************************************************** | |
| * Start Nest additions | |
| ***************************************************************/ | |
| #if ( configQUEUE_METRICS == 1 ) | |
| #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) | |
| #error configQUEUE_METRICS expects no configSUPPORT_DYNAMIC_ALLOCATION | |
| #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ | |
| // Singly linked list of created queues | |
| static Queue_t *queue_list_head; | |
| #if ( configQUEUE_CREATION_INFO == 1 ) | |
| #include <nlertask.h> | |
| #include <nlplatform.h> | |
| static void record_queue_creation_details(Queue_t *queue) | |
| { | |
| /* since this isn't a leaf, it should be fine to use nlbacktrace */ | |
| uint32_t pc = nlplatform_get_pc(); | |
| uint32_t sp = nlplatform_get_sp(); | |
| nl_task_t *currentTask = nl_task_get_current(); | |
| uint32_t stackTop; | |
| if (currentTask) | |
| { | |
| stackTop = (uint32_t)currentTask->mStackTop; | |
| } | |
| else | |
| { | |
| // stackTop is unknown | |
| stackTop = 0; | |
| } | |
| nlbacktrace(pc, sp, stackTop, queue->creating_backtrace, MAX_BACKTRACE_LEVELS); | |
| if (currentTask) | |
| { | |
| memcpy(queue->creating_task, | |
| pcTaskGetTaskName(xTaskGetCurrentTaskHandle()), | |
| configMAX_TASK_NAME_LEN); | |
| } | |
| else | |
| { | |
| strncpy(queue->creating_task, "main", configMAX_TASK_NAME_LEN); | |
| } | |
| } | |
| #endif /* configQUEUE_CREATION_INFO */ | |
| static void record_queue_creation(Queue_t *pxQueue) | |
| { | |
| memset(pxQueue, 0, sizeof(*pxQueue)); | |
| /* To make it faster, we always add to front of list */ | |
| pxQueue->next = queue_list_head; | |
| queue_list_head = pxQueue; | |
| #if ( configQUEUE_CREATION_INFO == 1 ) | |
| record_queue_creation_details(pxQueue); | |
| #endif | |
| } | |
| static void record_queue_deletion(Queue_t *pxQueue) | |
| { | |
| /* Have to search the list from the beginning to find the queue to remove it */ | |
| Queue_t **ppxQueue = &queue_list_head; | |
| while (*ppxQueue) | |
| { | |
| if (*ppxQueue == pxQueue) | |
| { | |
| *ppxQueue = pxQueue->next; | |
| pxQueue->next = NULL; | |
| break; | |
| } | |
| ppxQueue = &((*ppxQueue)->next); | |
| } | |
| } | |
| void vQueueGetMetrics( vQueueMetricsCallback callback ) | |
| { | |
| const Queue_t * pxQueue; | |
| configASSERT ( callback ); | |
| vTaskSuspendAll(); | |
| pxQueue = queue_list_head; | |
| while (pxQueue) | |
| { | |
| // only interested in real queues, not mutexes and semaphores | |
| if (pxQueue->uxItemSize > 0) | |
| { | |
| freertos_queue_metric_t m; | |
| m.pvBufAddr = pxQueue->pcHead; | |
| m.uxSize = pxQueue->uxLength; | |
| m.uxNumItems = pxQueue->uxMessagesWaiting; | |
| m.uxMaxMessagesWaiting = pxQueue->uxMaxMessagesWaiting; | |
| #if ( configQUEUE_CREATION_INFO == 1 ) | |
| m.queue_type = pxQueue->ucQueueType; | |
| memcpy(m.creating_task, pxQueue->creating_task, sizeof(m.creating_task)); | |
| memcpy(m.creating_backtrace, pxQueue->creating_backtrace, sizeof(m.creating_backtrace)); | |
| #endif /* configQUEUE_CREATION_INFO */ | |
| callback(&m, (QueueHandle_t)pxQueue); | |
| } | |
| pxQueue = pxQueue->next; | |
| } | |
| ( void ) xTaskResumeAll(); | |
| } | |
| #endif // configQUEUE_METRICS | |
| /*************************************************************** | |
| * End Nest additions | |
| ***************************************************************/ | |
| /*-----------------------------------------------------------*/ | |
| /* | |
| * The queue registry is just a means for kernel aware debuggers to locate | |
| * queue structures. It has no other purpose so is an optional component. | |
| */ | |
| #if ( configQUEUE_REGISTRY_SIZE > 0 ) | |
| /* The type stored within the queue registry array. This allows a name | |
| to be assigned to each queue making kernel aware debugging a little | |
| more user friendly. */ | |
| typedef struct QUEUE_REGISTRY_ITEM | |
| { | |
| const char *pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ | |
| QueueHandle_t xHandle; | |
| } xQueueRegistryItem; | |
| /* The old xQueueRegistryItem name is maintained above then typedefed to the | |
| new xQueueRegistryItem name below to enable the use of older kernel aware | |
| debuggers. */ | |
| typedef xQueueRegistryItem QueueRegistryItem_t; | |
| /* The queue registry is simply an array of QueueRegistryItem_t structures. | |
| The pcQueueName member of a structure being NULL is indicative of the | |
| array position being vacant. */ | |
| PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ]; | |
| #endif /* configQUEUE_REGISTRY_SIZE */ | |
| /* | |
| * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not | |
| * prevent an ISR from adding or removing items to the queue, but does prevent | |
| * an ISR from removing tasks from the queue event lists. If an ISR finds a | |
| * queue is locked it will instead increment the appropriate queue lock count | |
| * to indicate that a task may require unblocking. When the queue in unlocked | |
| * these lock counts are inspected, and the appropriate action taken. | |
| */ | |
| static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION; | |
| /* | |
| * Uses a critical section to determine if there is any data in a queue. | |
| * | |
| * @return pdTRUE if the queue contains no items, otherwise pdFALSE. | |
| */ | |
| static BaseType_t prvIsQueueEmpty( const Queue_t *pxQueue ) PRIVILEGED_FUNCTION; | |
| /* | |
| * Uses a critical section to determine if there is any space in a queue. | |
| * | |
| * @return pdTRUE if there is no space, otherwise pdFALSE; | |
| */ | |
| static BaseType_t prvIsQueueFull( const Queue_t *pxQueue ) PRIVILEGED_FUNCTION; | |
| /* | |
| * Copies an item into the queue, either at the front of the queue or the | |
| * back of the queue. | |
| */ | |
| static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition ) PRIVILEGED_FUNCTION; | |
| /* | |
| * Copies an item out of a queue. | |
| */ | |
| static void prvCopyDataFromQueue( Queue_t * const pxQueue, void * const pvBuffer ) PRIVILEGED_FUNCTION; | |
| #if ( configUSE_QUEUE_SETS == 1 ) | |
| /* | |
| * Checks to see if a queue is a member of a queue set, and if so, notifies | |
| * the queue set that the queue contains data. | |
| */ | |
| static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue, const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION; | |
| #endif | |
| /* | |
| * Called after a Queue_t structure has been allocated either statically or | |
| * dynamically to fill in the structure's members. | |
| */ | |
| static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, const uint8_t ucQueueType, Queue_t *pxNewQueue ) PRIVILEGED_FUNCTION; | |
| /* | |
| * Mutexes are a special type of queue. When a mutex is created, first the | |
| * queue is created, then prvInitialiseMutex() is called to configure the queue | |
| * as a mutex. | |
| */ | |
| #if( configUSE_MUTEXES == 1 ) | |
| static void prvInitialiseMutex( Queue_t *pxNewQueue ) PRIVILEGED_FUNCTION; | |
| #endif | |
| #if( configUSE_MUTEXES == 1 ) | |
| /* | |
| * If a task waiting for a mutex causes the mutex holder to inherit a | |
| * priority, but the waiting task times out, then the holder should | |
| * disinherit the priority - but only down to the highest priority of any | |
| * other tasks that are waiting for the same mutex. This function returns | |
| * that priority. | |
| */ | |
| static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION; | |
| #endif | |
| /*-----------------------------------------------------------*/ | |
| /* | |
| * Macro to mark a queue as locked. Locking a queue prevents an ISR from | |
| * accessing the queue event lists. | |
| */ | |
| #define prvLockQueue( pxQueue ) \ | |
| taskENTER_CRITICAL(); \ | |
| { \ | |
| if( ( pxQueue )->cRxLock == queueUNLOCKED ) \ | |
| { \ | |
| ( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \ | |
| } \ | |
| if( ( pxQueue )->cTxLock == queueUNLOCKED ) \ | |
| { \ | |
| ( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \ | |
| } \ | |
| } \ | |
| taskEXIT_CRITICAL() | |
| /*-----------------------------------------------------------*/ | |
| BaseType_t xQueueGenericReset( QueueHandle_t xQueue, BaseType_t xNewQueue ) | |
| { | |
| Queue_t * const pxQueue = ( Queue_t * ) xQueue; | |
| configASSERT( pxQueue ); | |
| taskENTER_CRITICAL(); | |
| { | |
| pxQueue->pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize ); | |
| pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U; | |
| #if ( configQUEUE_METRICS == 1 ) | |
| { | |
| pxQueue->uxMaxMessagesWaiting = ( UBaseType_t ) 0U; | |
| } | |
| #endif | |
| pxQueue->pcWriteTo = pxQueue->pcHead; | |
| pxQueue->u.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - ( UBaseType_t ) 1U ) * pxQueue->uxItemSize ); | |
| pxQueue->cRxLock = queueUNLOCKED; | |
| pxQueue->cTxLock = queueUNLOCKED; | |
| if( xNewQueue == pdFALSE ) | |
| { | |
| /* If there are tasks blocked waiting to read from the queue, then | |
| the tasks will remain blocked as after this function exits the queue | |
| will still be empty. If there are tasks blocked waiting to write to | |
| the queue, then one should be unblocked as after this function exits | |
| it will be possible to write to it. */ | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) | |
| { | |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) | |
| { | |
| queueYIELD_IF_USING_PREEMPTION(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| /* Ensure the event queues start in the correct state. */ | |
| vListInitialise( &( pxQueue->xTasksWaitingToSend ) ); | |
| vListInitialise( &( pxQueue->xTasksWaitingToReceive ) ); | |
| } | |
| } | |
| taskEXIT_CRITICAL(); | |
| /* A value is returned for calling semantic consistency with previous | |
| versions. */ | |
| return pdPASS; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| #if( configSUPPORT_STATIC_ALLOCATION == 1 ) | |
| QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, StaticQueue_t *pxStaticQueue, const uint8_t ucQueueType ) | |
| { | |
| Queue_t *pxNewQueue; | |
| configASSERT( uxQueueLength > ( UBaseType_t ) 0 ); | |
| /* The StaticQueue_t structure and the queue storage area must be | |
| supplied. */ | |
| configASSERT( pxStaticQueue != NULL ); | |
| /* A queue storage area should be provided if the item size is not 0, and | |
| should not be provided if the item size is 0. */ | |
| configASSERT( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0 ) ) ); | |
| configASSERT( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0 ) ) ); | |
| #if( configASSERT_DEFINED == 1 ) | |
| { | |
| /* Sanity check that the size of the structure used to declare a | |
| variable of type StaticQueue_t or StaticSemaphore_t equals the size of | |
| the real queue and semaphore structures. */ | |
| volatile size_t xSize = sizeof( StaticQueue_t ); | |
| configASSERT( xSize == sizeof( Queue_t ) ); | |
| } | |
| #endif /* configASSERT_DEFINED */ | |
| /* The address of a statically allocated queue was passed in, use it. | |
| The address of a statically allocated storage area was also passed in | |
| but is already set. */ | |
| pxNewQueue = ( Queue_t * ) pxStaticQueue; /*lint !e740 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */ | |
| if( pxNewQueue != NULL ) | |
| { | |
| #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) | |
| { | |
| /* Queues can be allocated wither statically or dynamically, so | |
| note this queue was allocated statically in case the queue is | |
| later deleted. */ | |
| pxNewQueue->ucStaticallyAllocated = pdTRUE; | |
| } | |
| #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ | |
| prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue ); | |
| } | |
| else | |
| { | |
| traceQUEUE_CREATE_FAILED( ucQueueType ); | |
| } | |
| return pxNewQueue; | |
| } | |
| #endif /* configSUPPORT_STATIC_ALLOCATION */ | |
| /*-----------------------------------------------------------*/ | |
| #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) | |
| QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType ) | |
| { | |
| Queue_t *pxNewQueue; | |
| size_t xQueueSizeInBytes; | |
| uint8_t *pucQueueStorage; | |
| configASSERT( uxQueueLength > ( UBaseType_t ) 0 ); | |
| if( uxItemSize == ( UBaseType_t ) 0 ) | |
| { | |
| /* There is not going to be a queue storage area. */ | |
| xQueueSizeInBytes = ( size_t ) 0; | |
| } | |
| else | |
| { | |
| /* Allocate enough space to hold the maximum number of items that | |
| can be in the queue at any time. */ | |
| xQueueSizeInBytes = ( size_t ) ( uxQueueLength * uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ | |
| } | |
| pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes ); | |
| if( pxNewQueue != NULL ) | |
| { | |
| /* Jump past the queue structure to find the location of the queue | |
| storage area. */ | |
| pucQueueStorage = ( ( uint8_t * ) pxNewQueue ) + sizeof( Queue_t ); | |
| #if( configSUPPORT_STATIC_ALLOCATION == 1 ) | |
| { | |
| /* Queues can be created either statically or dynamically, so | |
| note this task was created dynamically in case it is later | |
| deleted. */ | |
| pxNewQueue->ucStaticallyAllocated = pdFALSE; | |
| } | |
| #endif /* configSUPPORT_STATIC_ALLOCATION */ | |
| prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue ); | |
| } | |
| else | |
| { | |
| traceQUEUE_CREATE_FAILED( ucQueueType ); | |
| } | |
| return pxNewQueue; | |
| } | |
| #endif /* configSUPPORT_STATIC_ALLOCATION */ | |
| /*-----------------------------------------------------------*/ | |
| static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, const uint8_t ucQueueType, Queue_t *pxNewQueue ) | |
| { | |
| /* Remove compiler warnings about unused parameters should | |
| configUSE_TRACE_FACILITY not be set to 1. */ | |
| ( void ) ucQueueType; | |
| #if ( configQUEUE_METRICS == 1 ) | |
| { | |
| record_queue_creation(pxNewQueue); | |
| } | |
| #endif | |
| if( uxItemSize == ( UBaseType_t ) 0 ) | |
| { | |
| /* No RAM was allocated for the queue storage area, but PC head cannot | |
| be set to NULL because NULL is used as a key to say the queue is used as | |
| a mutex. Therefore just set pcHead to point to the queue as a benign | |
| value that is known to be within the memory map. */ | |
| pxNewQueue->pcHead = ( int8_t * ) pxNewQueue; | |
| } | |
| else | |
| { | |
| /* Set the head to the start of the queue storage area. */ | |
| pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage; | |
| } | |
| /* Initialise the queue members as described where the queue type is | |
| defined. */ | |
| pxNewQueue->uxLength = uxQueueLength; | |
| pxNewQueue->uxItemSize = uxItemSize; | |
| ( void ) xQueueGenericReset( pxNewQueue, pdTRUE ); | |
| #if ( configUSE_TRACE_FACILITY == 1 ) | |
| { | |
| pxNewQueue->ucQueueType = ucQueueType; | |
| } | |
| #endif /* configUSE_TRACE_FACILITY */ | |
| #if( configUSE_QUEUE_SETS == 1 ) | |
| { | |
| pxNewQueue->pxQueueSetContainer = NULL; | |
| } | |
| #endif /* configUSE_QUEUE_SETS */ | |
| traceQUEUE_CREATE( pxNewQueue ); | |
| } | |
| /*-----------------------------------------------------------*/ | |
| #if( configUSE_MUTEXES == 1 ) | |
| static void prvInitialiseMutex( Queue_t *pxNewQueue ) | |
| { | |
| if( pxNewQueue != NULL ) | |
| { | |
| /* The queue create function will set all the queue structure members | |
| correctly for a generic queue, but this function is creating a | |
| mutex. Overwrite those members that need to be set differently - | |
| in particular the information required for priority inheritance. */ | |
| pxNewQueue->pxMutexHolder = NULL; | |
| pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX; | |
| /* In case this is a recursive mutex. */ | |
| pxNewQueue->u.uxRecursiveCallCount = 0; | |
| traceCREATE_MUTEX( pxNewQueue ); | |
| /* Start with the semaphore in the expected state. */ | |
| ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK ); | |
| } | |
| else | |
| { | |
| traceCREATE_MUTEX_FAILED(); | |
| } | |
| } | |
| #endif /* configUSE_MUTEXES */ | |
| /*-----------------------------------------------------------*/ | |
| #if( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) | |
| QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType ) | |
| { | |
| Queue_t *pxNewQueue; | |
| const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0; | |
| pxNewQueue = ( Queue_t * ) xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType ); | |
| prvInitialiseMutex( pxNewQueue ); | |
| return pxNewQueue; | |
| } | |
| #endif /* configUSE_MUTEXES */ | |
| /*-----------------------------------------------------------*/ | |
| #if( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) | |
| QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType, StaticQueue_t *pxStaticQueue ) | |
| { | |
| Queue_t *pxNewQueue; | |
| const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0; | |
| /* Prevent compiler warnings about unused parameters if | |
| configUSE_TRACE_FACILITY does not equal 1. */ | |
| ( void ) ucQueueType; | |
| pxNewQueue = ( Queue_t * ) xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType ); | |
| prvInitialiseMutex( pxNewQueue ); | |
| return pxNewQueue; | |
| } | |
| #endif /* configUSE_MUTEXES */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) | |
| void* xQueueGetMutexHolder( QueueHandle_t xSemaphore ) | |
| { | |
| void *pxReturn; | |
| /* This function is called by xSemaphoreGetMutexHolder(), and should not | |
| be called directly. Note: This is a good way of determining if the | |
| calling task is the mutex holder, but not a good way of determining the | |
| identity of the mutex holder, as the holder may change between the | |
| following critical section exiting and the function returning. */ | |
| taskENTER_CRITICAL(); | |
| { | |
| if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX ) | |
| { | |
| pxReturn = ( void * ) ( ( Queue_t * ) xSemaphore )->pxMutexHolder; | |
| } | |
| else | |
| { | |
| pxReturn = NULL; | |
| } | |
| } | |
| taskEXIT_CRITICAL(); | |
| return pxReturn; | |
| } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */ | |
| #endif | |
| /*-----------------------------------------------------------*/ | |
| #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) | |
| void* xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore ) | |
| { | |
| void *pxReturn; | |
| configASSERT( xSemaphore ); | |
| /* Mutexes cannot be used in interrupt service routines, so the mutex | |
| holder should not change in an ISR, and therefore a critical section is | |
| not required here. */ | |
| if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX ) | |
| { | |
| pxReturn = ( void * ) ( ( Queue_t * ) xSemaphore )->pxMutexHolder; | |
| } | |
| else | |
| { | |
| pxReturn = NULL; | |
| } | |
| return pxReturn; | |
| } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */ | |
| #endif | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_RECURSIVE_MUTEXES == 1 ) | |
| BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex ) | |
| { | |
| BaseType_t xReturn; | |
| Queue_t * const pxMutex = ( Queue_t * ) xMutex; | |
| configASSERT( pxMutex ); | |
| /* If this is the task that holds the mutex then pxMutexHolder will not | |
| change outside of this task. If this task does not hold the mutex then | |
| pxMutexHolder can never coincidentally equal the tasks handle, and as | |
| this is the only condition we are interested in it does not matter if | |
| pxMutexHolder is accessed simultaneously by another task. Therefore no | |
| mutual exclusion is required to test the pxMutexHolder variable. */ | |
| if( pxMutex->pxMutexHolder == ( void * ) xTaskGetCurrentTaskHandle() ) /*lint !e961 Not a redundant cast as TaskHandle_t is a typedef. */ | |
| { | |
| traceGIVE_MUTEX_RECURSIVE( pxMutex ); | |
| /* uxRecursiveCallCount cannot be zero if pxMutexHolder is equal to | |
| the task handle, therefore no underflow check is required. Also, | |
| uxRecursiveCallCount is only modified by the mutex holder, and as | |
| there can only be one, no mutual exclusion is required to modify the | |
| uxRecursiveCallCount member. */ | |
| ( pxMutex->u.uxRecursiveCallCount )--; | |
| /* Has the recursive call count unwound to 0? */ | |
| if( pxMutex->u.uxRecursiveCallCount == ( UBaseType_t ) 0 ) | |
| { | |
| /* Return the mutex. This will automatically unblock any other | |
| task that might be waiting to access the mutex. */ | |
| ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| xReturn = pdPASS; | |
| } | |
| else | |
| { | |
| /* The mutex cannot be given because the calling task is not the | |
| holder. */ | |
| xReturn = pdFAIL; | |
| traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex ); | |
| } | |
| return xReturn; | |
| } | |
| #endif /* configUSE_RECURSIVE_MUTEXES */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_RECURSIVE_MUTEXES == 1 ) | |
| BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex, TickType_t xTicksToWait ) | |
| { | |
| BaseType_t xReturn; | |
| Queue_t * const pxMutex = ( Queue_t * ) xMutex; | |
| configASSERT( pxMutex ); | |
| /* Comments regarding mutual exclusion as per those within | |
| xQueueGiveMutexRecursive(). */ | |
| traceTAKE_MUTEX_RECURSIVE( pxMutex ); | |
| if( pxMutex->pxMutexHolder == ( void * ) xTaskGetCurrentTaskHandle() ) /*lint !e961 Cast is not redundant as TaskHandle_t is a typedef. */ | |
| { | |
| ( pxMutex->u.uxRecursiveCallCount )++; | |
| xReturn = pdPASS; | |
| } | |
| else | |
| { | |
| xReturn = xQueueSemaphoreTake( pxMutex, xTicksToWait ); | |
| /* pdPASS will only be returned if the mutex was successfully | |
| obtained. The calling task may have entered the Blocked state | |
| before reaching here. */ | |
| if( xReturn != pdFAIL ) | |
| { | |
| ( pxMutex->u.uxRecursiveCallCount )++; | |
| } | |
| else | |
| { | |
| traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex ); | |
| } | |
| } | |
| return xReturn; | |
| } | |
| #endif /* configUSE_RECURSIVE_MUTEXES */ | |
| /*-----------------------------------------------------------*/ | |
| #if( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) | |
| QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount, StaticQueue_t *pxStaticQueue ) | |
| { | |
| QueueHandle_t xHandle; | |
| configASSERT( uxMaxCount != 0 ); | |
| configASSERT( uxInitialCount <= uxMaxCount ); | |
| xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE ); | |
| if( xHandle != NULL ) | |
| { | |
| ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount; | |
| traceCREATE_COUNTING_SEMAPHORE(); | |
| } | |
| else | |
| { | |
| traceCREATE_COUNTING_SEMAPHORE_FAILED(); | |
| } | |
| return xHandle; | |
| } | |
| #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */ | |
| /*-----------------------------------------------------------*/ | |
| #if( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) | |
| QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount ) | |
| { | |
| QueueHandle_t xHandle; | |
| configASSERT( uxMaxCount != 0 ); | |
| configASSERT( uxInitialCount <= uxMaxCount ); | |
| xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE ); | |
| if( xHandle != NULL ) | |
| { | |
| ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount; | |
| traceCREATE_COUNTING_SEMAPHORE(); | |
| } | |
| else | |
| { | |
| traceCREATE_COUNTING_SEMAPHORE_FAILED(); | |
| } | |
| return xHandle; | |
| } | |
| #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */ | |
| /*-----------------------------------------------------------*/ | |
| BaseType_t xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, const BaseType_t xCopyPosition ) | |
| { | |
| BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired; | |
| TimeOut_t xTimeOut; | |
| Queue_t * const pxQueue = ( Queue_t * ) xQueue; | |
| configASSERT( pxQueue ); | |
| configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) ); | |
| configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) ); | |
| #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) | |
| { | |
| configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) ); | |
| } | |
| #endif | |
| /* This function relaxes the coding standard somewhat to allow return | |
| statements within the function itself. This is done in the interest | |
| of execution time efficiency. */ | |
| for( ;; ) | |
| { | |
| taskENTER_CRITICAL(); | |
| { | |
| /* Is there room on the queue now? The running task must be the | |
| highest priority task wanting to access the queue. If the head item | |
| in the queue is to be overwritten then it does not matter if the | |
| queue is full. */ | |
| if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) ) | |
| { | |
| traceQUEUE_SEND( pxQueue ); | |
| xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition ); | |
| #if ( configUSE_QUEUE_SETS == 1 ) | |
| { | |
| if( pxQueue->pxQueueSetContainer != NULL ) | |
| { | |
| if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) != pdFALSE ) | |
| { | |
| /* The queue is a member of a queue set, and posting | |
| to the queue set caused a higher priority task to | |
| unblock. A context switch is required. */ | |
| queueYIELD_IF_USING_PREEMPTION(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| /* If there was a task waiting for data to arrive on the | |
| queue then unblock it now. */ | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) | |
| { | |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) | |
| { | |
| /* The unblocked task has a priority higher than | |
| our own so yield immediately. Yes it is ok to | |
| do this from within the critical section - the | |
| kernel takes care of that. */ | |
| queueYIELD_IF_USING_PREEMPTION(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else if( xYieldRequired != pdFALSE ) | |
| { | |
| /* This path is a special case that will only get | |
| executed if the task was holding multiple mutexes | |
| and the mutexes were given back in an order that is | |
| different to that in which they were taken. */ | |
| queueYIELD_IF_USING_PREEMPTION(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } | |
| #else /* configUSE_QUEUE_SETS */ | |
| { | |
| /* If there was a task waiting for data to arrive on the | |
| queue then unblock it now. */ | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) | |
| { | |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) | |
| { | |
| /* The unblocked task has a priority higher than | |
| our own so yield immediately. Yes it is ok to do | |
| this from within the critical section - the kernel | |
| takes care of that. */ | |
| queueYIELD_IF_USING_PREEMPTION(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else if( xYieldRequired != pdFALSE ) | |
| { | |
| /* This path is a special case that will only get | |
| executed if the task was holding multiple mutexes and | |
| the mutexes were given back in an order that is | |
| different to that in which they were taken. */ | |
| queueYIELD_IF_USING_PREEMPTION(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* configUSE_QUEUE_SETS */ | |
| taskEXIT_CRITICAL(); | |
| return pdPASS; | |
| } | |
| else | |
| { | |
| if( xTicksToWait == ( TickType_t ) 0 ) | |
| { | |
| /* The queue was full and no block time is specified (or | |
| the block time has expired) so leave now. */ | |
| taskEXIT_CRITICAL(); | |
| /* Return to the original privilege level before exiting | |
| the function. */ | |
| traceQUEUE_SEND_FAILED( pxQueue ); | |
| return errQUEUE_FULL; | |
| } | |
| else if( xEntryTimeSet == pdFALSE ) | |
| { | |
| /* The queue was full and a block time was specified so | |
| configure the timeout structure. */ | |
| vTaskInternalSetTimeOutState( &xTimeOut ); | |
| xEntryTimeSet = pdTRUE; | |
| } | |
| else | |
| { | |
| /* Entry time was already set. */ | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } | |
| taskEXIT_CRITICAL(); | |
| /* Interrupts and other tasks can send to and receive from the queue | |
| now the critical section has been exited. */ | |
| vTaskSuspendAll(); | |
| prvLockQueue( pxQueue ); | |
| /* Update the timeout state to see if it has expired yet. */ | |
| if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE ) | |
| { | |
| if( prvIsQueueFull( pxQueue ) != pdFALSE ) | |
| { | |
| traceBLOCKING_ON_QUEUE_SEND( pxQueue ); | |
| vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait ); | |
| /* Unlocking the queue means queue events can effect the | |
| event list. It is possible that interrupts occurring now | |
| remove this task from the event list again - but as the | |
| scheduler is suspended the task will go onto the pending | |
| ready last instead of the actual ready list. */ | |
| prvUnlockQueue( pxQueue ); | |
| /* Resuming the scheduler will move tasks from the pending | |
| ready list into the ready list - so it is feasible that this | |
| task is already in a ready list before it yields - in which | |
| case the yield will not cause a context switch unless there | |
| is also a higher priority task in the pending ready list. */ | |
| if( xTaskResumeAll() == pdFALSE ) | |
| { | |
| portYIELD_WITHIN_API(); | |
| } | |
| } | |
| else | |
| { | |
| /* Try again. */ | |
| prvUnlockQueue( pxQueue ); | |
| ( void ) xTaskResumeAll(); | |
| } | |
| } | |
| else | |
| { | |
| /* The timeout has expired. */ | |
| prvUnlockQueue( pxQueue ); | |
| ( void ) xTaskResumeAll(); | |
| traceQUEUE_SEND_FAILED( pxQueue ); | |
| return errQUEUE_FULL; | |
| } | |
| } | |
| } | |
| /*-----------------------------------------------------------*/ | |
| BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue, const void * const pvItemToQueue, BaseType_t * const pxHigherPriorityTaskWoken, const BaseType_t xCopyPosition ) | |
| { | |
| BaseType_t xReturn; | |
| UBaseType_t uxSavedInterruptStatus; | |
| Queue_t * const pxQueue = ( Queue_t * ) xQueue; | |
| configASSERT( pxQueue ); | |
| configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) ); | |
| configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) ); | |
| /* RTOS ports that support interrupt nesting have the concept of a maximum | |
| system call (or maximum API call) interrupt priority. Interrupts that are | |
| above the maximum system call priority are kept permanently enabled, even | |
| when the RTOS kernel is in a critical section, but cannot make any calls to | |
| FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h | |
| then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion | |
| failure if a FreeRTOS API function is called from an interrupt that has been | |
| assigned a priority above the configured maximum system call priority. | |
| Only FreeRTOS functions that end in FromISR can be called from interrupts | |
| that have been assigned a priority at or (logically) below the maximum | |
| system call interrupt priority. FreeRTOS maintains a separate interrupt | |
| safe API to ensure interrupt entry is as fast and as simple as possible. | |
| More information (albeit Cortex-M specific) is provided on the following | |
| link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */ | |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); | |
| /* Similar to xQueueGenericSend, except without blocking if there is no room | |
| in the queue. Also don't directly wake a task that was blocked on a queue | |
| read, instead return a flag to say whether a context switch is required or | |
| not (i.e. has a task with a higher priority than us been woken by this | |
| post). */ | |
| uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); | |
| { | |
| if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) ) | |
| { | |
| const int8_t cTxLock = pxQueue->cTxLock; | |
| traceQUEUE_SEND_FROM_ISR( pxQueue ); | |
| /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a | |
| semaphore or mutex. That means prvCopyDataToQueue() cannot result | |
| in a task disinheriting a priority and prvCopyDataToQueue() can be | |
| called here even though the disinherit function does not check if | |
| the scheduler is suspended before accessing the ready lists. */ | |
| ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition ); | |
| /* The event list is not altered if the queue is locked. This will | |
| be done when the queue is unlocked later. */ | |
| if( cTxLock == queueUNLOCKED ) | |
| { | |
| #if ( configUSE_QUEUE_SETS == 1 ) | |
| { | |
| if( pxQueue->pxQueueSetContainer != NULL ) | |
| { | |
| if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) != pdFALSE ) | |
| { | |
| /* The queue is a member of a queue set, and posting | |
| to the queue set caused a higher priority task to | |
| unblock. A context switch is required. */ | |
| if( pxHigherPriorityTaskWoken != NULL ) | |
| { | |
| *pxHigherPriorityTaskWoken = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) | |
| { | |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) | |
| { | |
| /* The task waiting has a higher priority so | |
| record that a context switch is required. */ | |
| if( pxHigherPriorityTaskWoken != NULL ) | |
| { | |
| *pxHigherPriorityTaskWoken = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } | |
| #else /* configUSE_QUEUE_SETS */ | |
| { | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) | |
| { | |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) | |
| { | |
| /* The task waiting has a higher priority so record that a | |
| context switch is required. */ | |
| if( pxHigherPriorityTaskWoken != NULL ) | |
| { | |
| *pxHigherPriorityTaskWoken = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* configUSE_QUEUE_SETS */ | |
| } | |
| else | |
| { | |
| /* Increment the lock count so the task that unlocks the queue | |
| knows that data was posted while it was locked. */ | |
| pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 ); | |
| } | |
| xReturn = pdPASS; | |
| } | |
| else | |
| { | |
| traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue ); | |
| xReturn = errQUEUE_FULL; | |
| } | |
| } | |
| portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); | |
| return xReturn; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue, BaseType_t * const pxHigherPriorityTaskWoken ) | |
| { | |
| BaseType_t xReturn; | |
| UBaseType_t uxSavedInterruptStatus; | |
| Queue_t * const pxQueue = ( Queue_t * ) xQueue; | |
| /* Similar to xQueueGenericSendFromISR() but used with semaphores where the | |
| item size is 0. Don't directly wake a task that was blocked on a queue | |
| read, instead return a flag to say whether a context switch is required or | |
| not (i.e. has a task with a higher priority than us been woken by this | |
| post). */ | |
| configASSERT( pxQueue ); | |
| /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR() | |
| if the item size is not 0. */ | |
| configASSERT( pxQueue->uxItemSize == 0 ); | |
| /* Normally a mutex would not be given from an interrupt, especially if | |
| there is a mutex holder, as priority inheritance makes no sense for an | |
| interrupts, only tasks. */ | |
| configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->pxMutexHolder != NULL ) ) ); | |
| /* RTOS ports that support interrupt nesting have the concept of a maximum | |
| system call (or maximum API call) interrupt priority. Interrupts that are | |
| above the maximum system call priority are kept permanently enabled, even | |
| when the RTOS kernel is in a critical section, but cannot make any calls to | |
| FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h | |
| then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion | |
| failure if a FreeRTOS API function is called from an interrupt that has been | |
| assigned a priority above the configured maximum system call priority. | |
| Only FreeRTOS functions that end in FromISR can be called from interrupts | |
| that have been assigned a priority at or (logically) below the maximum | |
| system call interrupt priority. FreeRTOS maintains a separate interrupt | |
| safe API to ensure interrupt entry is as fast and as simple as possible. | |
| More information (albeit Cortex-M specific) is provided on the following | |
| link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */ | |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); | |
| uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); | |
| { | |
| const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting; | |
| /* When the queue is used to implement a semaphore no data is ever | |
| moved through the queue but it is still valid to see if the queue 'has | |
| space'. */ | |
| if( uxMessagesWaiting < pxQueue->uxLength ) | |
| { | |
| const int8_t cTxLock = pxQueue->cTxLock; | |
| traceQUEUE_SEND_FROM_ISR( pxQueue ); | |
| /* A task can only have an inherited priority if it is a mutex | |
| holder - and if there is a mutex holder then the mutex cannot be | |
| given from an ISR. As this is the ISR version of the function it | |
| can be assumed there is no mutex holder and no need to determine if | |
| priority disinheritance is needed. Simply increase the count of | |
| messages (semaphores) available. */ | |
| pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1; | |
| /* The event list is not altered if the queue is locked. This will | |
| be done when the queue is unlocked later. */ | |
| if( cTxLock == queueUNLOCKED ) | |
| { | |
| #if ( configUSE_QUEUE_SETS == 1 ) | |
| { | |
| if( pxQueue->pxQueueSetContainer != NULL ) | |
| { | |
| if( prvNotifyQueueSetContainer( pxQueue, queueSEND_TO_BACK ) != pdFALSE ) | |
| { | |
| /* The semaphore is a member of a queue set, and | |
| posting to the queue set caused a higher priority | |
| task to unblock. A context switch is required. */ | |
| if( pxHigherPriorityTaskWoken != NULL ) | |
| { | |
| *pxHigherPriorityTaskWoken = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) | |
| { | |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) | |
| { | |
| /* The task waiting has a higher priority so | |
| record that a context switch is required. */ | |
| if( pxHigherPriorityTaskWoken != NULL ) | |
| { | |
| *pxHigherPriorityTaskWoken = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } | |
| #else /* configUSE_QUEUE_SETS */ | |
| { | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) | |
| { | |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) | |
| { | |
| /* The task waiting has a higher priority so record that a | |
| context switch is required. */ | |
| if( pxHigherPriorityTaskWoken != NULL ) | |
| { | |
| *pxHigherPriorityTaskWoken = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* configUSE_QUEUE_SETS */ | |
| } | |
| else | |
| { | |
| /* Increment the lock count so the task that unlocks the queue | |
| knows that data was posted while it was locked. */ | |
| pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 ); | |
| } | |
| xReturn = pdPASS; | |
| } | |
| else | |
| { | |
| traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue ); | |
| xReturn = errQUEUE_FULL; | |
| } | |
| } | |
| portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); | |
| return xReturn; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| BaseType_t xQueueReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait ) | |
| { | |
| BaseType_t xEntryTimeSet = pdFALSE; | |
| TimeOut_t xTimeOut; | |
| Queue_t * const pxQueue = ( Queue_t * ) xQueue; | |
| /* Check the pointer is not NULL. */ | |
| configASSERT( ( pxQueue ) ); | |
| /* The buffer into which data is received can only be NULL if the data size | |
| is zero (so no data is copied into the buffer. */ | |
| configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) ); | |
| /* Cannot block if the scheduler is suspended. */ | |
| #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) | |
| { | |
| configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) ); | |
| } | |
| #endif | |
| /* This function relaxes the coding standard somewhat to allow return | |
| statements within the function itself. This is done in the interest | |
| of execution time efficiency. */ | |
| for( ;; ) | |
| { | |
| taskENTER_CRITICAL(); | |
| { | |
| const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting; | |
| /* Is there data in the queue now? To be running the calling task | |
| must be the highest priority task wanting to access the queue. */ | |
| if( uxMessagesWaiting > ( UBaseType_t ) 0 ) | |
| { | |
| /* Data available, remove one item. */ | |
| prvCopyDataFromQueue( pxQueue, pvBuffer ); | |
| traceQUEUE_RECEIVE( pxQueue ); | |
| pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1; | |
| /* There is now space in the queue, were any tasks waiting to | |
| post to the queue? If so, unblock the highest priority waiting | |
| task. */ | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) | |
| { | |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) | |
| { | |
| queueYIELD_IF_USING_PREEMPTION(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| taskEXIT_CRITICAL(); | |
| return pdPASS; | |
| } | |
| else | |
| { | |
| if( xTicksToWait == ( TickType_t ) 0 ) | |
| { | |
| /* The queue was empty and no block time is specified (or | |
| the block time has expired) so leave now. */ | |
| taskEXIT_CRITICAL(); | |
| traceQUEUE_RECEIVE_FAILED( pxQueue ); | |
| return errQUEUE_EMPTY; | |
| } | |
| else if( xEntryTimeSet == pdFALSE ) | |
| { | |
| /* The queue was empty and a block time was specified so | |
| configure the timeout structure. */ | |
| vTaskInternalSetTimeOutState( &xTimeOut ); | |
| xEntryTimeSet = pdTRUE; | |
| } | |
| else | |
| { | |
| /* Entry time was already set. */ | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } | |
| taskEXIT_CRITICAL(); | |
| /* Interrupts and other tasks can send to and receive from the queue | |
| now the critical section has been exited. */ | |
| vTaskSuspendAll(); | |
| prvLockQueue( pxQueue ); | |
| /* Update the timeout state to see if it has expired yet. */ | |
| if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE ) | |
| { | |
| /* The timeout has not expired. If the queue is still empty place | |
| the task on the list of tasks waiting to receive from the queue. */ | |
| if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) | |
| { | |
| traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue ); | |
| vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait ); | |
| prvUnlockQueue( pxQueue ); | |
| if( xTaskResumeAll() == pdFALSE ) | |
| { | |
| portYIELD_WITHIN_API(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| /* The queue contains data again. Loop back to try and read the | |
| data. */ | |
| prvUnlockQueue( pxQueue ); | |
| ( void ) xTaskResumeAll(); | |
| } | |
| } | |
| else | |
| { | |
| /* Timed out. If there is no data in the queue exit, otherwise loop | |
| back and attempt to read the data. */ | |
| prvUnlockQueue( pxQueue ); | |
| ( void ) xTaskResumeAll(); | |
| if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) | |
| { | |
| traceQUEUE_RECEIVE_FAILED( pxQueue ); | |
| return errQUEUE_EMPTY; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } | |
| } | |
| /*-----------------------------------------------------------*/ | |
| BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue, TickType_t xTicksToWait ) | |
| { | |
| BaseType_t xEntryTimeSet = pdFALSE; | |
| TimeOut_t xTimeOut; | |
| Queue_t * const pxQueue = ( Queue_t * ) xQueue; | |
| #if( configUSE_MUTEXES == 1 ) | |
| BaseType_t xInheritanceOccurred = pdFALSE; | |
| #endif | |
| /* Check the queue pointer is not NULL. */ | |
| configASSERT( ( pxQueue ) ); | |
| /* Check this really is a semaphore, in which case the item size will be | |
| 0. */ | |
| configASSERT( pxQueue->uxItemSize == 0 ); | |
| /* Cannot block if the scheduler is suspended. */ | |
| #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) | |
| { | |
| configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) ); | |
| } | |
| #endif | |
| /* This function relaxes the coding standard somewhat to allow return | |
| statements within the function itself. This is done in the interest | |
| of execution time efficiency. */ | |
| for( ;; ) | |
| { | |
| taskENTER_CRITICAL(); | |
| { | |
| /* Semaphores are queues with an item size of 0, and where the | |
| number of messages in the queue is the semaphore's count value. */ | |
| const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting; | |
| /* Is there data in the queue now? To be running the calling task | |
| must be the highest priority task wanting to access the queue. */ | |
| if( uxSemaphoreCount > ( UBaseType_t ) 0 ) | |
| { | |
| traceQUEUE_RECEIVE( pxQueue ); | |
| /* Semaphores are queues with a data size of zero and where the | |
| messages waiting is the semaphore's count. Reduce the count. */ | |
| pxQueue->uxMessagesWaiting = uxSemaphoreCount - ( UBaseType_t ) 1; | |
| #if ( configUSE_MUTEXES == 1 ) | |
| { | |
| if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) | |
| { | |
| /* Record the information required to implement | |
| priority inheritance should it become necessary. */ | |
| pxQueue->pxMutexHolder = ( int8_t * ) pvTaskIncrementMutexHeldCount(); /*lint !e961 Cast is not redundant as TaskHandle_t is a typedef. */ | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* configUSE_MUTEXES */ | |
| /* Check to see if other tasks are blocked waiting to give the | |
| semaphore, and if so, unblock the highest priority such task. */ | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) | |
| { | |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) | |
| { | |
| queueYIELD_IF_USING_PREEMPTION(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| taskEXIT_CRITICAL(); | |
| return pdPASS; | |
| } | |
| else | |
| { | |
| if( xTicksToWait == ( TickType_t ) 0 ) | |
| { | |
| /* For inheritance to have occurred there must have been an | |
| initial timeout, and an adjusted timeout cannot become 0, as | |
| if it were 0 the function would have exited. */ | |
| #if( configUSE_MUTEXES == 1 ) | |
| { | |
| configASSERT( xInheritanceOccurred == pdFALSE ); | |
| } | |
| #endif /* configUSE_MUTEXES */ | |
| /* The semaphore count was 0 and no block time is specified | |
| (or the block time has expired) so exit now. */ | |
| taskEXIT_CRITICAL(); | |
| traceQUEUE_RECEIVE_FAILED( pxQueue ); | |
| return errQUEUE_EMPTY; | |
| } | |
| else if( xEntryTimeSet == pdFALSE ) | |
| { | |
| /* The semaphore count was 0 and a block time was specified | |
| so configure the timeout structure ready to block. */ | |
| vTaskInternalSetTimeOutState( &xTimeOut ); | |
| xEntryTimeSet = pdTRUE; | |
| } | |
| else | |
| { | |
| /* Entry time was already set. */ | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } | |
| taskEXIT_CRITICAL(); | |
| /* Interrupts and other tasks can give to and take from the semaphore | |
| now the critical section has been exited. */ | |
| vTaskSuspendAll(); | |
| prvLockQueue( pxQueue ); | |
| /* Update the timeout state to see if it has expired yet. */ | |
| if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE ) | |
| { | |
| /* A block time is specified and not expired. If the semaphore | |
| count is 0 then enter the Blocked state to wait for a semaphore to | |
| become available. As semaphores are implemented with queues the | |
| queue being empty is equivalent to the semaphore count being 0. */ | |
| if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) | |
| { | |
| traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue ); | |
| #if ( configUSE_MUTEXES == 1 ) | |
| { | |
| if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) | |
| { | |
| taskENTER_CRITICAL(); | |
| { | |
| xInheritanceOccurred = xTaskPriorityInherit( ( void * ) pxQueue->pxMutexHolder ); | |
| } | |
| taskEXIT_CRITICAL(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif | |
| vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait ); | |
| prvUnlockQueue( pxQueue ); | |
| if( xTaskResumeAll() == pdFALSE ) | |
| { | |
| portYIELD_WITHIN_API(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| /* There was no timeout and the semaphore count was not 0, so | |
| attempt to take the semaphore again. */ | |
| prvUnlockQueue( pxQueue ); | |
| ( void ) xTaskResumeAll(); | |
| } | |
| } | |
| else | |
| { | |
| /* Timed out. */ | |
| prvUnlockQueue( pxQueue ); | |
| ( void ) xTaskResumeAll(); | |
| /* If the semaphore count is 0 exit now as the timeout has | |
| expired. Otherwise return to attempt to take the semaphore that is | |
| known to be available. As semaphores are implemented by queues the | |
| queue being empty is equivalent to the semaphore count being 0. */ | |
| if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) | |
| { | |
| #if ( configUSE_MUTEXES == 1 ) | |
| { | |
| /* xInheritanceOccurred could only have be set if | |
| pxQueue->uxQueueType == queueQUEUE_IS_MUTEX so no need to | |
| test the mutex type again to check it is actually a mutex. */ | |
| if( xInheritanceOccurred != pdFALSE ) | |
| { | |
| taskENTER_CRITICAL(); | |
| { | |
| UBaseType_t uxHighestWaitingPriority; | |
| /* This task blocking on the mutex caused another | |
| task to inherit this task's priority. Now this task | |
| has timed out the priority should be disinherited | |
| again, but only as low as the next highest priority | |
| task that is waiting for the same mutex. */ | |
| uxHighestWaitingPriority = prvGetDisinheritPriorityAfterTimeout( pxQueue ); | |
| vTaskPriorityDisinheritAfterTimeout( ( void * ) pxQueue->pxMutexHolder, uxHighestWaitingPriority ); | |
| } | |
| taskEXIT_CRITICAL(); | |
| } | |
| } | |
| #endif /* configUSE_MUTEXES */ | |
| traceQUEUE_RECEIVE_FAILED( pxQueue ); | |
| return errQUEUE_EMPTY; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } | |
| } | |
| /*-----------------------------------------------------------*/ | |
| BaseType_t xQueuePeek( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait ) | |
| { | |
| BaseType_t xEntryTimeSet = pdFALSE; | |
| TimeOut_t xTimeOut; | |
| int8_t *pcOriginalReadPosition; | |
| Queue_t * const pxQueue = ( Queue_t * ) xQueue; | |
| /* Check the pointer is not NULL. */ | |
| configASSERT( ( pxQueue ) ); | |
| /* The buffer into which data is received can only be NULL if the data size | |
| is zero (so no data is copied into the buffer. */ | |
| configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) ); | |
| /* Cannot block if the scheduler is suspended. */ | |
| #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) | |
| { | |
| configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) ); | |
| } | |
| #endif | |
| /* This function relaxes the coding standard somewhat to allow return | |
| statements within the function itself. This is done in the interest | |
| of execution time efficiency. */ | |
| for( ;; ) | |
| { | |
| taskENTER_CRITICAL(); | |
| { | |
| const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting; | |
| /* Is there data in the queue now? To be running the calling task | |
| must be the highest priority task wanting to access the queue. */ | |
| if( uxMessagesWaiting > ( UBaseType_t ) 0 ) | |
| { | |
| /* Remember the read position so it can be reset after the data | |
| is read from the queue as this function is only peeking the | |
| data, not removing it. */ | |
| pcOriginalReadPosition = pxQueue->u.pcReadFrom; | |
| prvCopyDataFromQueue( pxQueue, pvBuffer ); | |
| traceQUEUE_PEEK( pxQueue ); | |
| /* The data is not being removed, so reset the read pointer. */ | |
| pxQueue->u.pcReadFrom = pcOriginalReadPosition; | |
| /* The data is being left in the queue, so see if there are | |
| any other tasks waiting for the data. */ | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) | |
| { | |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) | |
| { | |
| /* The task waiting has a higher priority than this task. */ | |
| queueYIELD_IF_USING_PREEMPTION(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| taskEXIT_CRITICAL(); | |
| return pdPASS; | |
| } | |
| else | |
| { | |
| if( xTicksToWait == ( TickType_t ) 0 ) | |
| { | |
| /* The queue was empty and no block time is specified (or | |
| the block time has expired) so leave now. */ | |
| taskEXIT_CRITICAL(); | |
| traceQUEUE_PEEK_FAILED( pxQueue ); | |
| return errQUEUE_EMPTY; | |
| } | |
| else if( xEntryTimeSet == pdFALSE ) | |
| { | |
| /* The queue was empty and a block time was specified so | |
| configure the timeout structure ready to enter the blocked | |
| state. */ | |
| vTaskInternalSetTimeOutState( &xTimeOut ); | |
| xEntryTimeSet = pdTRUE; | |
| } | |
| else | |
| { | |
| /* Entry time was already set. */ | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } | |
| taskEXIT_CRITICAL(); | |
| /* Interrupts and other tasks can send to and receive from the queue | |
| now the critical section has been exited. */ | |
| vTaskSuspendAll(); | |
| prvLockQueue( pxQueue ); | |
| /* Update the timeout state to see if it has expired yet. */ | |
| if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE ) | |
| { | |
| /* Timeout has not expired yet, check to see if there is data in the | |
| queue now, and if not enter the Blocked state to wait for data. */ | |
| if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) | |
| { | |
| traceBLOCKING_ON_QUEUE_PEEK( pxQueue ); | |
| vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait ); | |
| prvUnlockQueue( pxQueue ); | |
| if( xTaskResumeAll() == pdFALSE ) | |
| { | |
| portYIELD_WITHIN_API(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| /* There is data in the queue now, so don't enter the blocked | |
| state, instead return to try and obtain the data. */ | |
| prvUnlockQueue( pxQueue ); | |
| ( void ) xTaskResumeAll(); | |
| } | |
| } | |
| else | |
| { | |
| /* The timeout has expired. If there is still no data in the queue | |
| exit, otherwise go back and try to read the data again. */ | |
| prvUnlockQueue( pxQueue ); | |
| ( void ) xTaskResumeAll(); | |
| if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) | |
| { | |
| traceQUEUE_PEEK_FAILED( pxQueue ); | |
| return errQUEUE_EMPTY; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } | |
| } | |
| /*-----------------------------------------------------------*/ | |
| BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue, void * const pvBuffer, BaseType_t * const pxHigherPriorityTaskWoken ) | |
| { | |
| BaseType_t xReturn; | |
| UBaseType_t uxSavedInterruptStatus; | |
| Queue_t * const pxQueue = ( Queue_t * ) xQueue; | |
| configASSERT( pxQueue ); | |
| configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) ); | |
| /* RTOS ports that support interrupt nesting have the concept of a maximum | |
| system call (or maximum API call) interrupt priority. Interrupts that are | |
| above the maximum system call priority are kept permanently enabled, even | |
| when the RTOS kernel is in a critical section, but cannot make any calls to | |
| FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h | |
| then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion | |
| failure if a FreeRTOS API function is called from an interrupt that has been | |
| assigned a priority above the configured maximum system call priority. | |
| Only FreeRTOS functions that end in FromISR can be called from interrupts | |
| that have been assigned a priority at or (logically) below the maximum | |
| system call interrupt priority. FreeRTOS maintains a separate interrupt | |
| safe API to ensure interrupt entry is as fast and as simple as possible. | |
| More information (albeit Cortex-M specific) is provided on the following | |
| link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */ | |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); | |
| uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); | |
| { | |
| const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting; | |
| /* Cannot block in an ISR, so check there is data available. */ | |
| if( uxMessagesWaiting > ( UBaseType_t ) 0 ) | |
| { | |
| const int8_t cRxLock = pxQueue->cRxLock; | |
| traceQUEUE_RECEIVE_FROM_ISR( pxQueue ); | |
| prvCopyDataFromQueue( pxQueue, pvBuffer ); | |
| pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1; | |
| /* If the queue is locked the event list will not be modified. | |
| Instead update the lock count so the task that unlocks the queue | |
| will know that an ISR has removed data while the queue was | |
| locked. */ | |
| if( cRxLock == queueUNLOCKED ) | |
| { | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) | |
| { | |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) | |
| { | |
| /* The task waiting has a higher priority than us so | |
| force a context switch. */ | |
| if( pxHigherPriorityTaskWoken != NULL ) | |
| { | |
| *pxHigherPriorityTaskWoken = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| /* Increment the lock count so the task that unlocks the queue | |
| knows that data was removed while it was locked. */ | |
| pxQueue->cRxLock = ( int8_t ) ( cRxLock + 1 ); | |
| } | |
| xReturn = pdPASS; | |
| } | |
| else | |
| { | |
| xReturn = pdFAIL; | |
| traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue ); | |
| } | |
| } | |
| portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); | |
| return xReturn; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue, void * const pvBuffer ) | |
| { | |
| BaseType_t xReturn; | |
| UBaseType_t uxSavedInterruptStatus; | |
| int8_t *pcOriginalReadPosition; | |
| Queue_t * const pxQueue = ( Queue_t * ) xQueue; | |
| configASSERT( pxQueue ); | |
| configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) ); | |
| configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */ | |
| /* RTOS ports that support interrupt nesting have the concept of a maximum | |
| system call (or maximum API call) interrupt priority. Interrupts that are | |
| above the maximum system call priority are kept permanently enabled, even | |
| when the RTOS kernel is in a critical section, but cannot make any calls to | |
| FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h | |
| then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion | |
| failure if a FreeRTOS API function is called from an interrupt that has been | |
| assigned a priority above the configured maximum system call priority. | |
| Only FreeRTOS functions that end in FromISR can be called from interrupts | |
| that have been assigned a priority at or (logically) below the maximum | |
| system call interrupt priority. FreeRTOS maintains a separate interrupt | |
| safe API to ensure interrupt entry is as fast and as simple as possible. | |
| More information (albeit Cortex-M specific) is provided on the following | |
| link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */ | |
| portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); | |
| uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); | |
| { | |
| /* Cannot block in an ISR, so check there is data available. */ | |
| if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 ) | |
| { | |
| traceQUEUE_PEEK_FROM_ISR( pxQueue ); | |
| /* Remember the read position so it can be reset as nothing is | |
| actually being removed from the queue. */ | |
| pcOriginalReadPosition = pxQueue->u.pcReadFrom; | |
| prvCopyDataFromQueue( pxQueue, pvBuffer ); | |
| pxQueue->u.pcReadFrom = pcOriginalReadPosition; | |
| xReturn = pdPASS; | |
| } | |
| else | |
| { | |
| xReturn = pdFAIL; | |
| traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue ); | |
| } | |
| } | |
| portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); | |
| return xReturn; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue ) | |
| { | |
| UBaseType_t uxReturn; | |
| configASSERT( xQueue ); | |
| taskENTER_CRITICAL(); | |
| { | |
| uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting; | |
| } | |
| taskEXIT_CRITICAL(); | |
| return uxReturn; | |
| } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */ | |
| /*-----------------------------------------------------------*/ | |
| UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue ) | |
| { | |
| UBaseType_t uxReturn; | |
| Queue_t *pxQueue; | |
| pxQueue = ( Queue_t * ) xQueue; | |
| configASSERT( pxQueue ); | |
| taskENTER_CRITICAL(); | |
| { | |
| uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting; | |
| } | |
| taskEXIT_CRITICAL(); | |
| return uxReturn; | |
| } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */ | |
| /*-----------------------------------------------------------*/ | |
| UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue ) | |
| { | |
| UBaseType_t uxReturn; | |
| configASSERT( xQueue ); | |
| uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting; | |
| return uxReturn; | |
| } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */ | |
| /*-----------------------------------------------------------*/ | |
| void vQueueDelete( QueueHandle_t xQueue ) | |
| { | |
| Queue_t * const pxQueue = ( Queue_t * ) xQueue; | |
| configASSERT( pxQueue ); | |
| traceQUEUE_DELETE( pxQueue ); | |
| #if ( configQUEUE_REGISTRY_SIZE > 0 ) | |
| { | |
| vQueueUnregisterQueue( pxQueue ); | |
| } | |
| #endif | |
| #if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) ) | |
| { | |
| /* The queue can only have been allocated dynamically - free it | |
| again. */ | |
| vPortFree( pxQueue ); | |
| } | |
| #elif( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) | |
| { | |
| /* The queue could have been allocated statically or dynamically, so | |
| check before attempting to free the memory. */ | |
| if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE ) | |
| { | |
| vPortFree( pxQueue ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #else | |
| { | |
| /* The queue must have been statically allocated, so is not going to be | |
| deleted. Avoid compiler warnings about the unused parameter. */ | |
| ( void ) pxQueue; | |
| #if ( configQUEUE_METRICS == 1) | |
| { | |
| record_queue_deletion(pxQueue); | |
| } | |
| #endif /* configQUEUE_METRICS */ | |
| } | |
| #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ | |
| } | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_TRACE_FACILITY == 1 ) | |
| UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue ) | |
| { | |
| return ( ( Queue_t * ) xQueue )->uxQueueNumber; | |
| } | |
| #endif /* configUSE_TRACE_FACILITY */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_TRACE_FACILITY == 1 ) | |
| void vQueueSetQueueNumber( QueueHandle_t xQueue, UBaseType_t uxQueueNumber ) | |
| { | |
| ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber; | |
| } | |
| #endif /* configUSE_TRACE_FACILITY */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_TRACE_FACILITY == 1 ) | |
| uint8_t ucQueueGetQueueType( QueueHandle_t xQueue ) | |
| { | |
| return ( ( Queue_t * ) xQueue )->ucQueueType; | |
| } | |
| #endif /* configUSE_TRACE_FACILITY */ | |
| /*-----------------------------------------------------------*/ | |
| #if( configUSE_MUTEXES == 1 ) | |
| static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) | |
| { | |
| UBaseType_t uxHighestPriorityOfWaitingTasks; | |
| /* If a task waiting for a mutex causes the mutex holder to inherit a | |
| priority, but the waiting task times out, then the holder should | |
| disinherit the priority - but only down to the highest priority of any | |
| other tasks that are waiting for the same mutex. For this purpose, | |
| return the priority of the highest priority task that is waiting for the | |
| mutex. */ | |
| if( listCURRENT_LIST_LENGTH( &( pxQueue->xTasksWaitingToReceive ) ) > 0 ) | |
| { | |
| uxHighestPriorityOfWaitingTasks = configMAX_PRIORITIES - listGET_ITEM_VALUE_OF_HEAD_ENTRY( &( pxQueue->xTasksWaitingToReceive ) ); | |
| } | |
| else | |
| { | |
| uxHighestPriorityOfWaitingTasks = tskIDLE_PRIORITY; | |
| } | |
| return uxHighestPriorityOfWaitingTasks; | |
| } | |
| #endif /* configUSE_MUTEXES */ | |
| /*-----------------------------------------------------------*/ | |
| static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition ) | |
| { | |
| BaseType_t xReturn = pdFALSE; | |
| UBaseType_t uxMessagesWaiting; | |
| /* This function is called from a critical section. */ | |
| uxMessagesWaiting = pxQueue->uxMessagesWaiting; | |
| if( pxQueue->uxItemSize == ( UBaseType_t ) 0 ) | |
| { | |
| #if ( configUSE_MUTEXES == 1 ) | |
| { | |
| if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) | |
| { | |
| /* The mutex is no longer being held. */ | |
| xReturn = xTaskPriorityDisinherit( ( void * ) pxQueue->pxMutexHolder ); | |
| pxQueue->pxMutexHolder = NULL; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| #endif /* configUSE_MUTEXES */ | |
| } | |
| else if( xPosition == queueSEND_TO_BACK ) | |
| { | |
| ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to memcpy() if the copy size is 0. */ | |
| pxQueue->pcWriteTo += pxQueue->uxItemSize; | |
| if( pxQueue->pcWriteTo >= pxQueue->pcTail ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */ | |
| { | |
| pxQueue->pcWriteTo = pxQueue->pcHead; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| ( void ) memcpy( ( void * ) pxQueue->u.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ | |
| pxQueue->u.pcReadFrom -= pxQueue->uxItemSize; | |
| if( pxQueue->u.pcReadFrom < pxQueue->pcHead ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */ | |
| { | |
| pxQueue->u.pcReadFrom = ( pxQueue->pcTail - pxQueue->uxItemSize ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| if( xPosition == queueOVERWRITE ) | |
| { | |
| if( uxMessagesWaiting > ( UBaseType_t ) 0 ) | |
| { | |
| /* An item is not being added but overwritten, so subtract | |
| one from the recorded number of items in the queue so when | |
| one is added again below the number of recorded items remains | |
| correct. */ | |
| --uxMessagesWaiting; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1; | |
| #if ( configQUEUE_METRICS == 1 ) | |
| { | |
| if( pxQueue->uxMessagesWaiting > pxQueue->uxMaxMessagesWaiting ) | |
| pxQueue->uxMaxMessagesWaiting = pxQueue->uxMessagesWaiting; | |
| } | |
| #endif | |
| return xReturn; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| static void prvCopyDataFromQueue( Queue_t * const pxQueue, void * const pvBuffer ) | |
| { | |
| if( pxQueue->uxItemSize != ( UBaseType_t ) 0 ) | |
| { | |
| pxQueue->u.pcReadFrom += pxQueue->uxItemSize; | |
| if( pxQueue->u.pcReadFrom >= pxQueue->pcTail ) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */ | |
| { | |
| pxQueue->u.pcReadFrom = pxQueue->pcHead; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to memcpy() when the count is 0. */ | |
| } | |
| } | |
| /*-----------------------------------------------------------*/ | |
| static void prvUnlockQueue( Queue_t * const pxQueue ) | |
| { | |
| /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */ | |
| /* The lock counts contains the number of extra data items placed or | |
| removed from the queue while the queue was locked. When a queue is | |
| locked items can be added or removed, but the event lists cannot be | |
| updated. */ | |
| taskENTER_CRITICAL(); | |
| { | |
| int8_t cTxLock = pxQueue->cTxLock; | |
| /* See if data was added to the queue while it was locked. */ | |
| while( cTxLock > queueLOCKED_UNMODIFIED ) | |
| { | |
| /* Data was posted while the queue was locked. Are any tasks | |
| blocked waiting for data to become available? */ | |
| #if ( configUSE_QUEUE_SETS == 1 ) | |
| { | |
| if( pxQueue->pxQueueSetContainer != NULL ) | |
| { | |
| if( prvNotifyQueueSetContainer( pxQueue, queueSEND_TO_BACK ) != pdFALSE ) | |
| { | |
| /* The queue is a member of a queue set, and posting to | |
| the queue set caused a higher priority task to unblock. | |
| A context switch is required. */ | |
| vTaskMissedYield(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| /* Tasks that are removed from the event list will get | |
| added to the pending ready list as the scheduler is still | |
| suspended. */ | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) | |
| { | |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) | |
| { | |
| /* The task waiting has a higher priority so record that a | |
| context switch is required. */ | |
| vTaskMissedYield(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| break; | |
| } | |
| } | |
| } | |
| #else /* configUSE_QUEUE_SETS */ | |
| { | |
| /* Tasks that are removed from the event list will get added to | |
| the pending ready list as the scheduler is still suspended. */ | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) | |
| { | |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) | |
| { | |
| /* The task waiting has a higher priority so record that | |
| a context switch is required. */ | |
| vTaskMissedYield(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| break; | |
| } | |
| } | |
| #endif /* configUSE_QUEUE_SETS */ | |
| --cTxLock; | |
| } | |
| pxQueue->cTxLock = queueUNLOCKED; | |
| } | |
| taskEXIT_CRITICAL(); | |
| /* Do the same for the Rx lock. */ | |
| taskENTER_CRITICAL(); | |
| { | |
| int8_t cRxLock = pxQueue->cRxLock; | |
| while( cRxLock > queueLOCKED_UNMODIFIED ) | |
| { | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) | |
| { | |
| if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) | |
| { | |
| vTaskMissedYield(); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| --cRxLock; | |
| } | |
| else | |
| { | |
| break; | |
| } | |
| } | |
| pxQueue->cRxLock = queueUNLOCKED; | |
| } | |
| taskEXIT_CRITICAL(); | |
| } | |
| /*-----------------------------------------------------------*/ | |
| static BaseType_t prvIsQueueEmpty( const Queue_t *pxQueue ) | |
| { | |
| BaseType_t xReturn; | |
| taskENTER_CRITICAL(); | |
| { | |
| if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 ) | |
| { | |
| xReturn = pdTRUE; | |
| } | |
| else | |
| { | |
| xReturn = pdFALSE; | |
| } | |
| } | |
| taskEXIT_CRITICAL(); | |
| return xReturn; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue ) | |
| { | |
| BaseType_t xReturn; | |
| configASSERT( xQueue ); | |
| if( ( ( Queue_t * ) xQueue )->uxMessagesWaiting == ( UBaseType_t ) 0 ) | |
| { | |
| xReturn = pdTRUE; | |
| } | |
| else | |
| { | |
| xReturn = pdFALSE; | |
| } | |
| return xReturn; | |
| } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */ | |
| /*-----------------------------------------------------------*/ | |
| static BaseType_t prvIsQueueFull( const Queue_t *pxQueue ) | |
| { | |
| BaseType_t xReturn; | |
| taskENTER_CRITICAL(); | |
| { | |
| if( pxQueue->uxMessagesWaiting == pxQueue->uxLength ) | |
| { | |
| xReturn = pdTRUE; | |
| } | |
| else | |
| { | |
| xReturn = pdFALSE; | |
| } | |
| } | |
| taskEXIT_CRITICAL(); | |
| return xReturn; | |
| } | |
| /*-----------------------------------------------------------*/ | |
| BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue ) | |
| { | |
| BaseType_t xReturn; | |
| configASSERT( xQueue ); | |
| if( ( ( Queue_t * ) xQueue )->uxMessagesWaiting == ( ( Queue_t * ) xQueue )->uxLength ) | |
| { | |
| xReturn = pdTRUE; | |
| } | |
| else | |
| { | |
| xReturn = pdFALSE; | |
| } | |
| return xReturn; | |
| } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_CO_ROUTINES == 1 ) | |
| BaseType_t xQueueCRSend( QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait ) | |
| { | |
| BaseType_t xReturn; | |
| Queue_t * const pxQueue = ( Queue_t * ) xQueue; | |
| /* If the queue is already full we may have to block. A critical section | |
| is required to prevent an interrupt removing something from the queue | |
| between the check to see if the queue is full and blocking on the queue. */ | |
| portDISABLE_INTERRUPTS(); | |
| { | |
| if( prvIsQueueFull( pxQueue ) != pdFALSE ) | |
| { | |
| /* The queue is full - do we want to block or just leave without | |
| posting? */ | |
| if( xTicksToWait > ( TickType_t ) 0 ) | |
| { | |
| /* As this is called from a coroutine we cannot block directly, but | |
| return indicating that we need to block. */ | |
| vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) ); | |
| portENABLE_INTERRUPTS(); | |
| return errQUEUE_BLOCKED; | |
| } | |
| else | |
| { | |
| portENABLE_INTERRUPTS(); | |
| return errQUEUE_FULL; | |
| } | |
| } | |
| } | |
| portENABLE_INTERRUPTS(); | |
| portDISABLE_INTERRUPTS(); | |
| { | |
| if( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) | |
| { | |
| /* There is room in the queue, copy the data into the queue. */ | |
| prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK ); | |
| xReturn = pdPASS; | |
| /* Were any co-routines waiting for data to become available? */ | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) | |
| { | |
| /* In this instance the co-routine could be placed directly | |
| into the ready list as we are within a critical section. | |
| Instead the same pending ready list mechanism is used as if | |
| the event were caused from within an interrupt. */ | |
| if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) | |
| { | |
| /* The co-routine waiting has a higher priority so record | |
| that a yield might be appropriate. */ | |
| xReturn = errQUEUE_YIELD; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| xReturn = errQUEUE_FULL; | |
| } | |
| } | |
| portENABLE_INTERRUPTS(); | |
| return xReturn; | |
| } | |
| #endif /* configUSE_CO_ROUTINES */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_CO_ROUTINES == 1 ) | |
| BaseType_t xQueueCRReceive( QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait ) | |
| { | |
| BaseType_t xReturn; | |
| Queue_t * const pxQueue = ( Queue_t * ) xQueue; | |
| /* If the queue is already empty we may have to block. A critical section | |
| is required to prevent an interrupt adding something to the queue | |
| between the check to see if the queue is empty and blocking on the queue. */ | |
| portDISABLE_INTERRUPTS(); | |
| { | |
| if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 ) | |
| { | |
| /* There are no messages in the queue, do we want to block or just | |
| leave with nothing? */ | |
| if( xTicksToWait > ( TickType_t ) 0 ) | |
| { | |
| /* As this is a co-routine we cannot block directly, but return | |
| indicating that we need to block. */ | |
| vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) ); | |
| portENABLE_INTERRUPTS(); | |
| return errQUEUE_BLOCKED; | |
| } | |
| else | |
| { | |
| portENABLE_INTERRUPTS(); | |
| return errQUEUE_FULL; | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| portENABLE_INTERRUPTS(); | |
| portDISABLE_INTERRUPTS(); | |
| { | |
| if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 ) | |
| { | |
| /* Data is available from the queue. */ | |
| pxQueue->u.pcReadFrom += pxQueue->uxItemSize; | |
| if( pxQueue->u.pcReadFrom >= pxQueue->pcTail ) | |
| { | |
| pxQueue->u.pcReadFrom = pxQueue->pcHead; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| --( pxQueue->uxMessagesWaiting ); | |
| ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize ); | |
| xReturn = pdPASS; | |
| /* Were any co-routines waiting for space to become available? */ | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) | |
| { | |
| /* In this instance the co-routine could be placed directly | |
| into the ready list as we are within a critical section. | |
| Instead the same pending ready list mechanism is used as if | |
| the event were caused from within an interrupt. */ | |
| if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) | |
| { | |
| xReturn = errQUEUE_YIELD; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| xReturn = pdFAIL; | |
| } | |
| } | |
| portENABLE_INTERRUPTS(); | |
| return xReturn; | |
| } | |
| #endif /* configUSE_CO_ROUTINES */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_CO_ROUTINES == 1 ) | |
| BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, const void *pvItemToQueue, BaseType_t xCoRoutinePreviouslyWoken ) | |
| { | |
| Queue_t * const pxQueue = ( Queue_t * ) xQueue; | |
| /* Cannot block within an ISR so if there is no space on the queue then | |
| exit without doing anything. */ | |
| if( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) | |
| { | |
| prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK ); | |
| /* We only want to wake one co-routine per ISR, so check that a | |
| co-routine has not already been woken. */ | |
| if( xCoRoutinePreviouslyWoken == pdFALSE ) | |
| { | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) | |
| { | |
| if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) | |
| { | |
| return pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| return xCoRoutinePreviouslyWoken; | |
| } | |
| #endif /* configUSE_CO_ROUTINES */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_CO_ROUTINES == 1 ) | |
| BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, void *pvBuffer, BaseType_t *pxCoRoutineWoken ) | |
| { | |
| BaseType_t xReturn; | |
| Queue_t * const pxQueue = ( Queue_t * ) xQueue; | |
| /* We cannot block from an ISR, so check there is data available. If | |
| not then just leave without doing anything. */ | |
| if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 ) | |
| { | |
| /* Copy the data from the queue. */ | |
| pxQueue->u.pcReadFrom += pxQueue->uxItemSize; | |
| if( pxQueue->u.pcReadFrom >= pxQueue->pcTail ) | |
| { | |
| pxQueue->u.pcReadFrom = pxQueue->pcHead; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| --( pxQueue->uxMessagesWaiting ); | |
| ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize ); | |
| if( ( *pxCoRoutineWoken ) == pdFALSE ) | |
| { | |
| if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) | |
| { | |
| if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) | |
| { | |
| *pxCoRoutineWoken = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| xReturn = pdPASS; | |
| } | |
| else | |
| { | |
| xReturn = pdFAIL; | |
| } | |
| return xReturn; | |
| } | |
| #endif /* configUSE_CO_ROUTINES */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configQUEUE_REGISTRY_SIZE > 0 ) | |
| void vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcQueueName ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ | |
| { | |
| UBaseType_t ux; | |
| /* See if there is an empty space in the registry. A NULL name denotes | |
| a free slot. */ | |
| for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ ) | |
| { | |
| if( xQueueRegistry[ ux ].pcQueueName == NULL ) | |
| { | |
| /* Store the information on this queue. */ | |
| xQueueRegistry[ ux ].pcQueueName = pcQueueName; | |
| xQueueRegistry[ ux ].xHandle = xQueue; | |
| traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName ); | |
| break; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } | |
| #endif /* configQUEUE_REGISTRY_SIZE */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configQUEUE_REGISTRY_SIZE > 0 ) | |
| const char *pcQueueGetName( QueueHandle_t xQueue ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ | |
| { | |
| UBaseType_t ux; | |
| const char *pcReturn = NULL; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ | |
| /* Note there is nothing here to protect against another task adding or | |
| removing entries from the registry while it is being searched. */ | |
| for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ ) | |
| { | |
| if( xQueueRegistry[ ux ].xHandle == xQueue ) | |
| { | |
| pcReturn = xQueueRegistry[ ux ].pcQueueName; | |
| break; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| return pcReturn; | |
| } /*lint !e818 xQueue cannot be a pointer to const because it is a typedef. */ | |
| #endif /* configQUEUE_REGISTRY_SIZE */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configQUEUE_REGISTRY_SIZE > 0 ) | |
| void vQueueUnregisterQueue( QueueHandle_t xQueue ) | |
| { | |
| UBaseType_t ux; | |
| /* See if the handle of the queue being unregistered in actually in the | |
| registry. */ | |
| for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ ) | |
| { | |
| if( xQueueRegistry[ ux ].xHandle == xQueue ) | |
| { | |
| /* Set the name to NULL to show that this slot if free again. */ | |
| xQueueRegistry[ ux ].pcQueueName = NULL; | |
| /* Set the handle to NULL to ensure the same queue handle cannot | |
| appear in the registry twice if it is added, removed, then | |
| added again. */ | |
| xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0; | |
| break; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */ | |
| #endif /* configQUEUE_REGISTRY_SIZE */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_TIMERS == 1 ) | |
| void vQueueWaitForMessageRestricted( QueueHandle_t xQueue, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely ) | |
| { | |
| Queue_t * const pxQueue = ( Queue_t * ) xQueue; | |
| /* This function should not be called by application code hence the | |
| 'Restricted' in its name. It is not part of the public API. It is | |
| designed for use by kernel code, and has special calling requirements. | |
| It can result in vListInsert() being called on a list that can only | |
| possibly ever have one item in it, so the list will be fast, but even | |
| so it should be called with the scheduler locked and not from a critical | |
| section. */ | |
| /* Only do anything if there are no messages in the queue. This function | |
| will not actually cause the task to block, just place it on a blocked | |
| list. It will not block until the scheduler is unlocked - at which | |
| time a yield will be performed. If an item is added to the queue while | |
| the queue is locked, and the calling task blocks on the queue, then the | |
| calling task will be immediately unblocked when the queue is unlocked. */ | |
| prvLockQueue( pxQueue ); | |
| if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U ) | |
| { | |
| /* There is nothing in the queue, block for the specified period. */ | |
| vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely ); | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| prvUnlockQueue( pxQueue ); | |
| } | |
| #endif /* configUSE_TIMERS */ | |
| /*-----------------------------------------------------------*/ | |
| #if( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) | |
| QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength ) | |
| { | |
| QueueSetHandle_t pxQueue; | |
| pxQueue = xQueueGenericCreate( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), queueQUEUE_TYPE_SET ); | |
| return pxQueue; | |
| } | |
| #endif /* configUSE_QUEUE_SETS */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_QUEUE_SETS == 1 ) | |
| BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet ) | |
| { | |
| BaseType_t xReturn; | |
| taskENTER_CRITICAL(); | |
| { | |
| if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL ) | |
| { | |
| /* Cannot add a queue/semaphore to more than one queue set. */ | |
| xReturn = pdFAIL; | |
| } | |
| else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 ) | |
| { | |
| /* Cannot add a queue/semaphore to a queue set if there are already | |
| items in the queue/semaphore. */ | |
| xReturn = pdFAIL; | |
| } | |
| else | |
| { | |
| ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet; | |
| xReturn = pdPASS; | |
| } | |
| } | |
| taskEXIT_CRITICAL(); | |
| return xReturn; | |
| } | |
| #endif /* configUSE_QUEUE_SETS */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_QUEUE_SETS == 1 ) | |
| BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet ) | |
| { | |
| BaseType_t xReturn; | |
| Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore; | |
| if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet ) | |
| { | |
| /* The queue was not a member of the set. */ | |
| xReturn = pdFAIL; | |
| } | |
| else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 ) | |
| { | |
| /* It is dangerous to remove a queue from a set when the queue is | |
| not empty because the queue set will still hold pending events for | |
| the queue. */ | |
| xReturn = pdFAIL; | |
| } | |
| else | |
| { | |
| taskENTER_CRITICAL(); | |
| { | |
| /* The queue is no longer contained in the set. */ | |
| pxQueueOrSemaphore->pxQueueSetContainer = NULL; | |
| } | |
| taskEXIT_CRITICAL(); | |
| xReturn = pdPASS; | |
| } | |
| return xReturn; | |
| } /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */ | |
| #endif /* configUSE_QUEUE_SETS */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_QUEUE_SETS == 1 ) | |
| QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet, TickType_t const xTicksToWait ) | |
| { | |
| QueueSetMemberHandle_t xReturn = NULL; | |
| ( void ) xQueueReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait ); /*lint !e961 Casting from one typedef to another is not redundant. */ | |
| return xReturn; | |
| } | |
| #endif /* configUSE_QUEUE_SETS */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_QUEUE_SETS == 1 ) | |
| QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet ) | |
| { | |
| QueueSetMemberHandle_t xReturn = NULL; | |
| ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); /*lint !e961 Casting from one typedef to another is not redundant. */ | |
| return xReturn; | |
| } | |
| #endif /* configUSE_QUEUE_SETS */ | |
| /*-----------------------------------------------------------*/ | |
| #if ( configUSE_QUEUE_SETS == 1 ) | |
| static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue, const BaseType_t xCopyPosition ) | |
| { | |
| Queue_t *pxQueueSetContainer = pxQueue->pxQueueSetContainer; | |
| BaseType_t xReturn = pdFALSE; | |
| /* This function must be called form a critical section. */ | |
| configASSERT( pxQueueSetContainer ); | |
| configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength ); | |
| if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength ) | |
| { | |
| const int8_t cTxLock = pxQueueSetContainer->cTxLock; | |
| traceQUEUE_SEND( pxQueueSetContainer ); | |
| /* The data copied is the handle of the queue that contains data. */ | |
| xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, xCopyPosition ); | |
| if( cTxLock == queueUNLOCKED ) | |
| { | |
| if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE ) | |
| { | |
| if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE ) | |
| { | |
| /* The task waiting has a higher priority. */ | |
| xReturn = pdTRUE; | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| } | |
| else | |
| { | |
| pxQueueSetContainer->cTxLock = ( int8_t ) ( cTxLock + 1 ); | |
| } | |
| } | |
| else | |
| { | |
| mtCOVERAGE_TEST_MARKER(); | |
| } | |
| return xReturn; | |
| } | |
| #endif /* configUSE_QUEUE_SETS */ | |