blob: 7fb744042bf2803d3dcffab04e70651840a82a5c [file] [log] [blame]
/*
* -------------------------------------------
* MSP432 DriverLib - v3_10_00_09
* -------------------------------------------
*
* --COPYRIGHT--,BSD,BSD
* Copyright (c) 2014, Texas Instruments Incorporated
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* --/COPYRIGHT--*/
/* Standard Includes */
#include <stdint.h>
/* DriverLib Includes */
#include <debug.h>
#include <cpu.h>
#include <interrupt.h>
#include <hw_memmap.h>
//*****************************************************************************
//
// This is a mapping between priority grouping encodings and the number of
// preemption priority bits.
//
//*****************************************************************************
static const uint32_t g_pulPriority[] =
{ NVIC_APINT_PRIGROUP_0_8, NVIC_APINT_PRIGROUP_1_7, NVIC_APINT_PRIGROUP_2_6,
NVIC_APINT_PRIGROUP_3_5, NVIC_APINT_PRIGROUP_4_4,
NVIC_APINT_PRIGROUP_5_3, NVIC_APINT_PRIGROUP_6_2,
NVIC_APINT_PRIGROUP_7_1 };
//*****************************************************************************
//
// This is a mapping between interrupt number and the register that contains
// the priority encoding for that interrupt.
//
//*****************************************************************************
static const uint32_t g_pulRegs[] =
{ 0, NVIC_SYS_PRI1_R, NVIC_SYS_PRI2_R, NVIC_SYS_PRI3_R, NVIC_PRI0_R,
NVIC_PRI1_R, NVIC_PRI2_R, NVIC_PRI3_R, NVIC_PRI4_R, NVIC_PRI5_R,
NVIC_PRI6_R, NVIC_PRI7_R, NVIC_PRI8_R, NVIC_PRI9_R, NVIC_PRI10_R,
NVIC_PRI11_R, NVIC_PRI12_R, NVIC_PRI13_R, NVIC_PRI14_R, NVIC_PRI15_R };
//*****************************************************************************
//
// This is a mapping between interrupt number (for the peripheral interrupts
// only) and the register that contains the interrupt enable for that
// interrupt.
//
//*****************************************************************************
static const uint32_t g_pulEnRegs[] =
{ NVIC_EN0_R, NVIC_EN1_R };
//*****************************************************************************
//
// This is a mapping between interrupt number (for the peripheral interrupts
// only) and the register that contains the interrupt disable for that
// interrupt.
//
//*****************************************************************************
static const uint32_t g_pulDisRegs[] =
{ NVIC_DIS0_R, NVIC_DIS1_R };
//*****************************************************************************
//
// This is a mapping between interrupt number (for the peripheral interrupts
// only) and the register that contains the interrupt pend for that interrupt.
//
//*****************************************************************************
static const uint32_t g_pulPendRegs[] =
{ NVIC_PEND0_R, NVIC_PEND1_R };
//*****************************************************************************
//
// This is a mapping between interrupt number (for the peripheral interrupts
// only) and the register that contains the interrupt unpend for that
// interrupt.
//
//*****************************************************************************
static const uint32_t g_pulUnpendRegs[] =
{ NVIC_UNPEND0_R, NVIC_UNPEND1_R };
//*****************************************************************************
//
//! \internal
//! The default interrupt handler.
//!
//! This is the default interrupt handler for all interrupts. It simply loops
//! forever so that the system state is preserved for observation by a
//! debugger. Since interrupts should be disabled before unregistering the
//! corresponding handler, this should never be called.
//!
//! \return None.
//
//*****************************************************************************
static void IntDefaultHandler(void)
{
//
// Go into an infinite loop.
//
while (1)
{
}
}
//*****************************************************************************
//
// The processor vector table.
//
// This contains a list of the handlers for the various interrupt sources in
// the system. The layout of this list is defined by the hardware; assertion
// of an interrupt causes the processor to start executing directly at the
// address given in the corresponding location in this list.
//
//*****************************************************************************
#if defined(ewarm)
#pragma data_alignment=1024
static __no_init void (*g_pfnRAMVectors[NUM_INTERRUPTS+1])(void) @ "VTABLE";
#elif defined(ccs)
#pragma DATA_ALIGN(g_pfnRAMVectors, 1024)
#pragma DATA_SECTION(g_pfnRAMVectors, ".vtable")
void (*g_pfnRAMVectors[NUM_INTERRUPTS + 1])(void);
#else
static __attribute__((section("vtable")))
void (*g_pfnRAMVectors[NUM_INTERRUPTS+1])(void) __attribute__((aligned(1024)));
#endif
bool Interrupt_enableMaster(void)
{
//
// Enable processor interrupts.
//
return (CPU_cpsie());
}
bool Interrupt_disableMaster(void)
{
//
// Disable processor interrupts.
//
return (CPU_cpsid());
}
void Interrupt_registerInterrupt(uint32_t interruptNumber,
void (*intHandler)(void))
{
uint32_t ulIdx, ulValue;
//
// Check the arguments.
//
ASSERT(interruptNumber < (NUM_INTERRUPTS+1));
//
// Make sure that the RAM vector table is correctly aligned.
//
ASSERT(((uint32_t) g_pfnRAMVectors & 0x000000ff) == 0);
//
// See if the RAM vector table has been initialized.
//
if (SCB->VTOR != (uint32_t) g_pfnRAMVectors)
{
//
// Copy the vector table from the beginning of FLASH to the RAM vector
// table.
//
ulValue = SCB->VTOR;
for (ulIdx = 0; ulIdx < (NUM_INTERRUPTS + 1); ulIdx++)
{
g_pfnRAMVectors[ulIdx] = (void (*)(void)) HWREG32(
(ulIdx * 4) + ulValue);
}
//
// Point the NVIC at the RAM vector table.
//
SCB->VTOR = (uint32_t) g_pfnRAMVectors;
}
//
// Save the interrupt handler.
//
g_pfnRAMVectors[interruptNumber] = intHandler;
}
void Interrupt_unregisterInterrupt(uint32_t interruptNumber)
{
//
// Check the arguments.
//
ASSERT(interruptNumber < (NUM_INTERRUPTS+1));
//
// Reset the interrupt handler.
//
g_pfnRAMVectors[interruptNumber] = IntDefaultHandler;
}
void Interrupt_setPriorityGrouping(uint32_t bits)
{
//
// Check the arguments.
//
ASSERT(bits < NUM_PRIORITY);
//
// Set the priority grouping.
//
SCB->AIRCR = SCB_AIRCR_VECTKEY_Msk | g_pulPriority[bits];
}
uint32_t Interrupt_getPriorityGrouping(void)
{
uint32_t ulLoop, ulValue;
//
// Read the priority grouping.
//
ulValue = SCB->AIRCR & NVIC_APINT_PRIGROUP_M;
//
// Loop through the priority grouping values.
//
for (ulLoop = 0; ulLoop < NUM_PRIORITY; ulLoop++)
{
//
// Stop looping if this value matches.
//
if (ulValue == g_pulPriority[ulLoop])
{
break;
}
}
//
// Return the number of priority bits.
//
return (ulLoop);
}
void Interrupt_setPriority(uint32_t interruptNumber, uint8_t priority)
{
uint32_t ulTemp;
//
// Check the arguments.
//
ASSERT((interruptNumber >= 4) && (interruptNumber < (NUM_INTERRUPTS+1)));
//
// Set the interrupt priority.
//
ulTemp = HWREG32(g_pulRegs[interruptNumber >> 2]);
ulTemp &= ~(0xFF << (8 * (interruptNumber & 3)));
ulTemp |= priority << (8 * (interruptNumber & 3));
HWREG32 (g_pulRegs[interruptNumber >> 2]) = ulTemp;
}
uint8_t Interrupt_getPriority(uint32_t interruptNumber)
{
//
// Check the arguments.
//
ASSERT((interruptNumber >= 4) && (interruptNumber < (NUM_INTERRUPTS+1)));
//
// Return the interrupt priority.
//
return ((HWREG32(g_pulRegs[interruptNumber >> 2])
>> (8 * (interruptNumber & 3))) & 0xFF);
}
void Interrupt_enableInterrupt(uint32_t interruptNumber)
{
//
// Check the arguments.
//
ASSERT(interruptNumber < (NUM_INTERRUPTS+1));
//
// Determine the interrupt to enable.
//
if (interruptNumber == FAULT_MPU)
{
//
// Enable the MemManage interrupt.
//
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
} else if (interruptNumber == FAULT_BUS)
{
//
// Enable the bus fault interrupt.
//
SCB->SHCSR |= SCB_SHCSR_BUSFAULTENA_Msk;
} else if (interruptNumber == FAULT_USAGE)
{
//
// Enable the usage fault interrupt.
//
SCB->SHCSR |= SCB_SHCSR_USGFAULTENA_Msk;
} else if (interruptNumber == FAULT_SYSTICK)
{
//
// Enable the System Tick interrupt.
//
SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk;
} else if (interruptNumber >= 16)
{
//
// Enable the general interrupt.
//
HWREG32 (g_pulEnRegs[(interruptNumber - 16) / 32]) = 1
<< ((interruptNumber - 16) & 31);
}
}
void Interrupt_disableInterrupt(uint32_t interruptNumber)
{
//
// Check the arguments.
//
ASSERT(interruptNumber < (NUM_INTERRUPTS+1));
//
// Determine the interrupt to disable.
//
if (interruptNumber == FAULT_MPU)
{
//
// Disable the MemManage interrupt.
//
SCB->SHCSR &= ~(SCB_SHCSR_MEMFAULTENA_Msk);
} else if (interruptNumber == FAULT_BUS)
{
//
// Disable the bus fault interrupt.
//
SCB->SHCSR &= ~(SCB_SHCSR_BUSFAULTENA_Msk);
} else if (interruptNumber == FAULT_USAGE)
{
//
// Disable the usage fault interrupt.
//
SCB->SHCSR &= ~(SCB_SHCSR_USGFAULTENA_Msk);
} else if (interruptNumber == FAULT_SYSTICK)
{
//
// Disable the System Tick interrupt.
//
SysTick->CTRL &= ~(SysTick_CTRL_ENABLE_Msk);
} else if (interruptNumber >= 16)
{
//
// Disable the general interrupt.
//
HWREG32 (g_pulDisRegs[(interruptNumber - 16) / 32]) = 1
<< ((interruptNumber - 16) & 31);
}
}
bool Interrupt_isEnabled(uint32_t interruptNumber)
{
uint32_t ulRet;
//
// Check the arguments.
//
ASSERT(interruptNumber < (NUM_INTERRUPTS+1));
//
// Initialize the return value.
//
ulRet = 0;
//
// Determine the interrupt to disable.
//
if (interruptNumber == FAULT_MPU)
{
//
// Check the MemManage interrupt.
//
ulRet = SCB->SHCSR & SCB_SHCSR_MEMFAULTENA_Msk;
} else if (interruptNumber == FAULT_BUS)
{
//
// Check the bus fault interrupt.
//
ulRet = SCB->SHCSR & SCB_SHCSR_BUSFAULTENA_Msk;
} else if (interruptNumber == FAULT_USAGE)
{
//
// Check the usage fault interrupt.
//
ulRet = SCB->SHCSR & SCB_SHCSR_USGFAULTENA_Msk;
} else if (interruptNumber == FAULT_SYSTICK)
{
//
// Check the System Tick interrupt.
//
ulRet = SysTick->CTRL & SysTick_CTRL_ENABLE_Msk;
} else if (interruptNumber >= 16)
{
//
// Check the general interrupt.
//
ulRet = HWREG32(g_pulEnRegs[(interruptNumber - 16) / 32])
& (1 << ((interruptNumber - 16) & 31));
}
return (ulRet);
}
void Interrupt_pendInterrupt(uint32_t interruptNumber)
{
//
// Check the arguments.
//
ASSERT(interruptNumber < (NUM_INTERRUPTS+1));
//
// Determine the interrupt to pend.
//
if (interruptNumber == FAULT_NMI)
{
//
// Pend the NMI interrupt.
//
SCB->ICSR |= SCB_ICSR_NMIPENDSET_Msk;
} else if (interruptNumber == FAULT_PENDSV)
{
//
// Pend the PendSV interrupt.
//
SCB->ICSR |= SCB_ICSR_PENDSVSET_Msk;
} else if (interruptNumber == FAULT_SYSTICK)
{
//
// Pend the SysTick interrupt.
//
SCB->ICSR |= SCB_ICSR_PENDSTSET_Msk;
} else if (interruptNumber >= 16)
{
//
// Pend the general interrupt.
//
HWREG32 (g_pulPendRegs[(interruptNumber - 16) / 32]) = 1
<< ((interruptNumber - 16) & 31);
}
}
void Interrupt_unpendInterrupt(uint32_t interruptNumber)
{
//
// Check the arguments.
//
ASSERT(interruptNumber < (NUM_INTERRUPTS+1));
//
// Determine the interrupt to unpend.
//
if (interruptNumber == FAULT_PENDSV)
{
//
// Unpend the PendSV interrupt.
//
SCB->ICSR |= SCB_ICSR_PENDSVCLR_Msk;
} else if (interruptNumber == FAULT_SYSTICK)
{
//
// Unpend the SysTick interrupt.
//
SCB->ICSR |= SCB_ICSR_PENDSTCLR_Msk;
} else if (interruptNumber >= 16)
{
//
// Unpend the general interrupt.
//
HWREG32 (g_pulUnpendRegs[(interruptNumber - 16) / 32]) = 1
<< ((interruptNumber - 16) & 31);
}
}
void Interrupt_setPriorityMask(uint8_t priorityMask)
{
CPU_basepriSet(priorityMask);
}
uint8_t Interrupt_getPriorityMask(void)
{
return (CPU_basepriGet());
}
void Interrupt_setVectorTableAddress(uint32_t addr)
{
SCB->VTOR = addr;
}
uint32_t Interrupt_getVectorTableAddress(void)
{
return SCB->VTOR;
}
void Interrupt_enableSleepOnIsrExit(void)
{
SCB->SCR |= SCB_SCR_SLEEPONEXIT_Msk;
}
void Interrupt_disableSleepOnIsrExit(void)
{
SCB->SCR &= ~SCB_SCR_SLEEPONEXIT_Msk;
}