blob: 757e0c21139c0b817e07e3b99897d889ec3f95c1 [file] [log] [blame]
/*
* -------------------------------------------
* MSP432 DriverLib - v3_10_00_09
* -------------------------------------------
*
* --COPYRIGHT--,BSD,BSD
* Copyright (c) 2014, Texas Instruments Incorporated
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* --/COPYRIGHT--*/
#include <rtc_c.h>
#include <interrupt.h>
#include <debug.h>
#include <hw_memmap.h>
void RTC_C_startClock(void)
{
RTC_C->CTL0 = (RTC_C->CTL0 & ~RTC_C_CTL0_KEY_MASK) | RTC_C_KEY;
BITBAND_PERI(RTC_C->CTL13, RTC_C_CTL13_HOLD_OFS) = 0;
BITBAND_PERI(RTC_C->CTL0, RTC_C_CTL0_KEY_OFS) = 0;
}
void RTC_C_holdClock(void)
{
RTC_C->CTL0 = (RTC_C->CTL0 & ~RTC_C_CTL0_KEY_MASK) | RTC_C_KEY;
BITBAND_PERI(RTC_C->CTL13, RTC_C_CTL13_HOLD_OFS) = 1;
BITBAND_PERI(RTC_C->CTL0, RTC_C_CTL0_KEY_OFS) = 0;
}
void RTC_C_setCalibrationFrequency(uint_fast16_t frequencySelect)
{
RTC_C->CTL0 = (RTC_C->CTL0 & ~RTC_C_CTL0_KEY_MASK) | RTC_C_KEY;
RTC_C->CTL13 = (RTC_C->CTL13 & ~(RTC_C_CTL13_CALF_3)) | frequencySelect;
BITBAND_PERI(RTC_C->CTL0, RTC_C_CTL0_KEY_OFS) = 0;
}
void RTC_C_setCalibrationData(uint_fast8_t offsetDirection,
uint_fast8_t offsetValue)
{
RTC_C->CTL0 = (RTC_C->CTL0 & ~RTC_C_CTL0_KEY_MASK) | RTC_C_KEY;
RTC_C->OCAL = offsetValue + offsetDirection;
BITBAND_PERI(RTC_C->CTL0, RTC_C_CTL0_KEY_OFS) = 0;
}
bool RTC_C_setTemperatureCompensation(uint_fast16_t offsetDirection,
uint_fast8_t offsetValue)
{
while (!BITBAND_PERI(RTC_C->TCMP, RTC_C_TCMP_TCRDY_OFS))
;
RTC_C->TCMP = offsetValue + offsetDirection;
if (BITBAND_PERI(RTC_C->TCMP, RTC_C_TCMP_TCOK_OFS))
return true;
else
return false;
}
void RTC_C_initCalendar(const RTC_C_Calendar *calendarTime,
uint_fast16_t formatSelect)
{
RTC_C->CTL0 = (RTC_C->CTL0 & ~RTC_C_CTL0_KEY_MASK) | RTC_C_KEY;
BITBAND_PERI(RTC_C->CTL13, RTC_C_CTL13_HOLD_OFS) = 1;
if (formatSelect)
BITBAND_PERI(RTC_C->CTL13, RTC_C_CTL13_BCD_OFS) = 1;
else
BITBAND_PERI(RTC_C->CTL13, RTC_C_CTL13_BCD_OFS) = 0;
RTC_C->TIM0 = (calendarTime->minutes<<RTC_C_TIM0_MIN_OFS) | calendarTime->seconds;
RTC_C->TIM1 = (calendarTime->dayOfWeek<<RTC_C_TIM1_DOW_OFS) | calendarTime->hours;
RTC_C->DATE = (calendarTime->month<<RTC_C_DATE_MON_OFS) | calendarTime->dayOfmonth;
RTC_C->YEAR = calendarTime->year;
BITBAND_PERI(RTC_C->CTL0, RTC_C_CTL0_KEY_OFS) = 0;
}
RTC_C_Calendar RTC_C_getCalendarTime(void)
{
RTC_C_Calendar tempCal;
while (!(BITBAND_PERI(RTC_C->CTL13, RTC_C_CTL13_RDY_OFS)))
;
tempCal.seconds = RTC_C->TIM0 & RTC_C_TIM0_SEC_MASK;
tempCal.minutes = (RTC_C->TIM0 & RTC_C_TIM0_MIN_MASK)>>RTC_C_TIM0_MIN_OFS;
tempCal.hours = RTC_C->TIM1 & RTC_C_TIM1_HOUR_MASK;
tempCal.dayOfWeek = (RTC_C->TIM1 & RTC_C_TIM1_DOW_MASK)>>RTC_C_TIM1_DOW_OFS;
tempCal.dayOfmonth = RTC_C->DATE & RTC_C_DATE_DAY_MASK;
tempCal.month = (RTC_C->DATE & RTC_C_DATE_MON_MASK)>>RTC_C_DATE_MON_OFS;
tempCal.year = RTC_C->YEAR;
return (tempCal);
}
void RTC_C_setCalendarAlarm(uint_fast8_t minutesAlarm, uint_fast8_t hoursAlarm,
uint_fast8_t dayOfWeekAlarm, uint_fast8_t dayOfmonthAlarm)
{
//Each of these is XORed with 0x80 to turn on if an integer is passed,
//or turn OFF if RTC_ALARM_OFF (0x80) is passed.
RTC_C->AMINHR = ((hoursAlarm ^ 0x80) << 8 )| (minutesAlarm ^ 0x80);
RTC_C->ADOWDAY = ((dayOfmonthAlarm ^ 0x80) << 8 )| (dayOfWeekAlarm ^ 0x80);
}
void RTC_C_setCalendarEvent(uint_fast16_t eventSelect)
{
RTC_C->CTL0 = (RTC_C->CTL0 & ~RTC_C_CTL0_KEY_MASK) | RTC_C_KEY;
RTC_C->CTL13 = (RTC_C->CTL13 & ~(RTC_C_CTL13_TEV_3)) | eventSelect;
BITBAND_PERI(RTC_C->CTL0, RTC_C_CTL0_KEY_OFS) = 0;
}
void RTC_C_definePrescaleEvent(uint_fast8_t prescaleSelect,
uint_fast8_t prescaleEventDivider)
{
HWREG8(&RTC_C->PS0CTL + prescaleSelect) &= ~(RTC_C_PS0CTL_RT0IP_7);
HWREG8(&RTC_C->PS0CTL + prescaleSelect) |=
prescaleEventDivider;
}
uint_fast8_t RTC_C_getPrescaleValue(uint_fast8_t prescaleSelect)
{
if (RTC_C_PRESCALE_0 == prescaleSelect)
{
return (RTC_C->PS & RTC_C_PS_RT0PS_MASK);
} else if (RTC_C_PRESCALE_1 == prescaleSelect)
{
return (RTC_C->PS & RTC_C_PS_RT1PS_MASK)>>RTC_C_PS_RT1PS_OFS;
} else
{
return (0);
}
}
void RTC_C_setPrescaleValue(uint_fast8_t prescaleSelect,
uint_fast8_t prescaleCounterValue)
{
RTC_C->CTL0 = (RTC_C->CTL0 & ~RTC_C_CTL0_KEY_MASK) | RTC_C_KEY;
if (RTC_C_PRESCALE_0 == prescaleSelect)
{
RTC_C->PS = (RTC_C->PS & ~RTC_C_PS_RT0PS_MASK) | prescaleCounterValue;
} else if (RTC_C_PRESCALE_1 == prescaleSelect)
{
RTC_C->PS = (RTC_C->PS & ~RTC_C_PS_RT1PS_MASK)
| (prescaleCounterValue << RTC_C_PS_RT1PS_OFS);
}
BITBAND_PERI(RTC_C->CTL0, RTC_C_CTL0_KEY_OFS) = 0;
}
uint16_t RTC_C_convertBCDToBinary(uint16_t valueToConvert)
{
RTC_C->BCD2BIN = valueToConvert;
return (RTC_C->BCD2BIN);
}
uint16_t RTC_C_convertBinaryToBCD(uint16_t valueToConvert)
{
RTC_C->BIN2BCD = valueToConvert;
return (RTC_C->BIN2BCD);
}
void RTC_C_enableInterrupt(uint8_t interruptMask)
{
if (interruptMask & (RTC_C_CTL0_OFIE + RTC_C_CTL0_TEVIE + RTC_C_CTL0_AIE
+ RTC_C_CTL0_RDYIE))
{
RTC_C->CTL0 = RTC_C_KEY | (interruptMask
& (RTC_C_CTL0_OFIE + RTC_C_CTL0_TEVIE + RTC_C_CTL0_AIE
+ RTC_C_CTL0_RDYIE));
BITBAND_PERI(RTC_C->CTL0, RTC_C_CTL0_KEY_OFS) = 0;
}
if (interruptMask & RTC_C_PRESCALE_TIMER0_INTERRUPT)
{
BITBAND_PERI(RTC_C->PS0CTL, RTC_C_PS0CTL_RT0PSIE_OFS) = 1;
}
if (interruptMask & RTC_C_PRESCALE_TIMER1_INTERRUPT)
{
BITBAND_PERI(RTC_C->PS1CTL,RTC_C_PS1CTL_RT1PSIE_OFS) = 1;
}
}
void RTC_C_disableInterrupt(uint8_t interruptMask)
{
if (interruptMask & (RTC_C_CTL0_OFIE + RTC_C_CTL0_TEVIE + RTC_C_CTL0_AIE
+ RTC_C_CTL0_RDYIE))
{
RTC_C->CTL0 = RTC_C_KEY
| (RTC_C->CTL0 & ~((interruptMask | RTC_C_CTL0_KEY_MASK)
& (RTC_C_CTL0_OFIE + RTC_C_CTL0_TEVIE + RTC_C_CTL0_AIE
+ RTC_C_CTL0_RDYIE)));
BITBAND_PERI(RTC_C->CTL0, RTC_C_CTL0_KEY_OFS) = 0;
}
if (interruptMask & RTC_C_PRESCALE_TIMER0_INTERRUPT)
{
BITBAND_PERI(RTC_C->PS0CTL, RTC_C_PS0CTL_RT0PSIE_OFS) = 0;
}
if (interruptMask & RTC_C_PRESCALE_TIMER1_INTERRUPT)
{
BITBAND_PERI(RTC_C->PS1CTL, RTC_C_PS1CTL_RT1PSIE_OFS) = 0;
}
}
uint_fast8_t RTC_C_getInterruptStatus(void)
{
uint_fast8_t tempInterruptFlagMask = 0x00;
uint_fast8_t interruptFlagMask = RTC_C_TIME_EVENT_INTERRUPT
| RTC_C_CLOCK_ALARM_INTERRUPT | RTC_C_CLOCK_READ_READY_INTERRUPT
| RTC_C_PRESCALE_TIMER0_INTERRUPT | RTC_C_PRESCALE_TIMER1_INTERRUPT
| RTC_C_OSCILLATOR_FAULT_INTERRUPT;
tempInterruptFlagMask |= (RTC_C->CTL0 & (interruptFlagMask >> 4));
tempInterruptFlagMask = tempInterruptFlagMask << 4;
if (interruptFlagMask & RTC_C_PRESCALE_TIMER0_INTERRUPT)
{
if (BITBAND_PERI(RTC_C->PS0CTL, RTC_C_PS0CTL_RT0PSIFG_OFS))
{
tempInterruptFlagMask |= RTC_C_PRESCALE_TIMER0_INTERRUPT;
}
}
if (interruptFlagMask & RTC_C_PRESCALE_TIMER1_INTERRUPT)
{
if (BITBAND_PERI(RTC_C->PS1CTL, RTC_C_PS1CTL_RT1PSIFG_OFS))
{
tempInterruptFlagMask |= RTC_C_PRESCALE_TIMER1_INTERRUPT;
}
}
return (tempInterruptFlagMask);
}
uint_fast8_t RTC_C_getEnabledInterruptStatus(void)
{
uint32_t intStatus = RTC_C_getInterruptStatus();
if (!BITBAND_PERI(RTC_C->CTL0, RTC_C_CTL0_OFIE_OFS))
{
intStatus &= ~RTC_C_OSCILLATOR_FAULT_INTERRUPT;
}
if (!BITBAND_PERI(RTC_C->CTL0, RTC_C_CTL0_TEVIE_OFS))
{
intStatus &= ~RTC_C_TIME_EVENT_INTERRUPT;
}
if (!BITBAND_PERI(RTC_C->CTL0, RTC_C_CTL0_AIE_OFS))
{
intStatus &= ~RTC_C_CLOCK_ALARM_INTERRUPT;
}
if (!BITBAND_PERI(RTC_C->CTL0, RTC_C_CTL0_RDYIE_OFS))
{
intStatus &= ~RTC_C_CLOCK_READ_READY_INTERRUPT;
}
if (!BITBAND_PERI(RTC_C->PS0CTL, RTC_C_PS0CTL_RT0PSIE_OFS))
{
intStatus &= ~RTC_C_PRESCALE_TIMER0_INTERRUPT;
}
if (!BITBAND_PERI(RTC_C->PS1CTL, RTC_C_PS1CTL_RT1PSIE_OFS))
{
intStatus &= ~RTC_C_PRESCALE_TIMER1_INTERRUPT;
}
return intStatus;
}
void RTC_C_clearInterruptFlag(uint_fast8_t interruptFlagMask)
{
if (interruptFlagMask
& (RTC_C_TIME_EVENT_INTERRUPT + RTC_C_CLOCK_ALARM_INTERRUPT
+ RTC_C_CLOCK_READ_READY_INTERRUPT
+ RTC_C_OSCILLATOR_FAULT_INTERRUPT))
{
RTC_C->CTL0 = RTC_C_KEY
| (RTC_C->CTL0 & ~((interruptFlagMask >> 4) | RTC_C_CTL0_KEY_MASK));
BITBAND_PERI(RTC_C->CTL0, RTC_C_CTL0_KEY_OFS) = 0;
}
if (interruptFlagMask & RTC_C_PRESCALE_TIMER0_INTERRUPT)
{
BITBAND_PERI(RTC_C->PS0CTL, RTC_C_PS0CTL_RT0PSIFG_OFS) = 0;
}
if (interruptFlagMask & RTC_C_PRESCALE_TIMER1_INTERRUPT)
{
BITBAND_PERI(RTC_C->PS1CTL, RTC_C_PS1CTL_RT1PSIFG_OFS) = 0;
}
}
void RTC_C_registerInterrupt(void (*intHandler)(void))
{
Interrupt_registerInterrupt(INT_RTC_C, intHandler);
Interrupt_enableInterrupt(INT_RTC_C);
}
void RTC_C_unregisterInterrupt(void)
{
Interrupt_disableInterrupt(INT_RTC_C);
Interrupt_unregisterInterrupt(INT_RTC_C);
}