blob: fb2b92e9cc3da0776e7a0061fa190c73f02ae9d3 [file] [log] [blame]
/**************************************************************************//**
* @file system_msp432p401r.c
* @brief CMSIS Cortex-M4F Device Peripheral Access Layer Source File for
* MSP432P401R
* @version V2.1.0
* @date 2016-01-26
*
* @note View configuration instructions embedded in comments
*
******************************************************************************/
//*****************************************************************************
//
// Copyright (C) 2015 - 2016 Texas Instruments Incorporated - http://www.ti.com/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//*****************************************************************************
#include <stdint.h>
#include "msp.h"
/*--------------------- Configuration Instructions ----------------------------
1. If you prefer to halt the Watchdog Timer, set __HALT_WDT to 1:
#define __HALT_WDT 1
2. Insert your desired CPU frequency in Hz at:
#define __SYSTEM_CLOCK 12000000
3. If you prefer the DC-DC power regulator (more efficient at higher
frequencies), set the __REGULATOR to 1:
#define __REGULATOR 1
*---------------------------------------------------------------------------*/
/*--------------------- Watchdog Timer Configuration ------------------------*/
// Halt the Watchdog Timer
// <0> Do not halt the WDT
// <1> Halt the WDT
#define __HALT_WDT 1
/*--------------------- CPU Frequency Configuration -------------------------*/
// CPU Frequency
// <1500000> 1.5 MHz
// <3000000> 3 MHz
// <12000000> 12 MHz
// <24000000> 24 MHz
// <48000000> 48 MHz
#define __SYSTEM_CLOCK 3000000
/*--------------------- Power Regulator Configuration -----------------------*/
// Power Regulator Mode
// <0> LDO
// <1> DC-DC
#define __REGULATOR 0
/*----------------------------------------------------------------------------
Define clocks, used for SystemCoreClockUpdate()
*---------------------------------------------------------------------------*/
#define __VLOCLK 10000
#define __MODCLK 24000000
#define __LFXT 32768
#define __HFXT 48000000
/*----------------------------------------------------------------------------
Clock Variable definitions
*---------------------------------------------------------------------------*/
uint32_t SystemCoreClock = __SYSTEM_CLOCK; /*!< System Clock Frequency (Core Clock)*/
/**
* Update SystemCoreClock variable
*
* @param none
* @return none
*
* @brief Updates the SystemCoreClock with current core Clock
* retrieved from cpu registers.
*/
void SystemCoreClockUpdate(void)
{
uint32_t source, divider;
uint8_t dividerValue;
float dcoConst;
int32_t calVal;
uint32_t centeredFreq;
int16_t dcoTune;
divider = (CS->CTL1 & CS_CTL1_DIVM_MASK) >> CS_CTL1_DIVM_OFS;
dividerValue = 1 << divider;
source = CS->CTL1 & CS_CTL1_SELM_MASK;
switch(source)
{
case CS_CTL1_SELM__LFXTCLK:
if(BITBAND_PERI(CS->IFG, CS_IFG_LFXTIFG_OFS))
{
// Clear interrupt flag
CS->KEY = CS_KEY_VAL;
CS->CLRIFG |= CS_CLRIFG_CLR_LFXTIFG;
CS->KEY = 1;
if(BITBAND_PERI(CS->IFG, CS_IFG_LFXTIFG_OFS))
{
if(BITBAND_PERI(CS->CLKEN, CS_CLKEN_REFOFSEL_OFS))
{
SystemCoreClock = (128000 / dividerValue);
}
else
{
SystemCoreClock = (32000 / dividerValue);
}
}
else
{
SystemCoreClock = __LFXT / dividerValue;
}
}
else
{
SystemCoreClock = __LFXT / dividerValue;
}
break;
case CS_CTL1_SELM__VLOCLK:
SystemCoreClock = __VLOCLK / dividerValue;
break;
case CS_CTL1_SELM__REFOCLK:
if (BITBAND_PERI(CS->CLKEN, CS_CLKEN_REFOFSEL_OFS))
{
SystemCoreClock = (128000 / dividerValue);
}
else
{
SystemCoreClock = (32000 / dividerValue);
}
break;
case CS_CTL1_SELM__DCOCLK:
dcoTune = (CS->CTL0 & CS_CTL0_DCOTUNE_MASK) >> CS_CTL0_DCOTUNE_OFS;
switch(CS->CTL0 & CS_CTL0_DCORSEL_MASK)
{
case CS_CTL0_DCORSEL_0:
centeredFreq = 1500000;
break;
case CS_CTL0_DCORSEL_1:
centeredFreq = 3000000;
break;
case CS_CTL0_DCORSEL_2:
centeredFreq = 6000000;
break;
case CS_CTL0_DCORSEL_3:
centeredFreq = 12000000;
break;
case CS_CTL0_DCORSEL_4:
centeredFreq = 24000000;
break;
case CS_CTL0_DCORSEL_5:
centeredFreq = 48000000;
break;
}
if(dcoTune == 0)
{
SystemCoreClock = centeredFreq;
}
else
{
if(dcoTune & 0x1000)
{
dcoTune = dcoTune | 0xF000;
}
if (BITBAND_PERI(CS->CTL0, CS_CTL0_DCORES_OFS))
{
dcoConst = *((float *) &TLV->DCOER_CONSTK_RSEL04);
calVal = TLV->DCOER_FCAL_RSEL04;
}
/* Internal Resistor */
else
{
dcoConst = *((float *) &TLV->DCOIR_CONSTK_RSEL04);
calVal = TLV->DCOIR_FCAL_RSEL04;
}
SystemCoreClock = (uint32_t) ((centeredFreq)
/ (1
- ((dcoConst * dcoTune)
/ (8 * (1 + dcoConst * (768 - calVal))))));
}
break;
case CS_CTL1_SELM__MODOSC:
SystemCoreClock = __MODCLK / dividerValue;
break;
case CS_CTL1_SELM__HFXTCLK:
if(BITBAND_PERI(CS->IFG, CS_IFG_HFXTIFG_OFS))
{
// Clear interrupt flag
CS->KEY = CS_KEY_VAL;
CS->CLRIFG |= CS_CLRIFG_CLR_HFXTIFG;
CS->KEY = 1;
if(BITBAND_PERI(CS->IFG, CS_IFG_HFXTIFG_OFS))
{
if(BITBAND_PERI(CS->CLKEN, CS_CLKEN_REFOFSEL_OFS))
{
SystemCoreClock = (128000 / dividerValue);
}
else
{
SystemCoreClock = (32000 / dividerValue);
}
}
else
{
SystemCoreClock = __HFXT / dividerValue;
}
}
else
{
SystemCoreClock = __HFXT / dividerValue;
}
break;
}
}
/**
* Initialize the system
*
* @param none
* @return none
*
* @brief Setup the microcontroller system.
*
* Performs the following initialization steps:
* 1. Enables the FPU
* 2. Halts the WDT if requested
* 3. Enables all SRAM banks
* 4. Sets up power regulator and VCORE
* 5. Enable Flash wait states if needed
* 6. Change MCLK to desired frequency
* 7. Enable Flash read buffering
*/
void SystemInit(void)
{
// Enable FPU if used
#if (__FPU_USED == 1) /* __FPU_USED is defined in core_cm4.h */
SCB->CPACR |= ((3UL << 10 * 2) | /* Set CP10 Full Access */
(3UL << 11 * 2)); /* Set CP11 Full Access */
#endif
#if (__HALT_WDT == 1)
WDT_A->CTL = WDT_A_CTL_PW | WDT_A_CTL_HOLD; // Halt the WDT
#endif
SYSCTL->SRAM_BANKEN = SYSCTL_SRAM_BANKEN_BNK7_EN; // Enable all SRAM banks
#if (__SYSTEM_CLOCK == 1500000) // 1.5 MHz
// Default VCORE is LDO VCORE0 so no change necessary
// Switches LDO VCORE0 to DCDC VCORE0 if requested
#if __REGULATOR
while((PCM->CTL1 & PCM_CTL1_PMR_BUSY));
PCM->CTL0 = PCM_CTL0_KEY_VAL | PCM_CTL0_AMR_4;
while((PCM->CTL1 & PCM_CTL1_PMR_BUSY));
#endif
// No flash wait states necessary
// DCO = 1.5 MHz; MCLK = source
CS->KEY = CS_KEY_VAL; // Unlock CS module for register access
CS->CTL0 = CS_CTL0_DCORSEL_0; // Set DCO to 1.5MHz
CS->CTL1 &= ~(CS_CTL1_SELM_MASK | CS_CTL1_DIVM_MASK) | CS_CTL1_SELM__DCOCLK; // Select MCLK as DCO source
CS->KEY = 0;
// Set Flash Bank read buffering
FLCTL->BANK0_RDCTL &= ~(FLCTL_BANK0_RDCTL_BUFD | FLCTL_BANK0_RDCTL_BUFI);
FLCTL->BANK1_RDCTL &= ~(FLCTL_BANK0_RDCTL_BUFD | FLCTL_BANK0_RDCTL_BUFI);
#elif (__SYSTEM_CLOCK == 3000000) // 3 MHz
// Default VCORE is LDO VCORE0 so no change necessary
// Switches LDO VCORE0 to DCDC VCORE0 if requested
#if __REGULATOR
while(PCM->CTL1 & PCM_CTL1_PMR_BUSY);
PCM->CTL0 = PCM_CTL0_KEY_VAL | PCM_CTL0_AMR_4;
while(PCM->CTL1 & PCM_CTL1_PMR_BUSY);
#endif
// No flash wait states necessary
// DCO = 3 MHz; MCLK = source
CS->KEY = CS_KEY_VAL; // Unlock CS module for register access
CS->CTL0 = CS_CTL0_DCORSEL_1; // Set DCO to 1.5MHz
CS->CTL1 &= ~(CS_CTL1_SELM_MASK | CS_CTL1_DIVM_MASK) | CS_CTL1_SELM__DCOCLK; // Select MCLK as DCO source
CS->KEY = 0;
// Set Flash Bank read buffering
FLCTL->BANK0_RDCTL &= ~(FLCTL_BANK0_RDCTL_BUFD | FLCTL_BANK0_RDCTL_BUFI);
FLCTL->BANK1_RDCTL &= ~(FLCTL_BANK0_RDCTL_BUFD | FLCTL_BANK0_RDCTL_BUFI);
#elif (__SYSTEM_CLOCK == 12000000) // 12 MHz
// Default VCORE is LDO VCORE0 so no change necessary
// Switches LDO VCORE0 to DCDC VCORE0 if requested
#if __REGULATOR
while((PCM->CTL1 & PCM_CTL1_PMR_BUSY));
PCM->CTL0 = PCM_CTL0_KEY_VAL | PCM_CTL0_AMR_4;
while((PCM->CTL1 & PCM_CTL1_PMR_BUSY));
#endif
// No flash wait states necessary
// DCO = 12 MHz; MCLK = source
CS->KEY = CS_KEY_VAL; // Unlock CS module for register access
CS->CTL0 = CS_CTL0_DCORSEL_3; // Set DCO to 12MHz
CS->CTL1 &= ~(CS_CTL1_SELM_MASK | CS_CTL1_DIVM_MASK) | CS_CTL1_SELM__DCOCLK; // Select MCLK as DCO source
CS->KEY = 0;
// Set Flash Bank read buffering
FLCTL->BANK0_RDCTL &= ~(FLCTL_BANK0_RDCTL_BUFD | FLCTL_BANK0_RDCTL_BUFI);
FLCTL->BANK1_RDCTL &= ~(FLCTL_BANK0_RDCTL_BUFD | FLCTL_BANK0_RDCTL_BUFI);
#elif (__SYSTEM_CLOCK == 24000000) // 24 MHz
// Default VCORE is LDO VCORE0 so no change necessary
// Switches LDO VCORE0 to DCDC VCORE0 if requested
#if __REGULATOR
while((PCM->CTL1 & PCM_CTL1_PMR_BUSY));
PCM->CTL0 = PCM_CTL0_KEY_VAL | PCM_CTL0_AMR_4;
while((PCM->CTL1 & PCM_CTL1_PMR_BUSY));
#endif
// 1 flash wait state (BANK0 VCORE0 max is 12 MHz)
FLCTL->BANK0_RDCTL &= ~FLCTL_BANK0_RDCTL_WAIT_MASK | FLCTL_BANK0_RDCTL_WAIT_1;
FLCTL->BANK1_RDCTL &= ~FLCTL_BANK0_RDCTL_WAIT_MASK | FLCTL_BANK0_RDCTL_WAIT_1;
// DCO = 24 MHz; MCLK = source
CS->KEY = CS_KEY_VAL; // Unlock CS module for register access
CS->CTL0 = CS_CTL0_DCORSEL_4; // Set DCO to 24MHz
CS->CTL1 &= ~(CS_CTL1_SELM_MASK | CS_CTL1_DIVM_MASK) | CS_CTL1_SELM__DCOCLK; // Select MCLK as DCO source
CS->KEY = 0;
// Set Flash Bank read buffering
FLCTL->BANK0_RDCTL |= (FLCTL_BANK0_RDCTL_BUFD | FLCTL_BANK0_RDCTL_BUFI);
FLCTL->BANK1_RDCTL &= ~(FLCTL_BANK0_RDCTL_BUFD | FLCTL_BANK0_RDCTL_BUFI);
#elif (__SYSTEM_CLOCK == 48000000) // 48 MHz
// Switches LDO VCORE0 to LDO VCORE1; mandatory for 48 MHz setting
while((PCM->CTL1 & PCM_CTL1_PMR_BUSY));
PCM->CTL0 = PCM_CTL0_KEY_VAL | PCM_CTL0_AMR_1;
while((PCM->CTL1 & PCM_CTL1_PMR_BUSY));
// Switches LDO VCORE1 to DCDC VCORE1 if requested
#if __REGULATOR
while((PCM->CTL1 & PCM_CTL1_PMR_BUSY));
PCM->CTL0 = PCM_CTL0_KEY_VAL | PCM_CTL0_AMR_5;
while((PCM->CTL1 & PCM_CTL1_PMR_BUSY));
#endif
// 2 flash wait states (BANK0 VCORE1 max is 16 MHz, BANK1 VCORE1 max is 32 MHz)
FLCTL->BANK0_RDCTL &= ~FLCTL_BANK0_RDCTL_WAIT_MASK | FLCTL_BANK0_RDCTL_WAIT_2;
FLCTL->BANK1_RDCTL &= ~FLCTL_BANK1_RDCTL_WAIT_MASK | FLCTL_BANK1_RDCTL_WAIT_2;
// DCO = 48 MHz; MCLK = source
CS->KEY = CS_KEY_VAL; // Unlock CS module for register access
CS->CTL0 = CS_CTL0_DCORSEL_5; // Set DCO to 48MHz
CS->CTL1 &= ~(CS_CTL1_SELM_MASK | CS_CTL1_DIVM_MASK) | CS_CTL1_SELM__DCOCLK; // Select MCLK as DCO source
CS->KEY = 0;
// Set Flash Bank read buffering
FLCTL->BANK0_RDCTL |= (FLCTL_BANK0_RDCTL_BUFD | FLCTL_BANK0_RDCTL_BUFI);
FLCTL->BANK1_RDCTL |= (FLCTL_BANK1_RDCTL_BUFD | FLCTL_BANK1_RDCTL_BUFI);
#endif
}