blob: cf76e5461ca1438e3d295f399fd02157bb01e029 [file] [log] [blame]
/**
******************************************************************************
* @file stm32f7xx_hal_can.c
* @author MCD Application Team
* @version V1.0.0
* @date 12-May-2015
* @brief CAN HAL module driver.
*
* This file provides firmware functions to manage the following
* functionalities of the Controller Area Network (CAN) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral Control functions
* + Peripheral State and Error functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(#) Enable the CAN controller interface clock using
__HAL_RCC_CAN1_CLK_ENABLE() for CAN1 and __HAL_RCC_CAN2_CLK_ENABLE() for CAN2
-@- In case you are using CAN2 only, you have to enable the CAN1 clock.
(#) CAN pins configuration
(++) Enable the clock for the CAN GPIOs using the following function:
__HAL_RCC_GPIOx_CLK_ENABLE()
(++) Connect and configure the involved CAN pins to AF9 using the
following function HAL_GPIO_Init()
(#) Initialize and configure the CAN using HAL_CAN_Init() function.
(#) Transmit the desired CAN frame using HAL_CAN_Transmit() function.
(#) Receive a CAN frame using HAL_CAN_Receive() function.
*** Polling mode IO operation ***
=================================
[..]
(+) Start the CAN peripheral transmission and wait the end of this operation
using HAL_CAN_Transmit(), at this stage user can specify the value of timeout
according to his end application
(+) Start the CAN peripheral reception and wait the end of this operation
using HAL_CAN_Receive(), at this stage user can specify the value of timeout
according to his end application
*** Interrupt mode IO operation ***
===================================
[..]
(+) Start the CAN peripheral transmission using HAL_CAN_Transmit_IT()
(+) Start the CAN peripheral reception using HAL_CAN_Receive_IT()
(+) Use HAL_CAN_IRQHandler() called under the used CAN Interrupt subroutine
(+) At CAN end of transmission HAL_CAN_TxCpltCallback() function is executed and user can
add his own code by customization of function pointer HAL_CAN_TxCpltCallback
(+) In case of CAN Error, HAL_CAN_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_CAN_ErrorCallback
*** CAN HAL driver macros list ***
=============================================
[..]
Below the list of most used macros in CAN HAL driver.
(+) __HAL_CAN_ENABLE_IT: Enable the specified CAN interrupts
(+) __HAL_CAN_DISABLE_IT: Disable the specified CAN interrupts
(+) __HAL_CAN_GET_IT_SOURCE: Check if the specified CAN interrupt source is enabled or disabled
(+) __HAL_CAN_CLEAR_FLAG: Clear the CAN's pending flags
(+) __HAL_CAN_GET_FLAG: Get the selected CAN's flag status
[..]
(@) You can refer to the CAN HAL driver header file for more useful macros
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f7xx_hal.h"
/** @addtogroup STM32F7xx_HAL_Driver
* @{
*/
/** @defgroup CAN CAN
* @brief CAN driver modules
* @{
*/
#ifdef HAL_CAN_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup CAN_Private_Constants
* @{
*/
#define CAN_TIMEOUT_VALUE 10
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup CAN_Private_Functions
* @{
*/
static HAL_StatusTypeDef CAN_Receive_IT(CAN_HandleTypeDef* hcan, uint8_t FIFONumber);
static HAL_StatusTypeDef CAN_Transmit_IT(CAN_HandleTypeDef* hcan);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup CAN_Exported_Functions CAN Exported Functions
* @{
*/
/** @defgroup CAN_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and de-initialization functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Initialize and configure the CAN.
(+) De-initialize the CAN.
@endverbatim
* @{
*/
/**
* @brief Initializes the CAN peripheral according to the specified
* parameters in the CAN_InitStruct.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Init(CAN_HandleTypeDef* hcan)
{
uint32_t InitStatus = 3;
uint32_t tickstart = 0;
/* Check CAN handle */
if(hcan == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TTCM));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.ABOM));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AWUM));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.NART));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.RFLM));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TXFP));
assert_param(IS_CAN_MODE(hcan->Init.Mode));
assert_param(IS_CAN_SJW(hcan->Init.SJW));
assert_param(IS_CAN_BS1(hcan->Init.BS1));
assert_param(IS_CAN_BS2(hcan->Init.BS2));
assert_param(IS_CAN_PRESCALER(hcan->Init.Prescaler));
if(hcan->State == HAL_CAN_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hcan->Lock = HAL_UNLOCKED;
/* Init the low level hardware */
HAL_CAN_MspInit(hcan);
}
/* Initialize the CAN state*/
hcan->State = HAL_CAN_STATE_BUSY;
/* Exit from sleep mode */
hcan->Instance->MCR &= (~(uint32_t)CAN_MCR_SLEEP);
/* Request initialisation */
hcan->Instance->MCR |= CAN_MCR_INRQ ;
/* Get tick */
tickstart = HAL_GetTick();
/* Wait the acknowledge */
while((hcan->Instance->MSR & CAN_MSR_INAK) != CAN_MSR_INAK)
{
if((HAL_GetTick() - tickstart ) > CAN_TIMEOUT_VALUE)
{
hcan->State= HAL_CAN_STATE_TIMEOUT;
/* Process unlocked */
__HAL_UNLOCK(hcan);
return HAL_TIMEOUT;
}
}
/* Check acknowledge */
if ((hcan->Instance->MSR & CAN_MSR_INAK) != CAN_MSR_INAK)
{
InitStatus = CAN_INITSTATUS_FAILED;
}
else
{
/* Set the time triggered communication mode */
if (hcan->Init.TTCM == ENABLE)
{
hcan->Instance->MCR |= CAN_MCR_TTCM;
}
else
{
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_TTCM;
}
/* Set the automatic bus-off management */
if (hcan->Init.ABOM == ENABLE)
{
hcan->Instance->MCR |= CAN_MCR_ABOM;
}
else
{
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_ABOM;
}
/* Set the automatic wake-up mode */
if (hcan->Init.AWUM == ENABLE)
{
hcan->Instance->MCR |= CAN_MCR_AWUM;
}
else
{
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_AWUM;
}
/* Set the no automatic retransmission */
if (hcan->Init.NART == ENABLE)
{
hcan->Instance->MCR |= CAN_MCR_NART;
}
else
{
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_NART;
}
/* Set the receive FIFO locked mode */
if (hcan->Init.RFLM == ENABLE)
{
hcan->Instance->MCR |= CAN_MCR_RFLM;
}
else
{
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_RFLM;
}
/* Set the transmit FIFO priority */
if (hcan->Init.TXFP == ENABLE)
{
hcan->Instance->MCR |= CAN_MCR_TXFP;
}
else
{
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_TXFP;
}
/* Set the bit timing register */
hcan->Instance->BTR = (uint32_t)((uint32_t)hcan->Init.Mode) | \
((uint32_t)hcan->Init.SJW) | \
((uint32_t)hcan->Init.BS1) | \
((uint32_t)hcan->Init.BS2) | \
((uint32_t)hcan->Init.Prescaler - 1);
/* Request leave initialisation */
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_INRQ;
/* Get tick */
tickstart = HAL_GetTick();
/* Wait the acknowledge */
while((hcan->Instance->MSR & CAN_MSR_INAK) == CAN_MSR_INAK)
{
if((HAL_GetTick() - tickstart ) > CAN_TIMEOUT_VALUE)
{
hcan->State= HAL_CAN_STATE_TIMEOUT;
/* Process unlocked */
__HAL_UNLOCK(hcan);
return HAL_TIMEOUT;
}
}
/* Check acknowledged */
if ((hcan->Instance->MSR & CAN_MSR_INAK) == CAN_MSR_INAK)
{
InitStatus = CAN_INITSTATUS_FAILED;
}
else
{
InitStatus = CAN_INITSTATUS_SUCCESS;
}
}
if(InitStatus == CAN_INITSTATUS_SUCCESS)
{
/* Set CAN error code to none */
hcan->ErrorCode = HAL_CAN_ERROR_NONE;
/* Initialize the CAN state */
hcan->State = HAL_CAN_STATE_READY;
/* Return function status */
return HAL_OK;
}
else
{
/* Initialize the CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Configures the CAN reception filter according to the specified
* parameters in the CAN_FilterInitStruct.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param sFilterConfig: pointer to a CAN_FilterConfTypeDef structure that
* contains the filter configuration information.
* @retval None
*/
HAL_StatusTypeDef HAL_CAN_ConfigFilter(CAN_HandleTypeDef* hcan, CAN_FilterConfTypeDef* sFilterConfig)
{
uint32_t filternbrbitpos = 0;
/* Check the parameters */
assert_param(IS_CAN_FILTER_NUMBER(sFilterConfig->FilterNumber));
assert_param(IS_CAN_FILTER_MODE(sFilterConfig->FilterMode));
assert_param(IS_CAN_FILTER_SCALE(sFilterConfig->FilterScale));
assert_param(IS_CAN_FILTER_FIFO(sFilterConfig->FilterFIFOAssignment));
assert_param(IS_FUNCTIONAL_STATE(sFilterConfig->FilterActivation));
assert_param(IS_CAN_BANKNUMBER(sFilterConfig->BankNumber));
filternbrbitpos = ((uint32_t)1) << sFilterConfig->FilterNumber;
/* Initialisation mode for the filter */
CAN1->FMR |= (uint32_t)CAN_FMR_FINIT;
/* Select the start slave bank */
CAN1->FMR &= ~((uint32_t)CAN_FMR_CAN2SB);
CAN1->FMR |= (uint32_t)(sFilterConfig->BankNumber << 8);
/* Filter Deactivation */
CAN1->FA1R &= ~(uint32_t)filternbrbitpos;
/* Filter Scale */
if (sFilterConfig->FilterScale == CAN_FILTERSCALE_16BIT)
{
/* 16-bit scale for the filter */
CAN1->FS1R &= ~(uint32_t)filternbrbitpos;
/* First 16-bit identifier and First 16-bit mask */
/* Or First 16-bit identifier and Second 16-bit identifier */
CAN1->sFilterRegister[sFilterConfig->FilterNumber].FR1 =
((0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdLow) << 16) |
(0x0000FFFF & (uint32_t)sFilterConfig->FilterIdLow);
/* Second 16-bit identifier and Second 16-bit mask */
/* Or Third 16-bit identifier and Fourth 16-bit identifier */
CAN1->sFilterRegister[sFilterConfig->FilterNumber].FR2 =
((0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16) |
(0x0000FFFF & (uint32_t)sFilterConfig->FilterIdHigh);
}
if (sFilterConfig->FilterScale == CAN_FILTERSCALE_32BIT)
{
/* 32-bit scale for the filter */
CAN1->FS1R |= filternbrbitpos;
/* 32-bit identifier or First 32-bit identifier */
CAN1->sFilterRegister[sFilterConfig->FilterNumber].FR1 =
((0x0000FFFF & (uint32_t)sFilterConfig->FilterIdHigh) << 16) |
(0x0000FFFF & (uint32_t)sFilterConfig->FilterIdLow);
/* 32-bit mask or Second 32-bit identifier */
CAN1->sFilterRegister[sFilterConfig->FilterNumber].FR2 =
((0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16) |
(0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdLow);
}
/* Filter Mode */
if (sFilterConfig->FilterMode == CAN_FILTERMODE_IDMASK)
{
/*Id/Mask mode for the filter*/
CAN1->FM1R &= ~(uint32_t)filternbrbitpos;
}
else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */
{
/*Identifier list mode for the filter*/
CAN1->FM1R |= (uint32_t)filternbrbitpos;
}
/* Filter FIFO assignment */
if (sFilterConfig->FilterFIFOAssignment == CAN_FILTER_FIFO0)
{
/* FIFO 0 assignation for the filter */
CAN1->FFA1R &= ~(uint32_t)filternbrbitpos;
}
if (sFilterConfig->FilterFIFOAssignment == CAN_FILTER_FIFO1)
{
/* FIFO 1 assignation for the filter */
CAN1->FFA1R |= (uint32_t)filternbrbitpos;
}
/* Filter activation */
if (sFilterConfig->FilterActivation == ENABLE)
{
CAN1->FA1R |= filternbrbitpos;
}
/* Leave the initialisation mode for the filter */
CAN1->FMR &= ~((uint32_t)CAN_FMR_FINIT);
/* Return function status */
return HAL_OK;
}
/**
* @brief Deinitializes the CANx peripheral registers to their default reset values.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_DeInit(CAN_HandleTypeDef* hcan)
{
/* Check CAN handle */
if(hcan == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance));
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY;
/* DeInit the low level hardware */
HAL_CAN_MspDeInit(hcan);
/* Change CAN state */
hcan->State = HAL_CAN_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hcan);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CAN MSP.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_MspInit(CAN_HandleTypeDef* hcan)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes the CAN MSP.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_MspDeInit(CAN_HandleTypeDef* hcan)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_MspDeInit could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup CAN_Exported_Functions_Group2 IO operation functions
* @brief IO operation functions
*
@verbatim
==============================================================================
##### IO operation functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Transmit a CAN frame message.
(+) Receive a CAN frame message.
(+) Enter CAN peripheral in sleep mode.
(+) Wake up the CAN peripheral from sleep mode.
@endverbatim
* @{
*/
/**
* @brief Initiates and transmits a CAN frame message.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param Timeout: Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Transmit(CAN_HandleTypeDef* hcan, uint32_t Timeout)
{
uint32_t transmitmailbox = 5;
uint32_t tickstart = 0;
/* Check the parameters */
assert_param(IS_CAN_IDTYPE(hcan->pTxMsg->IDE));
assert_param(IS_CAN_RTR(hcan->pTxMsg->RTR));
assert_param(IS_CAN_DLC(hcan->pTxMsg->DLC));
/* Process locked */
__HAL_LOCK(hcan);
if(hcan->State == HAL_CAN_STATE_BUSY_RX)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX_RX;
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX;
}
/* Select one empty transmit mailbox */
if ((hcan->Instance->TSR&CAN_TSR_TME0) == CAN_TSR_TME0)
{
transmitmailbox = 0;
}
else if ((hcan->Instance->TSR&CAN_TSR_TME1) == CAN_TSR_TME1)
{
transmitmailbox = 1;
}
else if ((hcan->Instance->TSR&CAN_TSR_TME2) == CAN_TSR_TME2)
{
transmitmailbox = 2;
}
else
{
transmitmailbox = CAN_TXSTATUS_NOMAILBOX;
}
if (transmitmailbox != CAN_TXSTATUS_NOMAILBOX)
{
/* Set up the Id */
hcan->Instance->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ;
if (hcan->pTxMsg->IDE == CAN_ID_STD)
{
assert_param(IS_CAN_STDID(hcan->pTxMsg->StdId));
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->StdId << 21) | \
hcan->pTxMsg->RTR);
}
else
{
assert_param(IS_CAN_EXTID(hcan->pTxMsg->ExtId));
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->ExtId << 3) | \
hcan->pTxMsg->IDE | \
hcan->pTxMsg->RTR);
}
/* Set up the DLC */
hcan->pTxMsg->DLC &= (uint8_t)0x0000000F;
hcan->Instance->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0;
hcan->Instance->sTxMailBox[transmitmailbox].TDTR |= hcan->pTxMsg->DLC;
/* Set up the data field */
hcan->Instance->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)hcan->pTxMsg->Data[3] << 24) |
((uint32_t)hcan->pTxMsg->Data[2] << 16) |
((uint32_t)hcan->pTxMsg->Data[1] << 8) |
((uint32_t)hcan->pTxMsg->Data[0]));
hcan->Instance->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)hcan->pTxMsg->Data[7] << 24) |
((uint32_t)hcan->pTxMsg->Data[6] << 16) |
((uint32_t)hcan->pTxMsg->Data[5] << 8) |
((uint32_t)hcan->pTxMsg->Data[4]));
/* Request transmission */
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ;
/* Get tick */
tickstart = HAL_GetTick();
/* Check End of transmission flag */
while(!(__HAL_CAN_TRANSMIT_STATUS(hcan, transmitmailbox)))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
hcan->State = HAL_CAN_STATE_TIMEOUT;
/* Process unlocked */
__HAL_UNLOCK(hcan);
return HAL_TIMEOUT;
}
}
}
if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_RX;
/* Process unlocked */
__HAL_UNLOCK(hcan);
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcan);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hcan);
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Initiates and transmits a CAN frame message.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Transmit_IT(CAN_HandleTypeDef* hcan)
{
uint32_t transmitmailbox = 5;
uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_CAN_IDTYPE(hcan->pTxMsg->IDE));
assert_param(IS_CAN_RTR(hcan->pTxMsg->RTR));
assert_param(IS_CAN_DLC(hcan->pTxMsg->DLC));
tmp = hcan->State;
if((tmp == HAL_CAN_STATE_READY) || (tmp == HAL_CAN_STATE_BUSY_RX))
{
/* Process Locked */
__HAL_LOCK(hcan);
/* Select one empty transmit mailbox */
if((hcan->Instance->TSR&CAN_TSR_TME0) == CAN_TSR_TME0)
{
transmitmailbox = 0;
}
else if((hcan->Instance->TSR&CAN_TSR_TME1) == CAN_TSR_TME1)
{
transmitmailbox = 1;
}
else if((hcan->Instance->TSR&CAN_TSR_TME2) == CAN_TSR_TME2)
{
transmitmailbox = 2;
}
else
{
transmitmailbox = CAN_TXSTATUS_NOMAILBOX;
}
if(transmitmailbox != CAN_TXSTATUS_NOMAILBOX)
{
/* Set up the Id */
hcan->Instance->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ;
if(hcan->pTxMsg->IDE == CAN_ID_STD)
{
assert_param(IS_CAN_STDID(hcan->pTxMsg->StdId));
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->StdId << 21) | \
hcan->pTxMsg->RTR);
}
else
{
assert_param(IS_CAN_EXTID(hcan->pTxMsg->ExtId));
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->ExtId << 3) | \
hcan->pTxMsg->IDE | \
hcan->pTxMsg->RTR);
}
/* Set up the DLC */
hcan->pTxMsg->DLC &= (uint8_t)0x0000000F;
hcan->Instance->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0;
hcan->Instance->sTxMailBox[transmitmailbox].TDTR |= hcan->pTxMsg->DLC;
/* Set up the data field */
hcan->Instance->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)hcan->pTxMsg->Data[3] << 24) |
((uint32_t)hcan->pTxMsg->Data[2] << 16) |
((uint32_t)hcan->pTxMsg->Data[1] << 8) |
((uint32_t)hcan->pTxMsg->Data[0]));
hcan->Instance->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)hcan->pTxMsg->Data[7] << 24) |
((uint32_t)hcan->pTxMsg->Data[6] << 16) |
((uint32_t)hcan->pTxMsg->Data[5] << 8) |
((uint32_t)hcan->pTxMsg->Data[4]));
if(hcan->State == HAL_CAN_STATE_BUSY_RX)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX_RX;
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX;
}
/* Set CAN error code to none */
hcan->ErrorCode = HAL_CAN_ERROR_NONE;
/* Process Unlocked */
__HAL_UNLOCK(hcan);
/* Enable Error warning Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_EWG);
/* Enable Error passive Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_EPV);
/* Enable Bus-off Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_BOF);
/* Enable Last error code Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_LEC);
/* Enable Error Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_ERR);
/* Enable Transmit mailbox empty Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_TME);
/* Request transmission */
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ;
}
}
else
{
return HAL_BUSY;
}
return HAL_OK;
}
/**
* @brief Receives a correct CAN frame.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param FIFONumber: FIFO Number value
* @param Timeout: Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Receive(CAN_HandleTypeDef* hcan, uint8_t FIFONumber, uint32_t Timeout)
{
uint32_t tickstart = 0;
/* Check the parameters */
assert_param(IS_CAN_FIFO(FIFONumber));
/* Process locked */
__HAL_LOCK(hcan);
if(hcan->State == HAL_CAN_STATE_BUSY_TX)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX_RX;
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_RX;
}
/* Get tick */
tickstart = HAL_GetTick();
/* Check pending message */
while(__HAL_CAN_MSG_PENDING(hcan, FIFONumber) == 0)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
hcan->State = HAL_CAN_STATE_TIMEOUT;
/* Process unlocked */
__HAL_UNLOCK(hcan);
return HAL_TIMEOUT;
}
}
}
/* Get the Id */
hcan->pRxMsg->IDE = (uint8_t)0x04 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR;
if (hcan->pRxMsg->IDE == CAN_ID_STD)
{
hcan->pRxMsg->StdId = (uint32_t)0x000007FF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 21);
}
else
{
hcan->pRxMsg->ExtId = (uint32_t)0x1FFFFFFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 3);
}
hcan->pRxMsg->RTR = (uint8_t)0x02 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR;
/* Get the DLC */
hcan->pRxMsg->DLC = (uint8_t)0x0F & hcan->Instance->sFIFOMailBox[FIFONumber].RDTR;
/* Get the FMI */
hcan->pRxMsg->FMI = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDTR >> 8);
/* Get the data field */
hcan->pRxMsg->Data[0] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDLR;
hcan->pRxMsg->Data[1] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 8);
hcan->pRxMsg->Data[2] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 16);
hcan->pRxMsg->Data[3] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 24);
hcan->pRxMsg->Data[4] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDHR;
hcan->pRxMsg->Data[5] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 8);
hcan->pRxMsg->Data[6] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 16);
hcan->pRxMsg->Data[7] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 24);
/* Release the FIFO */
if(FIFONumber == CAN_FIFO0)
{
/* Release FIFO0 */
__HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO0);
}
else /* FIFONumber == CAN_FIFO1 */
{
/* Release FIFO1 */
__HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO1);
}
if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX;
/* Process unlocked */
__HAL_UNLOCK(hcan);
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcan);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Receives a correct CAN frame.
* @param hcan: Pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param FIFONumber: Specify the FIFO number
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Receive_IT(CAN_HandleTypeDef* hcan, uint8_t FIFONumber)
{
uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_CAN_FIFO(FIFONumber));
tmp = hcan->State;
if((tmp == HAL_CAN_STATE_READY) || (tmp == HAL_CAN_STATE_BUSY_TX))
{
/* Process locked */
__HAL_LOCK(hcan);
if(hcan->State == HAL_CAN_STATE_BUSY_TX)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX_RX;
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_RX;
}
/* Set CAN error code to none */
hcan->ErrorCode = HAL_CAN_ERROR_NONE;
/* Enable Error warning Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_EWG);
/* Enable Error passive Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_EPV);
/* Enable Bus-off Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_BOF);
/* Enable Last error code Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_LEC);
/* Enable Error Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_ERR);
/* Process unlocked */
__HAL_UNLOCK(hcan);
if(FIFONumber == CAN_FIFO0)
{
/* Enable FIFO 0 message pending Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_FMP0);
}
else
{
/* Enable FIFO 1 message pending Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_FMP1);
}
}
else
{
return HAL_BUSY;
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Enters the Sleep (low power) mode.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_CAN_Sleep(CAN_HandleTypeDef* hcan)
{
uint32_t tickstart = 0;
/* Process locked */
__HAL_LOCK(hcan);
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY;
/* Request Sleep mode */
hcan->Instance->MCR = (((hcan->Instance->MCR) & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP);
/* Sleep mode status */
if ((hcan->Instance->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) != CAN_MSR_SLAK)
{
/* Process unlocked */
__HAL_UNLOCK(hcan);
/* Return function status */
return HAL_ERROR;
}
/* Get tick */
tickstart = HAL_GetTick();
/* Wait the acknowledge */
while((hcan->Instance->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) != CAN_MSR_SLAK)
{
if((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
{
hcan->State = HAL_CAN_STATE_TIMEOUT;
/* Process unlocked */
__HAL_UNLOCK(hcan);
return HAL_TIMEOUT;
}
}
/* Change CAN state */
hcan->State = HAL_CAN_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcan);
/* Return function status */
return HAL_OK;
}
/**
* @brief Wakes up the CAN peripheral from sleep mode, after that the CAN peripheral
* is in the normal mode.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_CAN_WakeUp(CAN_HandleTypeDef* hcan)
{
uint32_t tickstart = 0;
/* Process locked */
__HAL_LOCK(hcan);
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY;
/* Wake up request */
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_SLEEP;
/* Get tick */
tickstart = HAL_GetTick();
/* Sleep mode status */
while((hcan->Instance->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK)
{
if((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
{
hcan->State= HAL_CAN_STATE_TIMEOUT;
/* Process unlocked */
__HAL_UNLOCK(hcan);
return HAL_TIMEOUT;
}
}
if((hcan->Instance->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK)
{
/* Process unlocked */
__HAL_UNLOCK(hcan);
/* Return function status */
return HAL_ERROR;
}
/* Change CAN state */
hcan->State = HAL_CAN_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcan);
/* Return function status */
return HAL_OK;
}
/**
* @brief Handles CAN interrupt request
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
void HAL_CAN_IRQHandler(CAN_HandleTypeDef* hcan)
{
uint32_t tmp1 = 0, tmp2 = 0, tmp3 = 0;
/* Check End of transmission flag */
if(__HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_TME))
{
tmp1 = __HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_0);
tmp2 = __HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_1);
tmp3 = __HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_2);
if(tmp1 || tmp2 || tmp3)
{
/* Call transmit function */
CAN_Transmit_IT(hcan);
}
}
tmp1 = __HAL_CAN_MSG_PENDING(hcan, CAN_FIFO0);
tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_FMP0);
/* Check End of reception flag for FIFO0 */
if((tmp1 != 0) && tmp2)
{
/* Call receive function */
CAN_Receive_IT(hcan, CAN_FIFO0);
}
tmp1 = __HAL_CAN_MSG_PENDING(hcan, CAN_FIFO1);
tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_FMP1);
/* Check End of reception flag for FIFO1 */
if((tmp1 != 0) && tmp2)
{
/* Call receive function */
CAN_Receive_IT(hcan, CAN_FIFO1);
}
tmp1 = __HAL_CAN_GET_FLAG(hcan, CAN_FLAG_EWG);
tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_EWG);
tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR);
/* Check Error Warning Flag */
if(tmp1 && tmp2 && tmp3)
{
/* Set CAN error code to EWG error */
hcan->ErrorCode |= HAL_CAN_ERROR_EWG;
/* Clear Error Warning Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_EWG);
}
tmp1 = __HAL_CAN_GET_FLAG(hcan, CAN_FLAG_EPV);
tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_EPV);
tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR);
/* Check Error Passive Flag */
if(tmp1 && tmp2 && tmp3)
{
/* Set CAN error code to EPV error */
hcan->ErrorCode |= HAL_CAN_ERROR_EPV;
/* Clear Error Passive Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_EPV);
}
tmp1 = __HAL_CAN_GET_FLAG(hcan, CAN_FLAG_BOF);
tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_BOF);
tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR);
/* Check Bus-Off Flag */
if(tmp1 && tmp2 && tmp3)
{
/* Set CAN error code to BOF error */
hcan->ErrorCode |= HAL_CAN_ERROR_BOF;
/* Clear Bus-Off Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_BOF);
}
tmp1 = HAL_IS_BIT_CLR(hcan->Instance->ESR, CAN_ESR_LEC);
tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_LEC);
tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR);
/* Check Last error code Flag */
if((!tmp1) && tmp2 && tmp3)
{
tmp1 = (hcan->Instance->ESR) & CAN_ESR_LEC;
switch(tmp1)
{
case(CAN_ESR_LEC_0):
/* Set CAN error code to STF error */
hcan->ErrorCode |= HAL_CAN_ERROR_STF;
break;
case(CAN_ESR_LEC_1):
/* Set CAN error code to FOR error */
hcan->ErrorCode |= HAL_CAN_ERROR_FOR;
break;
case(CAN_ESR_LEC_1 | CAN_ESR_LEC_0):
/* Set CAN error code to ACK error */
hcan->ErrorCode |= HAL_CAN_ERROR_ACK;
break;
case(CAN_ESR_LEC_2):
/* Set CAN error code to BR error */
hcan->ErrorCode |= HAL_CAN_ERROR_BR;
break;
case(CAN_ESR_LEC_2 | CAN_ESR_LEC_0):
/* Set CAN error code to BD error */
hcan->ErrorCode |= HAL_CAN_ERROR_BD;
break;
case(CAN_ESR_LEC_2 | CAN_ESR_LEC_1):
/* Set CAN error code to CRC error */
hcan->ErrorCode |= HAL_CAN_ERROR_CRC;
break;
default:
break;
}
/* Clear Last error code Flag */
hcan->Instance->ESR &= ~(CAN_ESR_LEC);
}
/* Call the Error call Back in case of Errors */
if(hcan->ErrorCode != HAL_CAN_ERROR_NONE)
{
/* Set the CAN state ready to be able to start again the process */
hcan->State = HAL_CAN_STATE_READY;
/* Call Error callback function */
HAL_CAN_ErrorCallback(hcan);
}
}
/**
* @brief Transmission complete callback in non blocking mode
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_TxCpltCallback(CAN_HandleTypeDef* hcan)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_TxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Transmission complete callback in non blocking mode
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_RxCpltCallback(CAN_HandleTypeDef* hcan)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_RxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Error CAN callback.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_ErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup CAN_Exported_Functions_Group3 Peripheral State and Error functions
* @brief CAN Peripheral State functions
*
@verbatim
==============================================================================
##### Peripheral State and Error functions #####
==============================================================================
[..]
This subsection provides functions allowing to :
(+) Check the CAN state.
(+) Check CAN Errors detected during interrupt process
@endverbatim
* @{
*/
/**
* @brief return the CAN state
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL state
*/
HAL_CAN_StateTypeDef HAL_CAN_GetState(CAN_HandleTypeDef* hcan)
{
/* Return CAN state */
return hcan->State;
}
/**
* @brief Return the CAN error code
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval CAN Error Code
*/
uint32_t HAL_CAN_GetError(CAN_HandleTypeDef *hcan)
{
return hcan->ErrorCode;
}
/**
* @}
*/
/**
* @brief Initiates and transmits a CAN frame message.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
static HAL_StatusTypeDef CAN_Transmit_IT(CAN_HandleTypeDef* hcan)
{
/* Disable Transmit mailbox empty Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_TME);
if(hcan->State == HAL_CAN_STATE_BUSY_TX)
{
/* Disable Error warning Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_EWG);
/* Disable Error passive Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_EPV);
/* Disable Bus-off Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_BOF);
/* Disable Last error code Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_LEC);
/* Disable Error Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_ERR);
}
if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_RX;
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_READY;
}
/* Transmission complete callback */
HAL_CAN_TxCpltCallback(hcan);
return HAL_OK;
}
/**
* @brief Receives a correct CAN frame.
* @param hcan: Pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param FIFONumber: Specify the FIFO number
* @retval HAL status
* @retval None
*/
static HAL_StatusTypeDef CAN_Receive_IT(CAN_HandleTypeDef* hcan, uint8_t FIFONumber)
{
/* Get the Id */
hcan->pRxMsg->IDE = (uint8_t)0x04 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR;
if (hcan->pRxMsg->IDE == CAN_ID_STD)
{
hcan->pRxMsg->StdId = (uint32_t)0x000007FF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 21);
}
else
{
hcan->pRxMsg->ExtId = (uint32_t)0x1FFFFFFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 3);
}
hcan->pRxMsg->RTR = (uint8_t)0x02 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR;
/* Get the DLC */
hcan->pRxMsg->DLC = (uint8_t)0x0F & hcan->Instance->sFIFOMailBox[FIFONumber].RDTR;
/* Get the FMI */
hcan->pRxMsg->FMI = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDTR >> 8);
/* Get the data field */
hcan->pRxMsg->Data[0] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDLR;
hcan->pRxMsg->Data[1] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 8);
hcan->pRxMsg->Data[2] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 16);
hcan->pRxMsg->Data[3] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 24);
hcan->pRxMsg->Data[4] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDHR;
hcan->pRxMsg->Data[5] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 8);
hcan->pRxMsg->Data[6] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 16);
hcan->pRxMsg->Data[7] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 24);
/* Release the FIFO */
/* Release FIFO0 */
if (FIFONumber == CAN_FIFO0)
{
__HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO0);
/* Disable FIFO 0 message pending Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_FMP0);
}
/* Release FIFO1 */
else /* FIFONumber == CAN_FIFO1 */
{
__HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO1);
/* Disable FIFO 1 message pending Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_FMP1);
}
if(hcan->State == HAL_CAN_STATE_BUSY_RX)
{
/* Disable Error warning Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_EWG);
/* Disable Error passive Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_EPV);
/* Disable Bus-off Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_BOF);
/* Disable Last error code Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_LEC);
/* Disable Error Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_ERR);
}
if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX)
{
/* Disable CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX;
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_READY;
}
/* Receive complete callback */
HAL_CAN_RxCpltCallback(hcan);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
#endif /* HAL_CAN_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/