blob: 46e4fb57109947d3e44392ed1ccbb095e6c7ce2a [file] [log] [blame]
/**
******************************************************************************
* @file stm32f7xx_hal_cryp_ex.c
* @author MCD Application Team
* @version V1.0.0
* @date 12-May-2015
* @brief Extended CRYP HAL module driver
* This file provides firmware functions to manage the following
* functionalities of CRYP extension peripheral:
* + Extended AES processing functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The CRYP Extension HAL driver can be used as follows:
(#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
(##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE()
(##) In case of using interrupts (e.g. HAL_CRYPEx_AESGCM_Encrypt_IT())
(+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
(+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
(+) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
(##) In case of using DMA to control data transfer (e.g. HAL_AES_ECB_Encrypt_DMA())
(+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE()
(+++) Configure and enable two DMA streams one for managing data transfer from
memory to peripheral (input stream) and another stream for managing data
transfer from peripheral to memory (output stream)
(+++) Associate the initialized DMA handle to the CRYP DMA handle
using __HAL_LINKDMA()
(+++) Configure the priority and enable the NVIC for the transfer complete
interrupt on the two DMA Streams. The output stream should have higher
priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ()
(#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly:
(##) The data type: 1-bit, 8-bit, 16-bit and 32-bit
(##) The key size: 128, 192 and 256. This parameter is relevant only for AES
(##) The encryption/decryption key. Its size depends on the algorithm
used for encryption/decryption
(##) The initialization vector (counter). It is not used ECB mode.
(#)Three processing (encryption/decryption) functions are available:
(##) Polling mode: encryption and decryption APIs are blocking functions
i.e. they process the data and wait till the processing is finished
e.g. HAL_CRYPEx_AESGCM_Encrypt()
(##) Interrupt mode: encryption and decryption APIs are not blocking functions
i.e. they process the data under interrupt
e.g. HAL_CRYPEx_AESGCM_Encrypt_IT()
(##) DMA mode: encryption and decryption APIs are not blocking functions
i.e. the data transfer is ensured by DMA
e.g. HAL_CRYPEx_AESGCM_Encrypt_DMA()
(#)When the processing function is called at first time after HAL_CRYP_Init()
the CRYP peripheral is initialized and processes the buffer in input.
At second call, the processing function performs an append of the already
processed buffer.
When a new data block is to be processed, call HAL_CRYP_Init() then the
processing function.
(#)In AES-GCM and AES-CCM modes are an authenticated encryption algorithms
which provide authentication messages.
HAL_AES_GCM_Finish() and HAL_AES_CCM_Finish() are used to provide those
authentication messages.
Call those functions after the processing ones (polling, interrupt or DMA).
e.g. in AES-CCM mode call HAL_CRYPEx_AESCCM_Encrypt() to encrypt the plain data
then call HAL_CRYPEx_AESCCM_Finish() to get the authentication message
@note: For CCM Encrypt/Decrypt API's, only DataType = 8-bit is supported by this version.
@note: The HAL_CRYPEx_AESGCM_xxxx() implementation is limited to 32bits inputs data length
(Plain/Cyphertext, Header) compared with GCM standards specifications (800-38D).
(#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f7xx_hal.h"
/** @addtogroup STM32F7xx_HAL_Driver
* @{
*/
#if defined(STM32F756xx)
/** @defgroup CRYPEx CRYPEx
* @brief CRYP Extension HAL module driver.
* @{
*/
#ifdef HAL_CRYP_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup CRYPEx_Private_define
* @{
*/
#define CRYPEx_TIMEOUT_VALUE 1
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup CRYPEx_Private_Functions_prototypes CRYP Private Functions Prototypes
* @{
*/
static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector);
static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize);
static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout);
static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout);
static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma);
static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma);
static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma);
static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @addtogroup CRYPEx_Private_Functions
* @{
*/
/**
* @brief DMA CRYP Input Data process complete callback.
* @param hdma: DMA handle
* @retval None
*/
static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma)
{
CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* Disable the DMA transfer for input Fifo request by resetting the DIEN bit
in the DMACR register */
hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN);
/* Call input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
/**
* @brief DMA CRYP Output Data process complete callback.
* @param hdma: DMA handle
* @retval None
*/
static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma)
{
CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* Disable the DMA transfer for output Fifo request by resetting the DOEN bit
in the DMACR register */
hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN);
/* Enable the CRYP peripheral */
__HAL_CRYP_DISABLE(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call output data transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
/**
* @brief DMA CRYP communication error callback.
* @param hdma: DMA handle
* @retval None
*/
static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma)
{
CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
hcryp->State= HAL_CRYP_STATE_READY;
HAL_CRYP_ErrorCallback(hcryp);
}
/**
* @brief Writes the Key in Key registers.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Key: Pointer to Key buffer
* @param KeySize: Size of Key
* @retval None
*/
static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize)
{
uint32_t keyaddr = (uint32_t)Key;
switch(KeySize)
{
case CRYP_KEYSIZE_256B:
/* Key Initialisation */
hcryp->Instance->K0LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K0RR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr));
break;
case CRYP_KEYSIZE_192B:
hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr));
break;
case CRYP_KEYSIZE_128B:
hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr));
break;
default:
break;
}
}
/**
* @brief Writes the InitVector/InitCounter in IV registers.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param InitVector: Pointer to InitVector/InitCounter buffer
* @retval None
*/
static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector)
{
uint32_t ivaddr = (uint32_t)InitVector;
hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4;
hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4;
hcryp->Instance->IV1LR = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4;
hcryp->Instance->IV1RR = __REV(*(uint32_t*)(ivaddr));
}
/**
* @brief Process Data: Writes Input data in polling mode and read the Output data.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Input: Pointer to the Input buffer.
* @param Ilength: Length of the Input buffer, must be a multiple of 16
* @param Output: Pointer to the returned buffer
* @param Timeout: Timeout value
* @retval None
*/
static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout)
{
uint32_t tickstart = 0;
uint32_t i = 0;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
for(i=0; (i < Ilength); i+=16)
{
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Read the Output block from the OUT FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Sets the header phase
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Input: Pointer to the Input buffer.
* @param Ilength: Length of the Input buffer, must be a multiple of 16
* @param Timeout: Timeout value
* @retval None
*/
static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout)
{
uint32_t tickstart = 0;
uint32_t loopcounter = 0;
uint32_t headeraddr = (uint32_t)Input;
/***************************** Header phase *********************************/
if(hcryp->Init.HeaderSize != 0)
{
/* Select header phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
for(loopcounter = 0; (loopcounter < hcryp->Init.HeaderSize); loopcounter+=16)
{
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
}
/* Wait until the complete message has been processed */
/* Get tick */
tickstart = HAL_GetTick();
while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Sets the DMA configuration and start the DMA transfer.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param inputaddr: Address of the Input buffer
* @param Size: Size of the Input buffer, must be a multiple of 16
* @param outputaddr: Address of the Output buffer
* @retval None
*/
static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
{
/* Set the CRYP DMA transfer complete callback */
hcryp->hdmain->XferCpltCallback = CRYPEx_GCMCCM_DMAInCplt;
/* Set the DMA error callback */
hcryp->hdmain->XferErrorCallback = CRYPEx_GCMCCM_DMAError;
/* Set the CRYP DMA transfer complete callback */
hcryp->hdmaout->XferCpltCallback = CRYPEx_GCMCCM_DMAOutCplt;
/* Set the DMA error callback */
hcryp->hdmaout->XferErrorCallback = CRYPEx_GCMCCM_DMAError;
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Enable the DMA In DMA Stream */
HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DR, Size/4);
/* Enable In DMA request */
hcryp->Instance->DMACR = CRYP_DMACR_DIEN;
/* Enable the DMA Out DMA Stream */
HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUT, outputaddr, Size/4);
/* Enable Out DMA request */
hcryp->Instance->DMACR |= CRYP_DMACR_DOEN;
}
/**
* @}
*/
/* Exported functions---------------------------------------------------------*/
/** @addtogroup CRYPEx_Exported_Functions
* @{
*/
/** @defgroup CRYPEx_Exported_Functions_Group1 Extended AES processing functions
* @brief Extended processing functions.
*
@verbatim
==============================================================================
##### Extended AES processing functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Encrypt plaintext using AES-128/192/256 using GCM and CCM chaining modes
(+) Decrypt cyphertext using AES-128/192/256 using GCM and CCM chaining modes
(+) Finish the processing. This function is available only for GCM and CCM
[..] Three processing methods are available:
(+) Polling mode
(+) Interrupt mode
(+) DMA mode
@endverbatim
* @{
*/
/**
* @brief Initializes the CRYP peripheral in AES CCM encryption mode then
* encrypt pPlainData. The cypher data are available in pCypherData.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData: Pointer to the plaintext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pCypherData: Pointer to the cyphertext buffer
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
uint32_t tickstart = 0;
uint32_t headersize = hcryp->Init.HeaderSize;
uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
uint32_t loopcounter = 0;
uint32_t bufferidx = 0;
uint8_t blockb0[16] = {0};/* Block B0 */
uint8_t ctr[16] = {0}; /* Counter */
uint32_t b0addr = (uint32_t)blockb0;
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/************************ Formatting the header block *********************/
if(headersize != 0)
{
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
if(headersize < 65280)
{
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
headersize += 2;
}
else
{
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
hcryp->Init.pScratch[bufferidx++] = 0xFF;
hcryp->Init.pScratch[bufferidx++] = 0xFE;
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
headersize += 6;
}
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
{
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
}
/* Check if the header size is modulo 16 */
if ((headersize % 16) != 0)
{
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = 0;
}
/* Set the header size to modulo 16 */
headersize = ((headersize/16) + 1) * 16;
}
/* Set the pointer headeraddr to hcryp->Init.pScratch */
headeraddr = (uint32_t)hcryp->Init.pScratch;
}
/*********************** Formatting the block B0 **************************/
if(headersize != 0)
{
blockb0[0] = 0x40;
}
/* Flags byte */
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
{
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
}
for ( ; loopcounter < 13; loopcounter++)
{
blockb0[loopcounter+1] = 0;
}
blockb0[14] = (Size >> 8);
blockb0[15] = (Size & 0xFF);
/************************* Formatting the initial counter *****************/
/* Byte 0:
Bits 7 and 6 are reserved and shall be set to 0
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter blocks
are distinct from B0
Bits 0, 1, and 2 contain the same encoding of q as in B0
*/
ctr[0] = blockb0[0] & 0x07;
/* byte 1 to NonceSize is the IV (Nonce) */
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
{
ctr[loopcounter] = blockb0[loopcounter];
}
/* Set the LSB to 1 */
ctr[15] |= 0x01;
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
/* Select init phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
b0addr = (uint32_t)blockb0;
/* Write the blockb0 block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/***************************** Header phase *******************************/
if(headersize != 0)
{
/* Select header phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
{
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
{
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
}
/* Write the header block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
}
/* Get tick */
tickstart = HAL_GetTick();
while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
}
/* Save formatted counter into the scratch buffer pScratch */
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
}
/* Reset bit 0 */
hcryp->Init.pScratch[15] &= 0xfe;
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYPEx_GCMCCM_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES GCM encryption mode then
* encrypt pPlainData. The cypher data are available in pCypherData.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData: Pointer to the plaintext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pCypherData: Pointer to the cyphertext buffer
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
uint32_t tickstart = 0;
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES GCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Set the header phase */
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable the CRYP peripheral */
__HAL_CRYP_DISABLE(hcryp);
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYPEx_GCMCCM_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES GCM decryption mode then
* decrypted pCypherData. The cypher data are available in pPlainData.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData: Pointer to the cyphertext buffer
* @param Size: Length of the cyphertext buffer, must be a multiple of 16
* @param pPlainData: Pointer to the plaintext buffer
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
uint32_t tickstart = 0;
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES GCM decryption mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Set the header phase */
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable the CRYP peripheral */
__HAL_CRYP_DISABLE(hcryp);
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Computes the authentication TAG.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Size: Total length of the plain/cyphertext buffer
* @param AuthTag: Pointer to the authentication buffer
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Finish(CRYP_HandleTypeDef *hcryp, uint32_t Size, uint8_t *AuthTag, uint32_t Timeout)
{
uint32_t tickstart = 0;
uint64_t headerlength = hcryp->Init.HeaderSize * 8; /* Header length in bits */
uint64_t inputlength = Size * 8; /* input length in bits */
uint32_t tagaddr = (uint32_t)AuthTag;
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS)
{
/* Change the CRYP phase */
hcryp->Phase = HAL_CRYP_PHASE_FINAL;
/* Disable CRYP to start the final phase */
__HAL_CRYP_DISABLE(hcryp);
/* Select final phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_FINAL);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Write the number of bits in header (64 bits) followed by the number of bits
in the payload */
if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
{
hcryp->Instance->DR = __RBIT(headerlength >> 32);
hcryp->Instance->DR = __RBIT(headerlength);
hcryp->Instance->DR = __RBIT(inputlength >> 32);
hcryp->Instance->DR = __RBIT(inputlength);
}
else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
{
hcryp->Instance->DR = __REV(headerlength >> 32);
hcryp->Instance->DR = __REV(headerlength);
hcryp->Instance->DR = __REV(inputlength >> 32);
hcryp->Instance->DR = __REV(inputlength);
}
else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
{
hcryp->Instance->DR = __ROR((uint32_t)(headerlength >> 32), 16);
hcryp->Instance->DR = __ROR((uint32_t)headerlength, 16);
hcryp->Instance->DR = __ROR((uint32_t)(inputlength >> 32), 16);
hcryp->Instance->DR = __ROR((uint32_t)inputlength, 16);
}
else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
{
hcryp->Instance->DR = (uint32_t)(headerlength >> 32);
hcryp->Instance->DR = (uint32_t)(headerlength);
hcryp->Instance->DR = (uint32_t)(inputlength >> 32);
hcryp->Instance->DR = (uint32_t)(inputlength);
}
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Read the Auth TAG in the IN FIFO */
*(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
tagaddr+=4;
*(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
tagaddr+=4;
*(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
tagaddr+=4;
*(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
}
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Computes the authentication TAG for AES CCM mode.
* @note This API is called after HAL_AES_CCM_Encrypt()/HAL_AES_CCM_Decrypt()
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param AuthTag: Pointer to the authentication buffer
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Finish(CRYP_HandleTypeDef *hcryp, uint8_t *AuthTag, uint32_t Timeout)
{
uint32_t tickstart = 0;
uint32_t tagaddr = (uint32_t)AuthTag;
uint32_t ctraddr = (uint32_t)hcryp->Init.pScratch;
uint32_t temptag[4] = {0}; /* Temporary TAG (MAC) */
uint32_t loopcounter;
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS)
{
/* Change the CRYP phase */
hcryp->Phase = HAL_CRYP_PHASE_FINAL;
/* Disable CRYP to start the final phase */
__HAL_CRYP_DISABLE(hcryp);
/* Select final phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_FINAL);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Write the counter block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)ctraddr;
ctraddr+=4;
hcryp->Instance->DR = *(uint32_t*)ctraddr;
ctraddr+=4;
hcryp->Instance->DR = *(uint32_t*)ctraddr;
ctraddr+=4;
hcryp->Instance->DR = *(uint32_t*)ctraddr;
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Read the Auth TAG in the IN FIFO */
temptag[0] = hcryp->Instance->DOUT;
temptag[1] = hcryp->Instance->DOUT;
temptag[2] = hcryp->Instance->DOUT;
temptag[3] = hcryp->Instance->DOUT;
}
/* Copy temporary authentication TAG in user TAG buffer */
for(loopcounter = 0; loopcounter < hcryp->Init.TagSize ; loopcounter++)
{
/* Set the authentication TAG buffer */
*((uint8_t*)tagaddr+loopcounter) = *((uint8_t*)temptag+loopcounter);
}
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES CCM decryption mode then
* decrypted pCypherData. The cypher data are available in pPlainData.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData: Pointer to the plaintext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pCypherData: Pointer to the cyphertext buffer
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
uint32_t tickstart = 0;
uint32_t headersize = hcryp->Init.HeaderSize;
uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
uint32_t loopcounter = 0;
uint32_t bufferidx = 0;
uint8_t blockb0[16] = {0};/* Block B0 */
uint8_t ctr[16] = {0}; /* Counter */
uint32_t b0addr = (uint32_t)blockb0;
/* Process Locked */
__HAL_LOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/************************ Formatting the header block *********************/
if(headersize != 0)
{
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
if(headersize < 65280)
{
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
headersize += 2;
}
else
{
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
hcryp->Init.pScratch[bufferidx++] = 0xFF;
hcryp->Init.pScratch[bufferidx++] = 0xFE;
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
headersize += 6;
}
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
{
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
}
/* Check if the header size is modulo 16 */
if ((headersize % 16) != 0)
{
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = 0;
}
/* Set the header size to modulo 16 */
headersize = ((headersize/16) + 1) * 16;
}
/* Set the pointer headeraddr to hcryp->Init.pScratch */
headeraddr = (uint32_t)hcryp->Init.pScratch;
}
/*********************** Formatting the block B0 **************************/
if(headersize != 0)
{
blockb0[0] = 0x40;
}
/* Flags byte */
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
{
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
}
for ( ; loopcounter < 13; loopcounter++)
{
blockb0[loopcounter+1] = 0;
}
blockb0[14] = (Size >> 8);
blockb0[15] = (Size & 0xFF);
/************************* Formatting the initial counter *****************/
/* Byte 0:
Bits 7 and 6 are reserved and shall be set to 0
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
blocks are distinct from B0
Bits 0, 1, and 2 contain the same encoding of q as in B0
*/
ctr[0] = blockb0[0] & 0x07;
/* byte 1 to NonceSize is the IV (Nonce) */
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
{
ctr[loopcounter] = blockb0[loopcounter];
}
/* Set the LSB to 1 */
ctr[15] |= 0x01;
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
/* Select init phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
b0addr = (uint32_t)blockb0;
/* Write the blockb0 block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/***************************** Header phase *******************************/
if(headersize != 0)
{
/* Select header phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
/* Enable Crypto processor */
__HAL_CRYP_ENABLE(hcryp);
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
{
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Write the header block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
}
/* Get tick */
tickstart = HAL_GetTick();
while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
}
/* Save formatted counter into the scratch buffer pScratch */
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
}
/* Reset bit 0 */
hcryp->Init.pScratch[15] &= 0xfe;
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES GCM encryption mode using IT.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData: Pointer to the plaintext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pCypherData: Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t tickstart = 0;
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Get the buffer addresses and sizes */
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES GCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable CRYP to start the init phase */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Set the header phase */
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable the CRYP peripheral */
__HAL_CRYP_DISABLE(hcryp);
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
if(Size != 0)
{
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
}
else
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state and phase */
hcryp->State = HAL_CRYP_STATE_READY;
}
/* Return function status */
return HAL_OK;
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 16;
hcryp->CrypInCount -= 16;
if(hcryp->CrypInCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 16;
hcryp->CrypOutCount -= 16;
if(hcryp->CrypOutCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES CCM encryption mode using interrupt.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData: Pointer to the plaintext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pCypherData: Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t tickstart = 0;
uint32_t inputaddr;
uint32_t outputaddr;
uint32_t headersize = hcryp->Init.HeaderSize;
uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
uint32_t loopcounter = 0;
uint32_t bufferidx = 0;
uint8_t blockb0[16] = {0};/* Block B0 */
uint8_t ctr[16] = {0}; /* Counter */
uint32_t b0addr = (uint32_t)blockb0;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/************************ Formatting the header block *******************/
if(headersize != 0)
{
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
if(headersize < 65280)
{
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
headersize += 2;
}
else
{
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
hcryp->Init.pScratch[bufferidx++] = 0xFF;
hcryp->Init.pScratch[bufferidx++] = 0xFE;
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
headersize += 6;
}
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
{
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
}
/* Check if the header size is modulo 16 */
if ((headersize % 16) != 0)
{
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = 0;
}
/* Set the header size to modulo 16 */
headersize = ((headersize/16) + 1) * 16;
}
/* Set the pointer headeraddr to hcryp->Init.pScratch */
headeraddr = (uint32_t)hcryp->Init.pScratch;
}
/*********************** Formatting the block B0 ************************/
if(headersize != 0)
{
blockb0[0] = 0x40;
}
/* Flags byte */
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
{
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
}
for ( ; loopcounter < 13; loopcounter++)
{
blockb0[loopcounter+1] = 0;
}
blockb0[14] = (Size >> 8);
blockb0[15] = (Size & 0xFF);
/************************* Formatting the initial counter ***************/
/* Byte 0:
Bits 7 and 6 are reserved and shall be set to 0
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
blocks are distinct from B0
Bits 0, 1, and 2 contain the same encoding of q as in B0
*/
ctr[0] = blockb0[0] & 0x07;
/* byte 1 to NonceSize is the IV (Nonce) */
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
{
ctr[loopcounter] = blockb0[loopcounter];
}
/* Set the LSB to 1 */
ctr[15] |= 0x01;
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
/* Select init phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
b0addr = (uint32_t)blockb0;
/* Write the blockb0 block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/***************************** Header phase *****************************/
if(headersize != 0)
{
/* Select header phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
/* Enable Crypto processor */
__HAL_CRYP_ENABLE(hcryp);
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
{
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Write the header block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
}
/* Get tick */
tickstart = HAL_GetTick();
while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Save formatted counter into the scratch buffer pScratch */
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
}
/* Reset bit 0 */
hcryp->Init.pScratch[15] &= 0xfe;
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
if(Size != 0)
{
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
}
else
{
/* Change the CRYP state and phase */
hcryp->State = HAL_CRYP_STATE_READY;
}
/* Return function status */
return HAL_OK;
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 16;
hcryp->CrypInCount -= 16;
if(hcryp->CrypInCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call Input transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 16;
hcryp->CrypOutCount -= 16;
if(hcryp->CrypOutCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES GCM decryption mode using IT.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData: Pointer to the cyphertext buffer
* @param Size: Length of the cyphertext buffer, must be a multiple of 16
* @param pPlainData: Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t tickstart = 0;
uint32_t inputaddr;
uint32_t outputaddr;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Get the buffer addresses and sizes */
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES GCM decryption mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable CRYP to start the init phase */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Set the header phase */
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable the CRYP peripheral */
__HAL_CRYP_DISABLE(hcryp);
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
if(Size != 0)
{
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
}
else
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state and phase */
hcryp->State = HAL_CRYP_STATE_READY;
}
/* Return function status */
return HAL_OK;
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 16;
hcryp->CrypInCount -= 16;
if(hcryp->CrypInCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 16;
hcryp->CrypOutCount -= 16;
if(hcryp->CrypOutCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES CCM decryption mode using interrupt
* then decrypted pCypherData. The cypher data are available in pPlainData.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData: Pointer to the cyphertext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pPlainData: Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr;
uint32_t outputaddr;
uint32_t tickstart = 0;
uint32_t headersize = hcryp->Init.HeaderSize;
uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
uint32_t loopcounter = 0;
uint32_t bufferidx = 0;
uint8_t blockb0[16] = {0};/* Block B0 */
uint8_t ctr[16] = {0}; /* Counter */
uint32_t b0addr = (uint32_t)blockb0;
if(hcryp->State == HAL_CRYP_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hcryp);
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/************************ Formatting the header block *******************/
if(headersize != 0)
{
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
if(headersize < 65280)
{
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
headersize += 2;
}
else
{
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
hcryp->Init.pScratch[bufferidx++] = 0xFF;
hcryp->Init.pScratch[bufferidx++] = 0xFE;
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
headersize += 6;
}
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
{
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
}
/* Check if the header size is modulo 16 */
if ((headersize % 16) != 0)
{
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = 0;
}
/* Set the header size to modulo 16 */
headersize = ((headersize/16) + 1) * 16;
}
/* Set the pointer headeraddr to hcryp->Init.pScratch */
headeraddr = (uint32_t)hcryp->Init.pScratch;
}
/*********************** Formatting the block B0 ************************/
if(headersize != 0)
{
blockb0[0] = 0x40;
}
/* Flags byte */
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
{
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
}
for ( ; loopcounter < 13; loopcounter++)
{
blockb0[loopcounter+1] = 0;
}
blockb0[14] = (Size >> 8);
blockb0[15] = (Size & 0xFF);
/************************* Formatting the initial counter ***************/
/* Byte 0:
Bits 7 and 6 are reserved and shall be set to 0
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
blocks are distinct from B0
Bits 0, 1, and 2 contain the same encoding of q as in B0
*/
ctr[0] = blockb0[0] & 0x07;
/* byte 1 to NonceSize is the IV (Nonce) */
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
{
ctr[loopcounter] = blockb0[loopcounter];
}
/* Set the LSB to 1 */
ctr[15] |= 0x01;
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
/* Select init phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
b0addr = (uint32_t)blockb0;
/* Write the blockb0 block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/***************************** Header phase *****************************/
if(headersize != 0)
{
/* Select header phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
/* Enable Crypto processor */
__HAL_CRYP_ENABLE(hcryp);
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
{
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Write the header block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
}
/* Get tick */
tickstart = HAL_GetTick();
while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Save formatted counter into the scratch buffer pScratch */
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
}
/* Reset bit 0 */
hcryp->Init.pScratch[15] &= 0xfe;
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Return function status */
return HAL_OK;
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
{
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Write the Input block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
inputaddr+=4;
hcryp->Instance->DR = *(uint32_t*)(inputaddr);
hcryp->pCrypInBuffPtr += 16;
hcryp->CrypInCount -= 16;
if(hcryp->CrypInCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
/* Call the Input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
}
else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
{
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
outputaddr+=4;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
hcryp->pCrypOutBuffPtr += 16;
hcryp->CrypOutCount -= 16;
if(hcryp->CrypOutCount == 0)
{
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call Input transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES GCM encryption mode using DMA.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData: Pointer to the plaintext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pCypherData: Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t tickstart = 0;
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pPlainData;
outputaddr = (uint32_t)pCypherData;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES GCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Enable CRYP to start the init phase */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the header phase */
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable the CRYP peripheral */
__HAL_CRYP_DISABLE(hcryp);
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Unlock process */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CCM encryption mode using interrupt.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData: Pointer to the plaintext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pCypherData: Pointer to the cyphertext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t tickstart = 0;
uint32_t inputaddr;
uint32_t outputaddr;
uint32_t headersize;
uint32_t headeraddr;
uint32_t loopcounter = 0;
uint32_t bufferidx = 0;
uint8_t blockb0[16] = {0};/* Block B0 */
uint8_t ctr[16] = {0}; /* Counter */
uint32_t b0addr = (uint32_t)blockb0;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pPlainData;
outputaddr = (uint32_t)pCypherData;
headersize = hcryp->Init.HeaderSize;
headeraddr = (uint32_t)hcryp->Init.Header;
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/************************ Formatting the header block *******************/
if(headersize != 0)
{
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
if(headersize < 65280)
{
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
headersize += 2;
}
else
{
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
hcryp->Init.pScratch[bufferidx++] = 0xFF;
hcryp->Init.pScratch[bufferidx++] = 0xFE;
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
headersize += 6;
}
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
{
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
}
/* Check if the header size is modulo 16 */
if ((headersize % 16) != 0)
{
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = 0;
}
/* Set the header size to modulo 16 */
headersize = ((headersize/16) + 1) * 16;
}
/* Set the pointer headeraddr to hcryp->Init.pScratch */
headeraddr = (uint32_t)hcryp->Init.pScratch;
}
/*********************** Formatting the block B0 ************************/
if(headersize != 0)
{
blockb0[0] = 0x40;
}
/* Flags byte */
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
{
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
}
for ( ; loopcounter < 13; loopcounter++)
{
blockb0[loopcounter+1] = 0;
}
blockb0[14] = (Size >> 8);
blockb0[15] = (Size & 0xFF);
/************************* Formatting the initial counter ***************/
/* Byte 0:
Bits 7 and 6 are reserved and shall be set to 0
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
blocks are distinct from B0
Bits 0, 1, and 2 contain the same encoding of q as in B0
*/
ctr[0] = blockb0[0] & 0x07;
/* byte 1 to NonceSize is the IV (Nonce) */
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
{
ctr[loopcounter] = blockb0[loopcounter];
}
/* Set the LSB to 1 */
ctr[15] |= 0x01;
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
/* Select init phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
b0addr = (uint32_t)blockb0;
/* Write the blockb0 block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/***************************** Header phase *****************************/
if(headersize != 0)
{
/* Select header phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
/* Enable Crypto processor */
__HAL_CRYP_ENABLE(hcryp);
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
{
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Write the header block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
}
/* Get tick */
tickstart = HAL_GetTick();
while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Save formatted counter into the scratch buffer pScratch */
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
}
/* Reset bit 0 */
hcryp->Init.pScratch[15] &= 0xfe;
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Unlock process */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES GCM decryption mode using DMA.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData: Pointer to the cyphertext buffer.
* @param Size: Length of the cyphertext buffer, must be a multiple of 16
* @param pPlainData: Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t tickstart = 0;
uint32_t inputaddr;
uint32_t outputaddr;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pCypherData;
outputaddr = (uint32_t)pPlainData;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES GCM decryption mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Enable CRYP to start the init phase */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Set the header phase */
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable the CRYP peripheral */
__HAL_CRYP_DISABLE(hcryp);
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Unlock process */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CCM decryption mode using DMA
* then decrypted pCypherData. The cypher data are available in pPlainData.
* @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData: Pointer to the cyphertext buffer
* @param Size: Length of the plaintext buffer, must be a multiple of 16
* @param pPlainData: Pointer to the plaintext buffer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t tickstart = 0;
uint32_t inputaddr;
uint32_t outputaddr;
uint32_t headersize;
uint32_t headeraddr;
uint32_t loopcounter = 0;
uint32_t bufferidx = 0;
uint8_t blockb0[16] = {0};/* Block B0 */
uint8_t ctr[16] = {0}; /* Counter */
uint32_t b0addr = (uint32_t)blockb0;
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pCypherData;
outputaddr = (uint32_t)pPlainData;
headersize = hcryp->Init.HeaderSize;
headeraddr = (uint32_t)hcryp->Init.Header;
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP peripheral state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/************************ Formatting the header block *******************/
if(headersize != 0)
{
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
if(headersize < 65280)
{
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
headersize += 2;
}
else
{
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
hcryp->Init.pScratch[bufferidx++] = 0xFF;
hcryp->Init.pScratch[bufferidx++] = 0xFE;
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
headersize += 6;
}
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
{
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
}
/* Check if the header size is modulo 16 */
if ((headersize % 16) != 0)
{
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = 0;
}
/* Set the header size to modulo 16 */
headersize = ((headersize/16) + 1) * 16;
}
/* Set the pointer headeraddr to hcryp->Init.pScratch */
headeraddr = (uint32_t)hcryp->Init.pScratch;
}
/*********************** Formatting the block B0 ************************/
if(headersize != 0)
{
blockb0[0] = 0x40;
}
/* Flags byte */
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
{
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
}
for ( ; loopcounter < 13; loopcounter++)
{
blockb0[loopcounter+1] = 0;
}
blockb0[14] = (Size >> 8);
blockb0[15] = (Size & 0xFF);
/************************* Formatting the initial counter ***************/
/* Byte 0:
Bits 7 and 6 are reserved and shall be set to 0
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
blocks are distinct from B0
Bits 0, 1, and 2 contain the same encoding of q as in B0
*/
ctr[0] = blockb0[0] & 0x07;
/* byte 1 to NonceSize is the IV (Nonce) */
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
{
ctr[loopcounter] = blockb0[loopcounter];
}
/* Set the LSB to 1 */
ctr[15] |= 0x01;
/* Set the key */
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
/* Set the CRYP peripheral in AES CCM mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
/* Set the Initialization Vector */
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
/* Select init phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
b0addr = (uint32_t)blockb0;
/* Write the blockb0 block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
b0addr+=4;
hcryp->Instance->DR = *(uint32_t*)(b0addr);
/* Enable the CRYP peripheral */
__HAL_CRYP_ENABLE(hcryp);
/* Get tick */
tickstart = HAL_GetTick();
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/***************************** Header phase *****************************/
if(headersize != 0)
{
/* Select header phase */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
/* Enable Crypto processor */
__HAL_CRYP_ENABLE(hcryp);
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
{
/* Get tick */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
/* Write the header block in the IN FIFO */
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
hcryp->Instance->DR = *(uint32_t*)(headeraddr);
headeraddr+=4;
}
/* Get tick */
tickstart = HAL_GetTick();
while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
{
/* Check for the Timeout */
if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Save formatted counter into the scratch buffer pScratch */
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
{
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
}
/* Reset bit 0 */
hcryp->Init.pScratch[15] &= 0xfe;
/* Select payload phase once the header phase is performed */
__HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
/* Flush FIFO */
__HAL_CRYP_FIFO_FLUSH(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Unlock process */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @}
*/
/** @defgroup CRYPEx_Exported_Functions_Group2 CRYPEx IRQ handler management
* @brief CRYPEx IRQ handler.
*
@verbatim
==============================================================================
##### CRYPEx IRQ handler management #####
==============================================================================
[..] This section provides CRYPEx IRQ handler function.
@endverbatim
* @{
*/
/**
* @brief This function handles CRYPEx interrupt request.
* @param hcryp: pointer to a CRYPEx_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
void HAL_CRYPEx_GCMCCM_IRQHandler(CRYP_HandleTypeDef *hcryp)
{
switch(CRYP->CR & CRYP_CR_ALGOMODE_DIRECTION)
{
case CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT:
HAL_CRYPEx_AESGCM_Encrypt_IT(hcryp, NULL, 0, NULL);
break;
case CRYP_CR_ALGOMODE_AES_GCM_DECRYPT:
HAL_CRYPEx_AESGCM_Decrypt_IT(hcryp, NULL, 0, NULL);
break;
case CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT:
HAL_CRYPEx_AESCCM_Encrypt_IT(hcryp, NULL, 0, NULL);
break;
case CRYP_CR_ALGOMODE_AES_CCM_DECRYPT:
HAL_CRYPEx_AESCCM_Decrypt_IT(hcryp, NULL, 0, NULL);
break;
default:
break;
}
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_CRYP_MODULE_ENABLED */
/**
* @}
*/
#endif /* STM32F756xx */
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/