blob: b6d9c04187aac9edadc70c3faec886e99e40fa83 [file] [log] [blame]
#****************************************************************************
###
#
# @file psu_init.tcl
#
# This file is automatically generated
#
#****************************************************************************
set psu_pll_init_data {
# : RPLL INIT
# Register : RPLL_CFG @ 0XFF5E0034</p>
# PLL loop filter resistor control
# PSU_CRL_APB_RPLL_CFG_RES 0x2
# PLL charge pump control
# PSU_CRL_APB_RPLL_CFG_CP 0x3
# PLL loop filter high frequency capacitor control
# PSU_CRL_APB_RPLL_CFG_LFHF 0x3
# Lock circuit counter setting
# PSU_CRL_APB_RPLL_CFG_LOCK_CNT 0x258
# Lock circuit configuration settings for lock windowsize
# PSU_CRL_APB_RPLL_CFG_LOCK_DLY 0x3f
# Helper data. Values are to be looked up in a table from Data Sheet
#(OFFSET, MASK, VALUE) (0XFF5E0034, 0xFE7FEDEFU ,0x7E4B0C62U) */
mask_write 0XFF5E0034 0xFE7FEDEF 0x7E4B0C62
# : UPDATE FB_DIV
# Register : RPLL_CTRL @ 0XFF5E0030</p>
# Mux select for determining which clock feeds this PLL. 0XX pss_ref_clk is the source 100 video clk is the source 101 pss_alt_
# ef_clk is the source 110 aux_refclk[X] is the source 111 gt_crx_ref_clk is the source
# PSU_CRL_APB_RPLL_CTRL_PRE_SRC 0x0
# The integer portion of the feedback divider to the PLL
# PSU_CRL_APB_RPLL_CTRL_FBDIV 0x48
# This turns on the divide by 2 that is inside of the PLL. This does not change the VCO frequency, just the output frequency
# PSU_CRL_APB_RPLL_CTRL_DIV2 0x1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0030, 0x00717F00U ,0x00014800U) */
mask_write 0XFF5E0030 0x00717F00 0x00014800
# : BY PASS PLL
# Register : RPLL_CTRL @ 0XFF5E0030</p>
# Bypasses the PLL clock. The usable clock will be determined from the POST_SRC field. (This signal may only be toggled after 4
# cycles of the old clock and 4 cycles of the new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_RPLL_CTRL_BYPASS 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0030, 0x00000008U ,0x00000008U) */
mask_write 0XFF5E0030 0x00000008 0x00000008
# : ASSERT RESET
# Register : RPLL_CTRL @ 0XFF5E0030</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be in BYPASS.
# PSU_CRL_APB_RPLL_CTRL_RESET 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0030, 0x00000001U ,0x00000001U) */
mask_write 0XFF5E0030 0x00000001 0x00000001
# : DEASSERT RESET
# Register : RPLL_CTRL @ 0XFF5E0030</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be in BYPASS.
# PSU_CRL_APB_RPLL_CTRL_RESET 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0030, 0x00000001U ,0x00000000U) */
mask_write 0XFF5E0030 0x00000001 0x00000000
# : CHECK PLL STATUS
# Register : PLL_STATUS @ 0XFF5E0040</p>
# RPLL is locked
# PSU_CRL_APB_PLL_STATUS_RPLL_LOCK 1
mask_poll 0XFF5E0040 0x00000002
# : REMOVE PLL BY PASS
# Register : RPLL_CTRL @ 0XFF5E0030</p>
# Bypasses the PLL clock. The usable clock will be determined from the POST_SRC field. (This signal may only be toggled after 4
# cycles of the old clock and 4 cycles of the new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_RPLL_CTRL_BYPASS 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0030, 0x00000008U ,0x00000000U) */
mask_write 0XFF5E0030 0x00000008 0x00000000
# Register : RPLL_TO_FPD_CTRL @ 0XFF5E0048</p>
# Divisor value for this clock.
# PSU_CRL_APB_RPLL_TO_FPD_CTRL_DIVISOR0 0x3
# Control for a clock that will be generated in the LPD, but used in the FPD as a clock source for the peripheral clock muxes.
#(OFFSET, MASK, VALUE) (0XFF5E0048, 0x00003F00U ,0x00000300U) */
mask_write 0XFF5E0048 0x00003F00 0x00000300
# : RPLL FRAC CFG
# Register : RPLL_FRAC_CFG @ 0XFF5E0038</p>
# Fractional SDM bypass control. When 0, PLL is in integer mode and it ignores all fractional data. When 1, PLL is in fractiona
# mode and uses DATA of this register for the fractional portion of the feedback divider.
# PSU_CRL_APB_RPLL_FRAC_CFG_ENABLED 0x0
# Fractional value for the Feedback value.
# PSU_CRL_APB_RPLL_FRAC_CFG_DATA 0x0
# Fractional control for the PLL
#(OFFSET, MASK, VALUE) (0XFF5E0038, 0x8000FFFFU ,0x00000000U) */
mask_write 0XFF5E0038 0x8000FFFF 0x00000000
# : IOPLL INIT
# Register : IOPLL_CFG @ 0XFF5E0024</p>
# PLL loop filter resistor control
# PSU_CRL_APB_IOPLL_CFG_RES 0xc
# PLL charge pump control
# PSU_CRL_APB_IOPLL_CFG_CP 0x3
# PLL loop filter high frequency capacitor control
# PSU_CRL_APB_IOPLL_CFG_LFHF 0x3
# Lock circuit counter setting
# PSU_CRL_APB_IOPLL_CFG_LOCK_CNT 0x339
# Lock circuit configuration settings for lock windowsize
# PSU_CRL_APB_IOPLL_CFG_LOCK_DLY 0x3f
# Helper data. Values are to be looked up in a table from Data Sheet
#(OFFSET, MASK, VALUE) (0XFF5E0024, 0xFE7FEDEFU ,0x7E672C6CU) */
mask_write 0XFF5E0024 0xFE7FEDEF 0x7E672C6C
# : UPDATE FB_DIV
# Register : IOPLL_CTRL @ 0XFF5E0020</p>
# Mux select for determining which clock feeds this PLL. 0XX pss_ref_clk is the source 100 video clk is the source 101 pss_alt_
# ef_clk is the source 110 aux_refclk[X] is the source 111 gt_crx_ref_clk is the source
# PSU_CRL_APB_IOPLL_CTRL_PRE_SRC 0x0
# The integer portion of the feedback divider to the PLL
# PSU_CRL_APB_IOPLL_CTRL_FBDIV 0x2d
# This turns on the divide by 2 that is inside of the PLL. This does not change the VCO frequency, just the output frequency
# PSU_CRL_APB_IOPLL_CTRL_DIV2 0x0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0020, 0x00717F00U ,0x00002D00U) */
mask_write 0XFF5E0020 0x00717F00 0x00002D00
# : BY PASS PLL
# Register : IOPLL_CTRL @ 0XFF5E0020</p>
# Bypasses the PLL clock. The usable clock will be determined from the POST_SRC field. (This signal may only be toggled after 4
# cycles of the old clock and 4 cycles of the new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_IOPLL_CTRL_BYPASS 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0020, 0x00000008U ,0x00000008U) */
mask_write 0XFF5E0020 0x00000008 0x00000008
# : ASSERT RESET
# Register : IOPLL_CTRL @ 0XFF5E0020</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be in BYPASS.
# PSU_CRL_APB_IOPLL_CTRL_RESET 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0020, 0x00000001U ,0x00000001U) */
mask_write 0XFF5E0020 0x00000001 0x00000001
# : DEASSERT RESET
# Register : IOPLL_CTRL @ 0XFF5E0020</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be in BYPASS.
# PSU_CRL_APB_IOPLL_CTRL_RESET 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0020, 0x00000001U ,0x00000000U) */
mask_write 0XFF5E0020 0x00000001 0x00000000
# : CHECK PLL STATUS
# Register : PLL_STATUS @ 0XFF5E0040</p>
# IOPLL is locked
# PSU_CRL_APB_PLL_STATUS_IOPLL_LOCK 1
mask_poll 0XFF5E0040 0x00000001
# : REMOVE PLL BY PASS
# Register : IOPLL_CTRL @ 0XFF5E0020</p>
# Bypasses the PLL clock. The usable clock will be determined from the POST_SRC field. (This signal may only be toggled after 4
# cycles of the old clock and 4 cycles of the new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_IOPLL_CTRL_BYPASS 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0020, 0x00000008U ,0x00000000U) */
mask_write 0XFF5E0020 0x00000008 0x00000000
# Register : IOPLL_TO_FPD_CTRL @ 0XFF5E0044</p>
# Divisor value for this clock.
# PSU_CRL_APB_IOPLL_TO_FPD_CTRL_DIVISOR0 0x3
# Control for a clock that will be generated in the LPD, but used in the FPD as a clock source for the peripheral clock muxes.
#(OFFSET, MASK, VALUE) (0XFF5E0044, 0x00003F00U ,0x00000300U) */
mask_write 0XFF5E0044 0x00003F00 0x00000300
# : IOPLL FRAC CFG
# Register : IOPLL_FRAC_CFG @ 0XFF5E0028</p>
# Fractional SDM bypass control. When 0, PLL is in integer mode and it ignores all fractional data. When 1, PLL is in fractiona
# mode and uses DATA of this register for the fractional portion of the feedback divider.
# PSU_CRL_APB_IOPLL_FRAC_CFG_ENABLED 0x0
# Fractional value for the Feedback value.
# PSU_CRL_APB_IOPLL_FRAC_CFG_DATA 0x0
# Fractional control for the PLL
#(OFFSET, MASK, VALUE) (0XFF5E0028, 0x8000FFFFU ,0x00000000U) */
mask_write 0XFF5E0028 0x8000FFFF 0x00000000
# : APU_PLL INIT
# Register : APLL_CFG @ 0XFD1A0024</p>
# PLL loop filter resistor control
# PSU_CRF_APB_APLL_CFG_RES 0x2
# PLL charge pump control
# PSU_CRF_APB_APLL_CFG_CP 0x3
# PLL loop filter high frequency capacitor control
# PSU_CRF_APB_APLL_CFG_LFHF 0x3
# Lock circuit counter setting
# PSU_CRF_APB_APLL_CFG_LOCK_CNT 0x258
# Lock circuit configuration settings for lock windowsize
# PSU_CRF_APB_APLL_CFG_LOCK_DLY 0x3f
# Helper data. Values are to be looked up in a table from Data Sheet
#(OFFSET, MASK, VALUE) (0XFD1A0024, 0xFE7FEDEFU ,0x7E4B0C62U) */
mask_write 0XFD1A0024 0xFE7FEDEF 0x7E4B0C62
# : UPDATE FB_DIV
# Register : APLL_CTRL @ 0XFD1A0020</p>
# Mux select for determining which clock feeds this PLL. 0XX pss_ref_clk is the source 100 video clk is the source 101 pss_alt_
# ef_clk is the source 110 aux_refclk[X] is the source 111 gt_crx_ref_clk is the source
# PSU_CRF_APB_APLL_CTRL_PRE_SRC 0x0
# The integer portion of the feedback divider to the PLL
# PSU_CRF_APB_APLL_CTRL_FBDIV 0x42
# This turns on the divide by 2 that is inside of the PLL. This does not change the VCO frequency, just the output frequency
# PSU_CRF_APB_APLL_CTRL_DIV2 0x1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0020, 0x00717F00U ,0x00014200U) */
mask_write 0XFD1A0020 0x00717F00 0x00014200
# : BY PASS PLL
# Register : APLL_CTRL @ 0XFD1A0020</p>
# Bypasses the PLL clock. The usable clock will be determined from the POST_SRC field. (This signal may only be toggled after 4
# cycles of the old clock and 4 cycles of the new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_APLL_CTRL_BYPASS 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0020, 0x00000008U ,0x00000008U) */
mask_write 0XFD1A0020 0x00000008 0x00000008
# : ASSERT RESET
# Register : APLL_CTRL @ 0XFD1A0020</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be in BYPASS.
# PSU_CRF_APB_APLL_CTRL_RESET 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0020, 0x00000001U ,0x00000001U) */
mask_write 0XFD1A0020 0x00000001 0x00000001
# : DEASSERT RESET
# Register : APLL_CTRL @ 0XFD1A0020</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be in BYPASS.
# PSU_CRF_APB_APLL_CTRL_RESET 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0020, 0x00000001U ,0x00000000U) */
mask_write 0XFD1A0020 0x00000001 0x00000000
# : CHECK PLL STATUS
# Register : PLL_STATUS @ 0XFD1A0044</p>
# APLL is locked
# PSU_CRF_APB_PLL_STATUS_APLL_LOCK 1
mask_poll 0XFD1A0044 0x00000001
# : REMOVE PLL BY PASS
# Register : APLL_CTRL @ 0XFD1A0020</p>
# Bypasses the PLL clock. The usable clock will be determined from the POST_SRC field. (This signal may only be toggled after 4
# cycles of the old clock and 4 cycles of the new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_APLL_CTRL_BYPASS 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0020, 0x00000008U ,0x00000000U) */
mask_write 0XFD1A0020 0x00000008 0x00000000
# Register : APLL_TO_LPD_CTRL @ 0XFD1A0048</p>
# Divisor value for this clock.
# PSU_CRF_APB_APLL_TO_LPD_CTRL_DIVISOR0 0x3
# Control for a clock that will be generated in the FPD, but used in the LPD as a clock source for the peripheral clock muxes.
#(OFFSET, MASK, VALUE) (0XFD1A0048, 0x00003F00U ,0x00000300U) */
mask_write 0XFD1A0048 0x00003F00 0x00000300
# : APLL FRAC CFG
# Register : APLL_FRAC_CFG @ 0XFD1A0028</p>
# Fractional SDM bypass control. When 0, PLL is in integer mode and it ignores all fractional data. When 1, PLL is in fractiona
# mode and uses DATA of this register for the fractional portion of the feedback divider.
# PSU_CRF_APB_APLL_FRAC_CFG_ENABLED 0x0
# Fractional value for the Feedback value.
# PSU_CRF_APB_APLL_FRAC_CFG_DATA 0x0
# Fractional control for the PLL
#(OFFSET, MASK, VALUE) (0XFD1A0028, 0x8000FFFFU ,0x00000000U) */
mask_write 0XFD1A0028 0x8000FFFF 0x00000000
# : DDR_PLL INIT
# Register : DPLL_CFG @ 0XFD1A0030</p>
# PLL loop filter resistor control
# PSU_CRF_APB_DPLL_CFG_RES 0x2
# PLL charge pump control
# PSU_CRF_APB_DPLL_CFG_CP 0x3
# PLL loop filter high frequency capacitor control
# PSU_CRF_APB_DPLL_CFG_LFHF 0x3
# Lock circuit counter setting
# PSU_CRF_APB_DPLL_CFG_LOCK_CNT 0x258
# Lock circuit configuration settings for lock windowsize
# PSU_CRF_APB_DPLL_CFG_LOCK_DLY 0x3f
# Helper data. Values are to be looked up in a table from Data Sheet
#(OFFSET, MASK, VALUE) (0XFD1A0030, 0xFE7FEDEFU ,0x7E4B0C62U) */
mask_write 0XFD1A0030 0xFE7FEDEF 0x7E4B0C62
# : UPDATE FB_DIV
# Register : DPLL_CTRL @ 0XFD1A002C</p>
# Mux select for determining which clock feeds this PLL. 0XX pss_ref_clk is the source 100 video clk is the source 101 pss_alt_
# ef_clk is the source 110 aux_refclk[X] is the source 111 gt_crx_ref_clk is the source
# PSU_CRF_APB_DPLL_CTRL_PRE_SRC 0x0
# The integer portion of the feedback divider to the PLL
# PSU_CRF_APB_DPLL_CTRL_FBDIV 0x40
# This turns on the divide by 2 that is inside of the PLL. This does not change the VCO frequency, just the output frequency
# PSU_CRF_APB_DPLL_CTRL_DIV2 0x1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A002C, 0x00717F00U ,0x00014000U) */
mask_write 0XFD1A002C 0x00717F00 0x00014000
# : BY PASS PLL
# Register : DPLL_CTRL @ 0XFD1A002C</p>
# Bypasses the PLL clock. The usable clock will be determined from the POST_SRC field. (This signal may only be toggled after 4
# cycles of the old clock and 4 cycles of the new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_DPLL_CTRL_BYPASS 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A002C, 0x00000008U ,0x00000008U) */
mask_write 0XFD1A002C 0x00000008 0x00000008
# : ASSERT RESET
# Register : DPLL_CTRL @ 0XFD1A002C</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be in BYPASS.
# PSU_CRF_APB_DPLL_CTRL_RESET 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A002C, 0x00000001U ,0x00000001U) */
mask_write 0XFD1A002C 0x00000001 0x00000001
# : DEASSERT RESET
# Register : DPLL_CTRL @ 0XFD1A002C</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be in BYPASS.
# PSU_CRF_APB_DPLL_CTRL_RESET 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A002C, 0x00000001U ,0x00000000U) */
mask_write 0XFD1A002C 0x00000001 0x00000000
# : CHECK PLL STATUS
# Register : PLL_STATUS @ 0XFD1A0044</p>
# DPLL is locked
# PSU_CRF_APB_PLL_STATUS_DPLL_LOCK 1
mask_poll 0XFD1A0044 0x00000002
# : REMOVE PLL BY PASS
# Register : DPLL_CTRL @ 0XFD1A002C</p>
# Bypasses the PLL clock. The usable clock will be determined from the POST_SRC field. (This signal may only be toggled after 4
# cycles of the old clock and 4 cycles of the new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_DPLL_CTRL_BYPASS 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A002C, 0x00000008U ,0x00000000U) */
mask_write 0XFD1A002C 0x00000008 0x00000000
# Register : DPLL_TO_LPD_CTRL @ 0XFD1A004C</p>
# Divisor value for this clock.
# PSU_CRF_APB_DPLL_TO_LPD_CTRL_DIVISOR0 0x3
# Control for a clock that will be generated in the FPD, but used in the LPD as a clock source for the peripheral clock muxes.
#(OFFSET, MASK, VALUE) (0XFD1A004C, 0x00003F00U ,0x00000300U) */
mask_write 0XFD1A004C 0x00003F00 0x00000300
# : DPLL FRAC CFG
# Register : DPLL_FRAC_CFG @ 0XFD1A0034</p>
# Fractional SDM bypass control. When 0, PLL is in integer mode and it ignores all fractional data. When 1, PLL is in fractiona
# mode and uses DATA of this register for the fractional portion of the feedback divider.
# PSU_CRF_APB_DPLL_FRAC_CFG_ENABLED 0x0
# Fractional value for the Feedback value.
# PSU_CRF_APB_DPLL_FRAC_CFG_DATA 0x0
# Fractional control for the PLL
#(OFFSET, MASK, VALUE) (0XFD1A0034, 0x8000FFFFU ,0x00000000U) */
mask_write 0XFD1A0034 0x8000FFFF 0x00000000
# : VIDEO_PLL INIT
# Register : VPLL_CFG @ 0XFD1A003C</p>
# PLL loop filter resistor control
# PSU_CRF_APB_VPLL_CFG_RES 0x2
# PLL charge pump control
# PSU_CRF_APB_VPLL_CFG_CP 0x3
# PLL loop filter high frequency capacitor control
# PSU_CRF_APB_VPLL_CFG_LFHF 0x3
# Lock circuit counter setting
# PSU_CRF_APB_VPLL_CFG_LOCK_CNT 0x28a
# Lock circuit configuration settings for lock windowsize
# PSU_CRF_APB_VPLL_CFG_LOCK_DLY 0x3f
# Helper data. Values are to be looked up in a table from Data Sheet
#(OFFSET, MASK, VALUE) (0XFD1A003C, 0xFE7FEDEFU ,0x7E514C62U) */
mask_write 0XFD1A003C 0xFE7FEDEF 0x7E514C62
# : UPDATE FB_DIV
# Register : VPLL_CTRL @ 0XFD1A0038</p>
# Mux select for determining which clock feeds this PLL. 0XX pss_ref_clk is the source 100 video clk is the source 101 pss_alt_
# ef_clk is the source 110 aux_refclk[X] is the source 111 gt_crx_ref_clk is the source
# PSU_CRF_APB_VPLL_CTRL_PRE_SRC 0x0
# The integer portion of the feedback divider to the PLL
# PSU_CRF_APB_VPLL_CTRL_FBDIV 0x39
# This turns on the divide by 2 that is inside of the PLL. This does not change the VCO frequency, just the output frequency
# PSU_CRF_APB_VPLL_CTRL_DIV2 0x1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0038, 0x00717F00U ,0x00013900U) */
mask_write 0XFD1A0038 0x00717F00 0x00013900
# : BY PASS PLL
# Register : VPLL_CTRL @ 0XFD1A0038</p>
# Bypasses the PLL clock. The usable clock will be determined from the POST_SRC field. (This signal may only be toggled after 4
# cycles of the old clock and 4 cycles of the new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_VPLL_CTRL_BYPASS 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0038, 0x00000008U ,0x00000008U) */
mask_write 0XFD1A0038 0x00000008 0x00000008
# : ASSERT RESET
# Register : VPLL_CTRL @ 0XFD1A0038</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be in BYPASS.
# PSU_CRF_APB_VPLL_CTRL_RESET 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0038, 0x00000001U ,0x00000001U) */
mask_write 0XFD1A0038 0x00000001 0x00000001
# : DEASSERT RESET
# Register : VPLL_CTRL @ 0XFD1A0038</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be in BYPASS.
# PSU_CRF_APB_VPLL_CTRL_RESET 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0038, 0x00000001U ,0x00000000U) */
mask_write 0XFD1A0038 0x00000001 0x00000000
# : CHECK PLL STATUS
# Register : PLL_STATUS @ 0XFD1A0044</p>
# VPLL is locked
# PSU_CRF_APB_PLL_STATUS_VPLL_LOCK 1
mask_poll 0XFD1A0044 0x00000004
# : REMOVE PLL BY PASS
# Register : VPLL_CTRL @ 0XFD1A0038</p>
# Bypasses the PLL clock. The usable clock will be determined from the POST_SRC field. (This signal may only be toggled after 4
# cycles of the old clock and 4 cycles of the new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_VPLL_CTRL_BYPASS 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0038, 0x00000008U ,0x00000000U) */
mask_write 0XFD1A0038 0x00000008 0x00000000
# Register : VPLL_TO_LPD_CTRL @ 0XFD1A0050</p>
# Divisor value for this clock.
# PSU_CRF_APB_VPLL_TO_LPD_CTRL_DIVISOR0 0x3
# Control for a clock that will be generated in the FPD, but used in the LPD as a clock source for the peripheral clock muxes.
#(OFFSET, MASK, VALUE) (0XFD1A0050, 0x00003F00U ,0x00000300U) */
mask_write 0XFD1A0050 0x00003F00 0x00000300
# : VIDEO FRAC CFG
# Register : VPLL_FRAC_CFG @ 0XFD1A0040</p>
# Fractional SDM bypass control. When 0, PLL is in integer mode and it ignores all fractional data. When 1, PLL is in fractiona
# mode and uses DATA of this register for the fractional portion of the feedback divider.
# PSU_CRF_APB_VPLL_FRAC_CFG_ENABLED 0x1
# Fractional value for the Feedback value.
# PSU_CRF_APB_VPLL_FRAC_CFG_DATA 0x820c
# Fractional control for the PLL
#(OFFSET, MASK, VALUE) (0XFD1A0040, 0x8000FFFFU ,0x8000820CU) */
mask_write 0XFD1A0040 0x8000FFFF 0x8000820C
}
set psu_clock_init_data {
# : CLOCK CONTROL SLCR REGISTER
# Register : GEM3_REF_CTRL @ 0XFF5E005C</p>
# Clock active for the RX channel
# PSU_CRL_APB_GEM3_REF_CTRL_RX_CLKACT 0x1
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_GEM3_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_GEM3_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_GEM3_REF_CTRL_DIVISOR0 0xc
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_GEM3_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E005C, 0x063F3F07U ,0x06010C00U) */
mask_write 0XFF5E005C 0x063F3F07 0x06010C00
# Register : USB0_BUS_REF_CTRL @ 0XFF5E0060</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_USB0_BUS_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_USB0_BUS_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_USB0_BUS_REF_CTRL_DIVISOR0 0x6
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_USB0_BUS_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0060, 0x023F3F07U ,0x02010600U) */
mask_write 0XFF5E0060 0x023F3F07 0x02010600
# Register : USB3_DUAL_REF_CTRL @ 0XFF5E004C</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_USB3_DUAL_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_USB3_DUAL_REF_CTRL_DIVISOR1 0xf
# 6 bit divider
# PSU_CRL_APB_USB3_DUAL_REF_CTRL_DIVISOR0 0x5
# 000 = IOPLL; 010 = RPLL; 011 = DPLL. (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_USB3_DUAL_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E004C, 0x023F3F07U ,0x020F0500U) */
mask_write 0XFF5E004C 0x023F3F07 0x020F0500
# Register : QSPI_REF_CTRL @ 0XFF5E0068</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_QSPI_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_QSPI_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_QSPI_REF_CTRL_DIVISOR0 0xc
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_QSPI_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0068, 0x013F3F07U ,0x01010C00U) */
mask_write 0XFF5E0068 0x013F3F07 0x01010C00
# Register : SDIO1_REF_CTRL @ 0XFF5E0070</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_SDIO1_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_SDIO1_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_SDIO1_REF_CTRL_DIVISOR0 0x6
# 000 = IOPLL; 010 = RPLL; 011 = VPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_SDIO1_REF_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0070, 0x013F3F07U ,0x01010602U) */
mask_write 0XFF5E0070 0x013F3F07 0x01010602
# Register : SDIO_CLK_CTRL @ 0XFF18030C</p>
# MIO pad selection for sdio1_rx_clk (feedback clock from the PAD) 0: MIO [51] 1: MIO [76]
# PSU_IOU_SLCR_SDIO_CLK_CTRL_SDIO1_RX_SRC_SEL 0
# SoC Debug Clock Control
#(OFFSET, MASK, VALUE) (0XFF18030C, 0x00020000U ,0x00000000U) */
mask_write 0XFF18030C 0x00020000 0x00000000
# Register : UART0_REF_CTRL @ 0XFF5E0074</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_UART0_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_UART0_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_UART0_REF_CTRL_DIVISOR0 0xf
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_UART0_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0074, 0x013F3F07U ,0x01010F00U) */
mask_write 0XFF5E0074 0x013F3F07 0x01010F00
# Register : UART1_REF_CTRL @ 0XFF5E0078</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_UART1_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_UART1_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_UART1_REF_CTRL_DIVISOR0 0xf
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_UART1_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0078, 0x013F3F07U ,0x01010F00U) */
mask_write 0XFF5E0078 0x013F3F07 0x01010F00
# Register : I2C0_REF_CTRL @ 0XFF5E0120</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_I2C0_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_I2C0_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_I2C0_REF_CTRL_DIVISOR0 0xf
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_I2C0_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0120, 0x013F3F07U ,0x01010F00U) */
mask_write 0XFF5E0120 0x013F3F07 0x01010F00
# Register : I2C1_REF_CTRL @ 0XFF5E0124</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_I2C1_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_I2C1_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_I2C1_REF_CTRL_DIVISOR0 0xf
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_I2C1_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0124, 0x013F3F07U ,0x01010F00U) */
mask_write 0XFF5E0124 0x013F3F07 0x01010F00
# Register : CAN1_REF_CTRL @ 0XFF5E0088</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_CAN1_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_CAN1_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_CAN1_REF_CTRL_DIVISOR0 0xf
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_CAN1_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0088, 0x013F3F07U ,0x01010F00U) */
mask_write 0XFF5E0088 0x013F3F07 0x01010F00
# Register : CPU_R5_CTRL @ 0XFF5E0090</p>
# Turing this off will shut down the OCM, some parts of the APM, and prevent transactions going from the FPD to the LPD and cou
# d lead to system hang
# PSU_CRL_APB_CPU_R5_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_CPU_R5_CTRL_DIVISOR0 0x3
# 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_CPU_R5_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0090, 0x01003F07U ,0x01000302U) */
mask_write 0XFF5E0090 0x01003F07 0x01000302
# Register : IOU_SWITCH_CTRL @ 0XFF5E009C</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_IOU_SWITCH_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_IOU_SWITCH_CTRL_DIVISOR0 0x6
# 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_IOU_SWITCH_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E009C, 0x01003F07U ,0x01000602U) */
mask_write 0XFF5E009C 0x01003F07 0x01000602
# Register : PCAP_CTRL @ 0XFF5E00A4</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_PCAP_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_PCAP_CTRL_DIVISOR0 0x6
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_PCAP_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E00A4, 0x01003F07U ,0x01000602U) */
mask_write 0XFF5E00A4 0x01003F07 0x01000602
# Register : LPD_SWITCH_CTRL @ 0XFF5E00A8</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_LPD_SWITCH_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_LPD_SWITCH_CTRL_DIVISOR0 0x3
# 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_LPD_SWITCH_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E00A8, 0x01003F07U ,0x01000302U) */
mask_write 0XFF5E00A8 0x01003F07 0x01000302
# Register : LPD_LSBUS_CTRL @ 0XFF5E00AC</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_LPD_LSBUS_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_LPD_LSBUS_CTRL_DIVISOR0 0xf
# 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_LPD_LSBUS_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E00AC, 0x01003F07U ,0x01000F02U) */
mask_write 0XFF5E00AC 0x01003F07 0x01000F02
# Register : DBG_LPD_CTRL @ 0XFF5E00B0</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_DBG_LPD_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_DBG_LPD_CTRL_DIVISOR0 0x6
# 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_DBG_LPD_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E00B0, 0x01003F07U ,0x01000602U) */
mask_write 0XFF5E00B0 0x01003F07 0x01000602
# Register : ADMA_REF_CTRL @ 0XFF5E00B8</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_ADMA_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_ADMA_REF_CTRL_DIVISOR0 0x3
# 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_ADMA_REF_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E00B8, 0x01003F07U ,0x01000302U) */
mask_write 0XFF5E00B8 0x01003F07 0x01000302
# Register : PL0_REF_CTRL @ 0XFF5E00C0</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_PL0_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_PL0_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_PL0_REF_CTRL_DIVISOR0 0xf
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_PL0_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E00C0, 0x013F3F07U ,0x01010F00U) */
mask_write 0XFF5E00C0 0x013F3F07 0x01010F00
# Register : PL1_REF_CTRL @ 0XFF5E00C4</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_PL1_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_PL1_REF_CTRL_DIVISOR1 0x4
# 6 bit divider
# PSU_CRL_APB_PL1_REF_CTRL_DIVISOR0 0xf
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_PL1_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E00C4, 0x013F3F07U ,0x01040F00U) */
mask_write 0XFF5E00C4 0x013F3F07 0x01040F00
# Register : PL2_REF_CTRL @ 0XFF5E00C8</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_PL2_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_PL2_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_PL2_REF_CTRL_DIVISOR0 0x4
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_PL2_REF_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E00C8, 0x013F3F07U ,0x01010402U) */
mask_write 0XFF5E00C8 0x013F3F07 0x01010402
# Register : PL3_REF_CTRL @ 0XFF5E00CC</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_PL3_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_PL3_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_PL3_REF_CTRL_DIVISOR0 0x3
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_PL3_REF_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E00CC, 0x013F3F07U ,0x01010302U) */
mask_write 0XFF5E00CC 0x013F3F07 0x01010302
# Register : AMS_REF_CTRL @ 0XFF5E0108</p>
# 6 bit divider
# PSU_CRL_APB_AMS_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_AMS_REF_CTRL_DIVISOR0 0x1d
# 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_AMS_REF_CTRL_SRCSEL 0x2
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_AMS_REF_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0108, 0x013F3F07U ,0x01011D02U) */
mask_write 0XFF5E0108 0x013F3F07 0x01011D02
# Register : DLL_REF_CTRL @ 0XFF5E0104</p>
# 000 = IOPLL; 001 = RPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new clock. This
# is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_DLL_REF_CTRL_SRCSEL 0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0104, 0x00000007U ,0x00000000U) */
mask_write 0XFF5E0104 0x00000007 0x00000000
# Register : TIMESTAMP_REF_CTRL @ 0XFF5E0128</p>
# 6 bit divider
# PSU_CRL_APB_TIMESTAMP_REF_CTRL_DIVISOR0 0xf
# 1XX = pss_ref_clk; 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and
# cycles of the new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_TIMESTAMP_REF_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_TIMESTAMP_REF_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0128, 0x01003F07U ,0x01000F00U) */
mask_write 0XFF5E0128 0x01003F07 0x01000F00
# Register : SATA_REF_CTRL @ 0XFD1A00A0</p>
# 000 = IOPLL_TO_FPD; 010 = APLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of
# he new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_SATA_REF_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_SATA_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRF_APB_SATA_REF_CTRL_DIVISOR0 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A00A0, 0x01003F07U ,0x01000200U) */
mask_write 0XFD1A00A0 0x01003F07 0x01000200
# Register : PCIE_REF_CTRL @ 0XFD1A00B4</p>
# 000 = IOPLL_TO_FPD; 010 = RPLL_TO_FPD; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cyc
# es of the new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_PCIE_REF_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_PCIE_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRF_APB_PCIE_REF_CTRL_DIVISOR0 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A00B4, 0x01003F07U ,0x01000200U) */
mask_write 0XFD1A00B4 0x01003F07 0x01000200
# Register : DP_VIDEO_REF_CTRL @ 0XFD1A0070</p>
# 6 bit divider
# PSU_CRF_APB_DP_VIDEO_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRF_APB_DP_VIDEO_REF_CTRL_DIVISOR0 0x3
# 000 = VPLL; 010 = DPLL; 011 = RPLL_TO_FPD - might be using extra mux; (This signal may only be toggled after 4 cycles of the
# ld clock and 4 cycles of the new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_DP_VIDEO_REF_CTRL_SRCSEL 0x3
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_DP_VIDEO_REF_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A0070, 0x013F3F07U ,0x01010303U) */
mask_write 0XFD1A0070 0x013F3F07 0x01010303
# Register : DP_AUDIO_REF_CTRL @ 0XFD1A0074</p>
# 6 bit divider
# PSU_CRF_APB_DP_AUDIO_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRF_APB_DP_AUDIO_REF_CTRL_DIVISOR0 0x27
# 000 = VPLL; 010 = DPLL; 011 = RPLL_TO_FPD - might be using extra mux; (This signal may only be toggled after 4 cycles of the
# ld clock and 4 cycles of the new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_DP_AUDIO_REF_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_DP_AUDIO_REF_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A0074, 0x013F3F07U ,0x01012700U) */
mask_write 0XFD1A0074 0x013F3F07 0x01012700
# Register : DP_STC_REF_CTRL @ 0XFD1A007C</p>
# 6 bit divider
# PSU_CRF_APB_DP_STC_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRF_APB_DP_STC_REF_CTRL_DIVISOR0 0x11
# 000 = VPLL; 010 = DPLL; 011 = RPLL_TO_FPD; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of t
# e new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_DP_STC_REF_CTRL_SRCSEL 0x3
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_DP_STC_REF_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A007C, 0x013F3F07U ,0x01011103U) */
mask_write 0XFD1A007C 0x013F3F07 0x01011103
# Register : ACPU_CTRL @ 0XFD1A0060</p>
# 6 bit divider
# PSU_CRF_APB_ACPU_CTRL_DIVISOR0 0x1
# 000 = APLL; 010 = DPLL; 011 = VPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# lock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_ACPU_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock. For the half speed APU Clock
# PSU_CRF_APB_ACPU_CTRL_CLKACT_HALF 0x1
# Clock active signal. Switch to 0 to disable the clock. For the full speed ACPUX Clock. This will shut off the high speed cloc
# to the entire APU
# PSU_CRF_APB_ACPU_CTRL_CLKACT_FULL 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A0060, 0x03003F07U ,0x03000100U) */
mask_write 0XFD1A0060 0x03003F07 0x03000100
# Register : DBG_TRACE_CTRL @ 0XFD1A0064</p>
# 6 bit divider
# PSU_CRF_APB_DBG_TRACE_CTRL_DIVISOR0 0x2
# 000 = IOPLL_TO_FPD; 010 = DPLL; 011 = APLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of
# he new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_DBG_TRACE_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_DBG_TRACE_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A0064, 0x01003F07U ,0x01000200U) */
mask_write 0XFD1A0064 0x01003F07 0x01000200
# Register : DBG_FPD_CTRL @ 0XFD1A0068</p>
# 6 bit divider
# PSU_CRF_APB_DBG_FPD_CTRL_DIVISOR0 0x2
# 000 = IOPLL_TO_FPD; 010 = DPLL; 011 = APLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of
# he new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_DBG_FPD_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_DBG_FPD_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A0068, 0x01003F07U ,0x01000200U) */
mask_write 0XFD1A0068 0x01003F07 0x01000200
# Register : DDR_CTRL @ 0XFD1A0080</p>
# 6 bit divider
# PSU_CRF_APB_DDR_CTRL_DIVISOR0 0x2
# 000 = DPLL; 001 = VPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new clock. This
# s not usually an issue, but designers must be aware.)
# PSU_CRF_APB_DDR_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A0080, 0x00003F07U ,0x00000200U) */
mask_write 0XFD1A0080 0x00003F07 0x00000200
# Register : GPU_REF_CTRL @ 0XFD1A0084</p>
# 6 bit divider
# PSU_CRF_APB_GPU_REF_CTRL_DIVISOR0 0x1
# 000 = IOPLL_TO_FPD; 010 = VPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of
# he new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_GPU_REF_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock, which will stop clock for GPU (and both Pixel Processors).
# PSU_CRF_APB_GPU_REF_CTRL_CLKACT 0x1
# Clock active signal for Pixel Processor. Switch to 0 to disable the clock only to this Pixel Processor
# PSU_CRF_APB_GPU_REF_CTRL_PP0_CLKACT 0x1
# Clock active signal for Pixel Processor. Switch to 0 to disable the clock only to this Pixel Processor
# PSU_CRF_APB_GPU_REF_CTRL_PP1_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A0084, 0x07003F07U ,0x07000100U) */
mask_write 0XFD1A0084 0x07003F07 0x07000100
# Register : GDMA_REF_CTRL @ 0XFD1A00B8</p>
# 6 bit divider
# PSU_CRF_APB_GDMA_REF_CTRL_DIVISOR0 0x2
# 000 = APLL; 010 = VPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# lock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_GDMA_REF_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_GDMA_REF_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A00B8, 0x01003F07U ,0x01000200U) */
mask_write 0XFD1A00B8 0x01003F07 0x01000200
# Register : DPDMA_REF_CTRL @ 0XFD1A00BC</p>
# 6 bit divider
# PSU_CRF_APB_DPDMA_REF_CTRL_DIVISOR0 0x2
# 000 = APLL; 010 = VPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# lock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_DPDMA_REF_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_DPDMA_REF_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A00BC, 0x01003F07U ,0x01000200U) */
mask_write 0XFD1A00BC 0x01003F07 0x01000200
# Register : TOPSW_MAIN_CTRL @ 0XFD1A00C0</p>
# 6 bit divider
# PSU_CRF_APB_TOPSW_MAIN_CTRL_DIVISOR0 0x2
# 000 = APLL; 010 = VPLL; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of the new
# lock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_TOPSW_MAIN_CTRL_SRCSEL 0x2
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_TOPSW_MAIN_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A00C0, 0x01003F07U ,0x01000202U) */
mask_write 0XFD1A00C0 0x01003F07 0x01000202
# Register : TOPSW_LSBUS_CTRL @ 0XFD1A00C4</p>
# 6 bit divider
# PSU_CRF_APB_TOPSW_LSBUS_CTRL_DIVISOR0 0x5
# 000 = APLL; 010 = IOPLL_TO_FPD; 011 = DPLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of
# he new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_TOPSW_LSBUS_CTRL_SRCSEL 0x2
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_TOPSW_LSBUS_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A00C4, 0x01003F07U ,0x01000502U) */
mask_write 0XFD1A00C4 0x01003F07 0x01000502
# Register : DBG_TSTMP_CTRL @ 0XFD1A00F8</p>
# 6 bit divider
# PSU_CRF_APB_DBG_TSTMP_CTRL_DIVISOR0 0x2
# 000 = IOPLL_TO_FPD; 010 = DPLL; 011 = APLL; (This signal may only be toggled after 4 cycles of the old clock and 4 cycles of
# he new clock. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_DBG_TSTMP_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A00F8, 0x00003F07U ,0x00000200U) */
mask_write 0XFD1A00F8 0x00003F07 0x00000200
# Register : IOU_TTC_APB_CLK @ 0XFF180380</p>
# 00" = Select the APB switch clock for the APB interface of TTC0'01" = Select the PLL ref clock for the APB interface of TTC0'
# 0" = Select the R5 clock for the APB interface of TTC0
# PSU_IOU_SLCR_IOU_TTC_APB_CLK_TTC0_SEL 0
# 00" = Select the APB switch clock for the APB interface of TTC1'01" = Select the PLL ref clock for the APB interface of TTC1'
# 0" = Select the R5 clock for the APB interface of TTC1
# PSU_IOU_SLCR_IOU_TTC_APB_CLK_TTC1_SEL 0
# 00" = Select the APB switch clock for the APB interface of TTC2'01" = Select the PLL ref clock for the APB interface of TTC2'
# 0" = Select the R5 clock for the APB interface of TTC2
# PSU_IOU_SLCR_IOU_TTC_APB_CLK_TTC2_SEL 0
# 00" = Select the APB switch clock for the APB interface of TTC3'01" = Select the PLL ref clock for the APB interface of TTC3'
# 0" = Select the R5 clock for the APB interface of TTC3
# PSU_IOU_SLCR_IOU_TTC_APB_CLK_TTC3_SEL 0
# TTC APB clock select
#(OFFSET, MASK, VALUE) (0XFF180380, 0x000000FFU ,0x00000000U) */
mask_write 0XFF180380 0x000000FF 0x00000000
# Register : WDT_CLK_SEL @ 0XFD610100</p>
# System watchdog timer clock source selection: 0: Internal APB clock 1: External (PL clock via EMIO or Pinout clock via MIO)
# PSU_FPD_SLCR_WDT_CLK_SEL_SELECT 0
# SWDT clock source select
#(OFFSET, MASK, VALUE) (0XFD610100, 0x00000001U ,0x00000000U) */
mask_write 0XFD610100 0x00000001 0x00000000
# Register : WDT_CLK_SEL @ 0XFF180300</p>
# System watchdog timer clock source selection: 0: internal clock APB clock 1: external clock from PL via EMIO, or from pinout
# ia MIO
# PSU_IOU_SLCR_WDT_CLK_SEL_SELECT 0
# SWDT clock source select
#(OFFSET, MASK, VALUE) (0XFF180300, 0x00000001U ,0x00000000U) */
mask_write 0XFF180300 0x00000001 0x00000000
# Register : CSUPMU_WDT_CLK_SEL @ 0XFF410050</p>
# System watchdog timer clock source selection: 0: internal clock APB clock 1: external clock pss_ref_clk
# PSU_LPD_SLCR_CSUPMU_WDT_CLK_SEL_SELECT 0
# SWDT clock source select
#(OFFSET, MASK, VALUE) (0XFF410050, 0x00000001U ,0x00000000U) */
mask_write 0XFF410050 0x00000001 0x00000000
}
set psu_ddr_init_data {
# : DDR INITIALIZATION
# : DDR CONTROLLER RESET
# Register : RST_DDR_SS @ 0XFD1A0108</p>
# DDR block level reset inside of the DDR Sub System
# PSU_CRF_APB_RST_DDR_SS_DDR_RESET 0X1
# DDR sub system block level reset
#(OFFSET, MASK, VALUE) (0XFD1A0108, 0x00000008U ,0x00000008U) */
mask_write 0XFD1A0108 0x00000008 0x00000008
# Register : MSTR @ 0XFD070000</p>
# Indicates the configuration of the device used in the system. - 00 - x4 device - 01 - x8 device - 10 - x16 device - 11 - x32
# evice
# PSU_DDRC_MSTR_DEVICE_CONFIG 0x1
# Choose which registers are used. - 0 - Original registers - 1 - Shadow registers
# PSU_DDRC_MSTR_FREQUENCY_MODE 0x0
# Only present for multi-rank configurations. Each bit represents one rank. For two-rank configurations, only bits[25:24] are p
# esent. - 1 - populated - 0 - unpopulated LSB is the lowest rank number. For 2 ranks following combinations are legal: - 01 -
# ne rank - 11 - Two ranks - Others - Reserved. For 4 ranks following combinations are legal: - 0001 - One rank - 0011 - Two ra
# ks - 1111 - Four ranks
# PSU_DDRC_MSTR_ACTIVE_RANKS 0x1
# SDRAM burst length used: - 0001 - Burst length of 2 (only supported for mDDR) - 0010 - Burst length of 4 - 0100 - Burst lengt
# of 8 - 1000 - Burst length of 16 (only supported for mDDR, LPDDR2, and LPDDR4) All other values are reserved. This controls
# he burst size used to access the SDRAM. This must match the burst length mode register setting in the SDRAM. (For BC4/8 on-th
# -fly mode of DDR3 and DDR4, set this field to 0x0100) Burst length of 2 is not supported with AXI ports when MEMC_BURST_LENGT
# is 8. Burst length of 2 is only supported with MEMC_FREQ_RATIO = 1
# PSU_DDRC_MSTR_BURST_RDWR 0x4
# Set to 1 when the uMCTL2 and DRAM has to be put in DLL-off mode for low frequency operation. Set to 0 to put uMCTL2 and DRAM
# n DLL-on mode for normal frequency operation. If DDR4 CRC/parity retry is enabled (CRCPARCTL1.crc_parity_retry_enable = 1), d
# l_off_mode is not supported, and this bit must be set to '0'.
# PSU_DDRC_MSTR_DLL_OFF_MODE 0x0
# Selects proportion of DQ bus width that is used by the SDRAM - 00 - Full DQ bus width to SDRAM - 01 - Half DQ bus width to SD
# AM - 10 - Quarter DQ bus width to SDRAM - 11 - Reserved. Note that half bus width mode is only supported when the SDRAM bus w
# dth is a multiple of 16, and quarter bus width mode is only supported when the SDRAM bus width is a multiple of 32 and the co
# figuration parameter MEMC_QBUS_SUPPORT is set. Bus width refers to DQ bus width (excluding any ECC width).
# PSU_DDRC_MSTR_DATA_BUS_WIDTH 0x0
# 1 indicates put the DRAM in geardown mode (2N) and 0 indicates put the DRAM in normal mode (1N). This register can be changed
# only when the Controller is in self-refresh mode. This signal must be set the same value as MR3 bit A3. Note: Geardown mode
# s not supported if the configuration parameter MEMC_CMD_RTN2IDLE is set
# PSU_DDRC_MSTR_GEARDOWN_MODE 0x0
# If 1, then uMCTL2 uses 2T timing. Otherwise, uses 1T timing. In 2T timing, all command signals (except chip select) are held
# or 2 clocks on the SDRAM bus. Chip select is asserted on the second cycle of the command Note: 2T timing is not supported in
# PDDR2/LPDDR3/LPDDR4 mode Note: 2T timing is not supported if the configuration parameter MEMC_CMD_RTN2IDLE is set Note: 2T ti
# ing is not supported in DDR4 geardown mode.
# PSU_DDRC_MSTR_EN_2T_TIMING_MODE 0x0
# When set, enable burst-chop in DDR3/DDR4. Burst Chop for Reads is exercised only in HIF configurations (UMCTL2_INCL_ARB not s
# t) and if in full bus width mode (MSTR.data_bus_width = 00). Burst Chop for Writes is exercised only if Partial Writes enable
# (UMCTL2_PARTIAL_WR=1) and if CRC is disabled (CRCPARCTL1.crc_enable = 0). If DDR4 CRC/parity retry is enabled (CRCPARCTL1.cr
# _parity_retry_enable = 1), burst chop is not supported, and this bit must be set to '0'
# PSU_DDRC_MSTR_BURSTCHOP 0x0
# Select LPDDR4 SDRAM - 1 - LPDDR4 SDRAM device in use. - 0 - non-LPDDR4 device in use Present only in designs configured to su
# port LPDDR4.
# PSU_DDRC_MSTR_LPDDR4 0x0
# Select DDR4 SDRAM - 1 - DDR4 SDRAM device in use. - 0 - non-DDR4 device in use Present only in designs configured to support
# DR4.
# PSU_DDRC_MSTR_DDR4 0x1
# Select LPDDR3 SDRAM - 1 - LPDDR3 SDRAM device in use. - 0 - non-LPDDR3 device in use Present only in designs configured to su
# port LPDDR3.
# PSU_DDRC_MSTR_LPDDR3 0x0
# Select LPDDR2 SDRAM - 1 - LPDDR2 SDRAM device in use. - 0 - non-LPDDR2 device in use Present only in designs configured to su
# port LPDDR2.
# PSU_DDRC_MSTR_LPDDR2 0x0
# Select DDR3 SDRAM - 1 - DDR3 SDRAM device in use - 0 - non-DDR3 SDRAM device in use Only present in designs that support DDR3
#
# PSU_DDRC_MSTR_DDR3 0x0
# Master Register
#(OFFSET, MASK, VALUE) (0XFD070000, 0xE30FBE3DU ,0x41040010U) */
mask_write 0XFD070000 0xE30FBE3D 0x41040010
# Register : MRCTRL0 @ 0XFD070010</p>
# Setting this register bit to 1 triggers a mode register read or write operation. When the MR operation is complete, the uMCTL
# automatically clears this bit. The other register fields of this register must be written in a separate APB transaction, bef
# re setting this mr_wr bit. It is recommended NOT to set this signal if in Init, Deep power-down or MPSM operating modes.
# PSU_DDRC_MRCTRL0_MR_WR 0x0
# Address of the mode register that is to be written to. - 0000 - MR0 - 0001 - MR1 - 0010 - MR2 - 0011 - MR3 - 0100 - MR4 - 010
# - MR5 - 0110 - MR6 - 0111 - MR7 Don't Care for LPDDR2/LPDDR3/LPDDR4 (see MRCTRL1.mr_data for mode register addressing in LPD
# R2/LPDDR3/LPDDR4) This signal is also used for writing to control words of RDIMMs. In that case, it corresponds to the bank a
# dress bits sent to the RDIMM In case of DDR4, the bit[3:2] corresponds to the bank group bits. Therefore, the bit[3] as well
# s the bit[2:0] must be set to an appropriate value which is considered both the Address Mirroring of UDIMMs/RDIMMs and the Ou
# put Inversion of RDIMMs.
# PSU_DDRC_MRCTRL0_MR_ADDR 0x0
# Controls which rank is accessed by MRCTRL0.mr_wr. Normally, it is desired to access all ranks, so all bits should be set to 1
# However, for multi-rank UDIMMs/RDIMMs which implement address mirroring, it may be necessary to access ranks individually. E
# amples (assume uMCTL2 is configured for 4 ranks): - 0x1 - select rank 0 only - 0x2 - select rank 1 only - 0x5 - select ranks
# and 2 - 0xA - select ranks 1 and 3 - 0xF - select ranks 0, 1, 2 and 3
# PSU_DDRC_MRCTRL0_MR_RANK 0x3
# Indicates whether Software intervention is allowed via MRCTRL0/MRCTRL1 before automatic SDRAM initialization routine or not.
# or DDR4, this bit can be used to initialize the DDR4 RCD (MR7) before automatic SDRAM initialization. For LPDDR4, this bit ca
# be used to program additional mode registers before automatic SDRAM initialization if necessary. Note: This must be cleared
# o 0 after completing Software operation. Otherwise, SDRAM initialization routine will not re-start. - 0 - Software interventi
# n is not allowed - 1 - Software intervention is allowed
# PSU_DDRC_MRCTRL0_SW_INIT_INT 0x0
# Indicates whether the mode register operation is MRS in PDA mode or not - 0 - MRS - 1 - MRS in Per DRAM Addressability mode
# PSU_DDRC_MRCTRL0_PDA_EN 0x0
# Indicates whether the mode register operation is MRS or WR/RD for MPR (only supported for DDR4) - 0 - MRS - 1 - WR/RD for MPR
# PSU_DDRC_MRCTRL0_MPR_EN 0x0
# Indicates whether the mode register operation is read or write. Only used for LPDDR2/LPDDR3/LPDDR4/DDR4. - 0 - Write - 1 - Re
# d
# PSU_DDRC_MRCTRL0_MR_TYPE 0x0
# Mode Register Read/Write Control Register 0. Note: Do not enable more than one of the following fields simultaneously: - sw_i
# it_int - pda_en - mpr_en
#(OFFSET, MASK, VALUE) (0XFD070010, 0x8000F03FU ,0x00000030U) */
mask_write 0XFD070010 0x8000F03F 0x00000030
# Register : DERATEEN @ 0XFD070020</p>
# Derate value of tRC for LPDDR4 - 0 - Derating uses +1. - 1 - Derating uses +2. - 2 - Derating uses +3. - 3 - Derating uses +4
# Present only in designs configured to support LPDDR4. The required number of cycles for derating can be determined by dividi
# g 3.75ns by the core_ddrc_core_clk period, and rounding up the next integer.
# PSU_DDRC_DERATEEN_RC_DERATE_VALUE 0x3
# Derate byte Present only in designs configured to support LPDDR2/LPDDR3/LPDDR4 Indicates which byte of the MRR data is used f
# r derating. The maximum valid value depends on MEMC_DRAM_TOTAL_DATA_WIDTH.
# PSU_DDRC_DERATEEN_DERATE_BYTE 0x0
# Derate value - 0 - Derating uses +1. - 1 - Derating uses +2. Present only in designs configured to support LPDDR2/LPDDR3/LPDD
# 4 Set to 0 for all LPDDR2 speed grades as derating value of +1.875 ns is less than a core_ddrc_core_clk period. Can be 0 or 1
# for LPDDR3/LPDDR4, depending if +1.875 ns is less than a core_ddrc_core_clk period or not.
# PSU_DDRC_DERATEEN_DERATE_VALUE 0x0
# Enables derating - 0 - Timing parameter derating is disabled - 1 - Timing parameter derating is enabled using MR4 read value.
# Present only in designs configured to support LPDDR2/LPDDR3/LPDDR4 This field must be set to '0' for non-LPDDR2/LPDDR3/LPDDR4
# mode.
# PSU_DDRC_DERATEEN_DERATE_ENABLE 0x0
# Temperature Derate Enable Register
#(OFFSET, MASK, VALUE) (0XFD070020, 0x000003F3U ,0x00000300U) */
mask_write 0XFD070020 0x000003F3 0x00000300
# Register : DERATEINT @ 0XFD070024</p>
# Interval between two MR4 reads, used to derate the timing parameters. Present only in designs configured to support LPDDR2/LP
# DR3/LPDDR4. This register must not be set to zero
# PSU_DDRC_DERATEINT_MR4_READ_INTERVAL 0x800000
# Temperature Derate Interval Register
#(OFFSET, MASK, VALUE) (0XFD070024, 0xFFFFFFFFU ,0x00800000U) */
mask_write 0XFD070024 0xFFFFFFFF 0x00800000
# Register : PWRCTL @ 0XFD070030</p>
# Self refresh state is an intermediate state to enter to Self refresh power down state or exit Self refresh power down state f
# r LPDDR4. This register controls transition from the Self refresh state. - 1 - Prohibit transition from Self refresh state -
# - Allow transition from Self refresh state
# PSU_DDRC_PWRCTL_STAY_IN_SELFREF 0x0
# A value of 1 to this register causes system to move to Self Refresh state immediately, as long as it is not in INIT or DPD/MP
# M operating_mode. This is referred to as Software Entry/Exit to Self Refresh. - 1 - Software Entry to Self Refresh - 0 - Soft
# are Exit from Self Refresh
# PSU_DDRC_PWRCTL_SELFREF_SW 0x0
# When this is 1, the uMCTL2 puts the SDRAM into maximum power saving mode when the transaction store is empty. This register m
# st be reset to '0' to bring uMCTL2 out of maximum power saving mode. Present only in designs configured to support DDR4. For
# on-DDR4, this register should not be set to 1. Note that MPSM is not supported when using a DWC DDR PHY, if the PHY parameter
# DWC_AC_CS_USE is disabled, as the MPSM exit sequence requires the chip-select signal to toggle. FOR PERFORMANCE ONLY.
# PSU_DDRC_PWRCTL_MPSM_EN 0x0
# Enable the assertion of dfi_dram_clk_disable whenever a clock is not required by the SDRAM. If set to 0, dfi_dram_clk_disable
# is never asserted. Assertion of dfi_dram_clk_disable is as follows: In DDR2/DDR3, can only be asserted in Self Refresh. In DD
# 4, can be asserted in following: - in Self Refresh. - in Maximum Power Saving Mode In mDDR/LPDDR2/LPDDR3, can be asserted in
# ollowing: - in Self Refresh - in Power Down - in Deep Power Down - during Normal operation (Clock Stop) In LPDDR4, can be ass
# rted in following: - in Self Refresh Power Down - in Power Down - during Normal operation (Clock Stop)
# PSU_DDRC_PWRCTL_EN_DFI_DRAM_CLK_DISABLE 0x0
# When this is 1, uMCTL2 puts the SDRAM into deep power-down mode when the transaction store is empty. This register must be re
# et to '0' to bring uMCTL2 out of deep power-down mode. Controller performs automatic SDRAM initialization on deep power-down
# xit. Present only in designs configured to support mDDR or LPDDR2 or LPDDR3. For non-mDDR/non-LPDDR2/non-LPDDR3, this registe
# should not be set to 1. FOR PERFORMANCE ONLY.
# PSU_DDRC_PWRCTL_DEEPPOWERDOWN_EN 0x0
# If true then the uMCTL2 goes into power-down after a programmable number of cycles 'maximum idle clocks before power down' (P
# RTMG.powerdown_to_x32). This register bit may be re-programmed during the course of normal operation.
# PSU_DDRC_PWRCTL_POWERDOWN_EN 0x0
# If true then the uMCTL2 puts the SDRAM into Self Refresh after a programmable number of cycles 'maximum idle clocks before Se
# f Refresh (PWRTMG.selfref_to_x32)'. This register bit may be re-programmed during the course of normal operation.
# PSU_DDRC_PWRCTL_SELFREF_EN 0x0
# Low Power Control Register
#(OFFSET, MASK, VALUE) (0XFD070030, 0x0000007FU ,0x00000000U) */
mask_write 0XFD070030 0x0000007F 0x00000000
# Register : PWRTMG @ 0XFD070034</p>
# After this many clocks of NOP or deselect the uMCTL2 automatically puts the SDRAM into Self Refresh. This must be enabled in
# he PWRCTL.selfref_en. Unit: Multiples of 32 clocks. FOR PERFORMANCE ONLY.
# PSU_DDRC_PWRTMG_SELFREF_TO_X32 0x40
# Minimum deep power-down time. For mDDR, value from the JEDEC specification is 0 as mDDR exits from deep power-down mode immed
# ately after PWRCTL.deeppowerdown_en is de-asserted. For LPDDR2/LPDDR3, value from the JEDEC specification is 500us. Unit: Mul
# iples of 4096 clocks. Present only in designs configured to support mDDR, LPDDR2 or LPDDR3. FOR PERFORMANCE ONLY.
# PSU_DDRC_PWRTMG_T_DPD_X4096 0x84
# After this many clocks of NOP or deselect the uMCTL2 automatically puts the SDRAM into power-down. This must be enabled in th
# PWRCTL.powerdown_en. Unit: Multiples of 32 clocks FOR PERFORMANCE ONLY.
# PSU_DDRC_PWRTMG_POWERDOWN_TO_X32 0x10
# Low Power Timing Register
#(OFFSET, MASK, VALUE) (0XFD070034, 0x00FFFF1FU ,0x00408410U) */
mask_write 0XFD070034 0x00FFFF1F 0x00408410
# Register : RFSHCTL0 @ 0XFD070050</p>
# Threshold value in number of clock cycles before the critical refresh or page timer expires. A critical refresh is to be issu
# d before this threshold is reached. It is recommended that this not be changed from the default value, currently shown as 0x2
# It must always be less than internally used t_rfc_nom_x32. Note that, in LPDDR2/LPDDR3/LPDDR4, internally used t_rfc_nom_x32
# may be equal to RFSHTMG.t_rfc_nom_x32>>2 if derating is enabled (DERATEEN.derate_enable=1). Otherwise, internally used t_rfc_
# om_x32 will be equal to RFSHTMG.t_rfc_nom_x32. Unit: Multiples of 32 clocks.
# PSU_DDRC_RFSHCTL0_REFRESH_MARGIN 0x2
# If the refresh timer (tRFCnom, also known as tREFI) has expired at least once, but it has not expired (RFSHCTL0.refresh_burst
# 1) times yet, then a speculative refresh may be performed. A speculative refresh is a refresh performed at a time when refres
# would be useful, but before it is absolutely required. When the SDRAM bus is idle for a period of time determined by this RF
# HCTL0.refresh_to_x32 and the refresh timer has expired at least once since the last refresh, then a speculative refresh is pe
# formed. Speculative refreshes continues successively until there are no refreshes pending or until new reads or writes are is
# ued to the uMCTL2. FOR PERFORMANCE ONLY.
# PSU_DDRC_RFSHCTL0_REFRESH_TO_X32 0x10
# The programmed value + 1 is the number of refresh timeouts that is allowed to accumulate before traffic is blocked and the re
# reshes are forced to execute. Closing pages to perform a refresh is a one-time penalty that must be paid for each group of re
# reshes. Therefore, performing refreshes in a burst reduces the per-refresh penalty of these page closings. Higher numbers for
# RFSHCTL.refresh_burst slightly increases utilization; lower numbers decreases the worst-case latency associated with refreshe
# . - 0 - single refresh - 1 - burst-of-2 refresh - 7 - burst-of-8 refresh For information on burst refresh feature refer to se
# tion 3.9 of DDR2 JEDEC specification - JESD79-2F.pdf. For DDR2/3, the refresh is always per-rank and not per-bank. The rank r
# fresh can be accumulated over 8*tREFI cycles using the burst refresh feature. In DDR4 mode, according to Fine Granularity fea
# ure, 8 refreshes can be postponed in 1X mode, 16 refreshes in 2X mode and 32 refreshes in 4X mode. If using PHY-initiated upd
# tes, care must be taken in the setting of RFSHCTL0.refresh_burst, to ensure that tRFCmax is not violated due to a PHY-initiat
# d update occurring shortly before a refresh burst was due. In this situation, the refresh burst will be delayed until the PHY
# initiated update is complete.
# PSU_DDRC_RFSHCTL0_REFRESH_BURST 0x0
# - 1 - Per bank refresh; - 0 - All bank refresh. Per bank refresh allows traffic to flow to other banks. Per bank refresh is n
# t supported by all LPDDR2 devices but should be supported by all LPDDR3/LPDDR4 devices. Present only in designs configured to
# support LPDDR2/LPDDR3/LPDDR4
# PSU_DDRC_RFSHCTL0_PER_BANK_REFRESH 0x0
# Refresh Control Register 0
#(OFFSET, MASK, VALUE) (0XFD070050, 0x00F1F1F4U ,0x00210000U) */
mask_write 0XFD070050 0x00F1F1F4 0x00210000
# Register : RFSHCTL3 @ 0XFD070060</p>
# Fine Granularity Refresh Mode - 000 - Fixed 1x (Normal mode) - 001 - Fixed 2x - 010 - Fixed 4x - 101 - Enable on the fly 2x (
# ot supported) - 110 - Enable on the fly 4x (not supported) - Everything else - reserved Note: The on-the-fly modes is not sup
# orted in this version of the uMCTL2. Note: This must be set up while the Controller is in reset or while the Controller is in
# self-refresh mode. Changing this during normal operation is not allowed. Making this a dynamic register will be supported in
# uture version of the uMCTL2.
# PSU_DDRC_RFSHCTL3_REFRESH_MODE 0x0
# Toggle this signal (either from 0 to 1 or from 1 to 0) to indicate that the refresh register(s) have been updated. The value
# s automatically updated when exiting reset, so it does not need to be toggled initially.
# PSU_DDRC_RFSHCTL3_REFRESH_UPDATE_LEVEL 0x0
# When '1', disable auto-refresh generated by the uMCTL2. When auto-refresh is disabled, the SoC core must generate refreshes u
# ing the registers reg_ddrc_rank0_refresh, reg_ddrc_rank1_refresh, reg_ddrc_rank2_refresh and reg_ddrc_rank3_refresh. When dis
# auto_refresh transitions from 0 to 1, any pending refreshes are immediately scheduled by the uMCTL2. If DDR4 CRC/parity retry
# is enabled (CRCPARCTL1.crc_parity_retry_enable = 1), disable auto-refresh is not supported, and this bit must be set to '0'.
# his register field is changeable on the fly.
# PSU_DDRC_RFSHCTL3_DIS_AUTO_REFRESH 0x1
# Refresh Control Register 3
#(OFFSET, MASK, VALUE) (0XFD070060, 0x00000073U ,0x00000001U) */
mask_write 0XFD070060 0x00000073 0x00000001
# Register : RFSHTMG @ 0XFD070064</p>
# tREFI: Average time interval between refreshes per rank (Specification: 7.8us for DDR2, DDR3 and DDR4. See JEDEC specificatio
# for mDDR, LPDDR2, LPDDR3 and LPDDR4). For LPDDR2/LPDDR3/LPDDR4: - if using all-bank refreshes (RFSHCTL0.per_bank_refresh = 0
# , this register should be set to tREFIab - if using per-bank refreshes (RFSHCTL0.per_bank_refresh = 1), this register should
# e set to tREFIpb For configurations with MEMC_FREQ_RATIO=2, program this to (tREFI/2), no rounding up. In DDR4 mode, tREFI va
# ue is different depending on the refresh mode. The user should program the appropriate value from the spec based on the value
# programmed in the refresh mode register. Note that RFSHTMG.t_rfc_nom_x32 * 32 must be greater than RFSHTMG.t_rfc_min, and RFS
# TMG.t_rfc_nom_x32 must be greater than 0x1. Unit: Multiples of 32 clocks.
# PSU_DDRC_RFSHTMG_T_RFC_NOM_X32 0x82
# Used only when LPDDR3 memory type is connected. Should only be changed when uMCTL2 is in reset. Specifies whether to use the
# REFBW parameter (required by some LPDDR3 devices which comply with earlier versions of the LPDDR3 JEDEC specification) or not
# - 0 - tREFBW parameter not used - 1 - tREFBW parameter used
# PSU_DDRC_RFSHTMG_LPDDR3_TREFBW_EN 0x1
# tRFC (min): Minimum time from refresh to refresh or activate. For MEMC_FREQ_RATIO=1 configurations, t_rfc_min should be set t
# RoundUp(tRFCmin/tCK). For MEMC_FREQ_RATIO=2 configurations, t_rfc_min should be set to RoundUp(RoundUp(tRFCmin/tCK)/2). In L
# DDR2/LPDDR3/LPDDR4 mode: - if using all-bank refreshes, the tRFCmin value in the above equations is equal to tRFCab - if usin
# per-bank refreshes, the tRFCmin value in the above equations is equal to tRFCpb In DDR4 mode, the tRFCmin value in the above
# equations is different depending on the refresh mode (fixed 1X,2X,4X) and the device density. The user should program the app
# opriate value from the spec based on the 'refresh_mode' and the device density that is used. Unit: Clocks.
# PSU_DDRC_RFSHTMG_T_RFC_MIN 0x8b
# Refresh Timing Register
#(OFFSET, MASK, VALUE) (0XFD070064, 0x0FFF83FFU ,0x0082808BU) */
mask_write 0XFD070064 0x0FFF83FF 0x0082808B
# Register : ECCCFG0 @ 0XFD070070</p>
# Disable ECC scrubs. Valid only when ECCCFG0.ecc_mode = 3'b100 and MEMC_USE_RMW is defined
# PSU_DDRC_ECCCFG0_DIS_SCRUB 0x1
# ECC mode indicator - 000 - ECC disabled - 100 - ECC enabled - SEC/DED over 1 beat - all other settings are reserved for futur
# use
# PSU_DDRC_ECCCFG0_ECC_MODE 0x0
# ECC Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD070070, 0x00000017U ,0x00000010U) */
mask_write 0XFD070070 0x00000017 0x00000010
# Register : ECCCFG1 @ 0XFD070074</p>
# Selects whether to poison 1 or 2 bits - if 0 -> 2-bit (uncorrectable) data poisoning, if 1 -> 1-bit (correctable) data poison
# ng, if ECCCFG1.data_poison_en=1
# PSU_DDRC_ECCCFG1_DATA_POISON_BIT 0x0
# Enable ECC data poisoning - introduces ECC errors on writes to address specified by the ECCPOISONADDR0/1 registers
# PSU_DDRC_ECCCFG1_DATA_POISON_EN 0x0
# ECC Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD070074, 0x00000003U ,0x00000000U) */
mask_write 0XFD070074 0x00000003 0x00000000
# Register : CRCPARCTL1 @ 0XFD0700C4</p>
# The maximum number of DFI PHY clock cycles allowed from the assertion of the dfi_rddata_en signal to the assertion of each of
# the corresponding bits of the dfi_rddata_valid signal. This corresponds to the DFI timing parameter tphy_rdlat. Refer to PHY
# pecification for correct value. This value it only used for detecting read data timeout when DDR4 retry is enabled by CRCPARC
# L1.crc_parity_retry_enable=1. Maximum supported value: - 1:1 Frequency mode : DFITMG0.dfi_t_rddata_en + CRCPARCTL1.dfi_t_phy_
# dlat < 'd114 - 1:2 Frequency mode ANDAND DFITMG0.dfi_rddata_use_sdr == 1 : CRCPARCTL1.dfi_t_phy_rdlat < 64 - 1:2 Frequency mo
# e ANDAND DFITMG0.dfi_rddata_use_sdr == 0 : DFITMG0.dfi_t_rddata_en + CRCPARCTL1.dfi_t_phy_rdlat < 'd114 Unit: DFI Clocks
# PSU_DDRC_CRCPARCTL1_DFI_T_PHY_RDLAT 0x10
# After a Parity or CRC error is flagged on dfi_alert_n signal, the software has an option to read the mode registers in the DR
# M before the hardware begins the retry process - 1: Wait for software to read/write the mode registers before hardware begins
# the retry. After software is done with its operations, it will clear the alert interrupt register bit - 0: Hardware can begin
# the retry right away after the dfi_alert_n pulse goes away. The value on this register is valid only when retry is enabled (P
# RCTRL.crc_parity_retry_enable = 1) If this register is set to 1 and if the software doesn't clear the interrupt register afte
# handling the parity/CRC error, then the hardware will not begin the retry process and the system will hang. In the case of P
# rity/CRC error, there are two possibilities when the software doesn't reset MR5[4] to 0. - (i) If 'Persistent parity' mode re
# ister bit is NOT set: the commands sent during retry and normal operation are executed without parity checking. The value in
# he Parity error log register MPR Page 1 is valid. - (ii) If 'Persistent parity' mode register bit is SET: Parity checking is
# one for commands sent during retry and normal operation. If multiple errors occur before MR5[4] is cleared, the error log in
# PR Page 1 should be treated as 'Don't care'.
# PSU_DDRC_CRCPARCTL1_ALERT_WAIT_FOR_SW 0x1
# - 1: Enable command retry mechanism in case of C/A Parity or CRC error - 0: Disable command retry mechanism when C/A Parity o
# CRC features are enabled. Note that retry functionality is not supported if burst chop is enabled (MSTR.burstchop = 1) and/o
# disable auto-refresh is enabled (RFSHCTL3.dis_auto_refresh = 1)
# PSU_DDRC_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE 0x0
# CRC Calculation setting register - 1: CRC includes DM signal - 0: CRC not includes DM signal Present only in designs configur
# d to support DDR4.
# PSU_DDRC_CRCPARCTL1_CRC_INC_DM 0x0
# CRC enable Register - 1: Enable generation of CRC - 0: Disable generation of CRC The setting of this register should match th
# CRC mode register setting in the DRAM.
# PSU_DDRC_CRCPARCTL1_CRC_ENABLE 0x0
# C/A Parity enable register - 1: Enable generation of C/A parity and detection of C/A parity error - 0: Disable generation of
# /A parity and disable detection of C/A parity error If RCD's parity error detection or SDRAM's parity detection is enabled, t
# is register should be 1.
# PSU_DDRC_CRCPARCTL1_PARITY_ENABLE 0x0
# CRC Parity Control Register1
#(OFFSET, MASK, VALUE) (0XFD0700C4, 0x3F000391U ,0x10000200U) */
mask_write 0XFD0700C4 0x3F000391 0x10000200
# Register : CRCPARCTL2 @ 0XFD0700C8</p>
# Value from the DRAM spec indicating the maximum width of the dfi_alert_n pulse when a parity error occurs. Recommended values
# - tPAR_ALERT_PW.MAX For configurations with MEMC_FREQ_RATIO=2, program this to tPAR_ALERT_PW.MAX/2 and round up to next inte
# er value. Values of 0, 1 and 2 are illegal. This value must be greater than CRCPARCTL2.t_crc_alert_pw_max.
# PSU_DDRC_CRCPARCTL2_T_PAR_ALERT_PW_MAX 0x40
# Value from the DRAM spec indicating the maximum width of the dfi_alert_n pulse when a CRC error occurs. Recommended values: -
# tCRC_ALERT_PW.MAX For configurations with MEMC_FREQ_RATIO=2, program this to tCRC_ALERT_PW.MAX/2 and round up to next integer
# value. Values of 0, 1 and 2 are illegal. This value must be less than CRCPARCTL2.t_par_alert_pw_max.
# PSU_DDRC_CRCPARCTL2_T_CRC_ALERT_PW_MAX 0x5
# Indicates the maximum duration in number of DRAM clock cycles for which a command should be held in the Command Retry FIFO be
# ore it is popped out. Every location in the Command Retry FIFO has an associated down counting timer that will use this regis
# er as the start value. The down counting starts when a command is loaded into the FIFO. The timer counts down every 4 DRAM cy
# les. When the counter reaches zero, the entry is popped from the FIFO. All the counters are frozen, if a C/A Parity or CRC er
# or occurs before the counter reaches zero. The counter is reset to 0, after all the commands in the FIFO are retried. Recomme
# ded(minimum) values: - Only C/A Parity is enabled. RoundUp((PHY Command Latency(DRAM CLK) + CAL + RDIMM delay + tPAR_ALERT_ON
# max + tPAR_UNKNOWN + PHY Alert Latency(DRAM CLK) + board delay) / 4) + 2 - Both C/A Parity and CRC is enabled/ Only CRC is en
# bled. RoundUp((PHY Command Latency(DRAM CLK) + CAL + RDIMM delay + WL + 5(BL10)+ tCRC_ALERT.max + PHY Alert Latency(DRAM CLK)
# + board delay) / 4) + 2 Note 1: All value (e.g. tPAR_ALERT_ON) should be in terms of DRAM Clock and round up Note 2: Board de
# ay(Command/Alert_n) should be considered. Note 3: Use the worst case(longer) value for PHY Latencies/Board delay Note 4: The
# ecommended values are minimum value to be set. For mode detail, See 'Calculation of FIFO Depth' section. Max value can be set
# to this register is defined below: - MEMC_BURST_LENGTH == 16 Full bus Mode (CRC=OFF) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-
# Full bus Mode (CRC=ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-3 Half bus Mode (CRC=OFF) Max value = UMCTL2_RETRY_CMD_FIFO_D
# PTH-4 Half bus Mode (CRC=ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-6 Quarter bus Mode (CRC=OFF) Max value = UMCTL2_RETRY_CM
# _FIFO_DEPTH-8 Quarter bus Mode (CRC=ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-12 - MEMC_BURST_LENGTH != 16 Full bus Mode (C
# C=OFF) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-1 Full bus Mode (CRC=ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-2 Half bus Mo
# e (CRC=OFF) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-2 Half bus Mode (CRC=ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-3 Quarte
# bus Mode (CRC=OFF) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-4 Quarter bus Mode (CRC=ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEP
# H-6 Values of 0, 1 and 2 are illegal.
# PSU_DDRC_CRCPARCTL2_RETRY_FIFO_MAX_HOLD_TIMER_X4 0x1f
# CRC Parity Control Register2
#(OFFSET, MASK, VALUE) (0XFD0700C8, 0x01FF1F3FU ,0x0040051FU) */
mask_write 0XFD0700C8 0x01FF1F3F 0x0040051F
# Register : INIT0 @ 0XFD0700D0</p>
# If lower bit is enabled the SDRAM initialization routine is skipped. The upper bit decides what state the controller starts u
# in when reset is removed - 00 - SDRAM Intialization routine is run after power-up - 01 - SDRAM Intialization routine is skip
# ed after power-up. Controller starts up in Normal Mode - 11 - SDRAM Intialization routine is skipped after power-up. Controll
# r starts up in Self-refresh Mode - 10 - SDRAM Intialization routine is run after power-up. Note: The only 2'b00 is supported
# or LPDDR4 in this version of the uMCTL2.
# PSU_DDRC_INIT0_SKIP_DRAM_INIT 0x0
# Cycles to wait after driving CKE high to start the SDRAM initialization sequence. Unit: 1024 clocks. DDR2 typically requires
# 400 ns delay, requiring this value to be programmed to 2 at all clock speeds. LPDDR2/LPDDR3 typically requires this to be pr
# grammed for a delay of 200 us. LPDDR4 typically requires this to be programmed for a delay of 2 us. For configurations with M
# MC_FREQ_RATIO=2, program this to JEDEC spec value divided by 2, and round it up to next integer value.
# PSU_DDRC_INIT0_POST_CKE_X1024 0x2
# Cycles to wait after reset before driving CKE high to start the SDRAM initialization sequence. Unit: 1024 clock cycles. DDR2
# pecifications typically require this to be programmed for a delay of >= 200 us. LPDDR2/LPDDR3: tINIT1 of 100 ns (min) LPDDR4:
# tINIT3 of 2 ms (min) For configurations with MEMC_FREQ_RATIO=2, program this to JEDEC spec value divided by 2, and round it u
# to next integer value.
# PSU_DDRC_INIT0_PRE_CKE_X1024 0x106
# SDRAM Initialization Register 0
#(OFFSET, MASK, VALUE) (0XFD0700D0, 0xC3FF0FFFU ,0x00020106U) */
mask_write 0XFD0700D0 0xC3FF0FFF 0x00020106
# Register : INIT1 @ 0XFD0700D4</p>
# Number of cycles to assert SDRAM reset signal during init sequence. This is only present for designs supporting DDR3, DDR4 or
# LPDDR4 devices. For use with a DDR PHY, this should be set to a minimum of 1
# PSU_DDRC_INIT1_DRAM_RSTN_X1024 0x2
# Cycles to wait after completing the SDRAM initialization sequence before starting the dynamic scheduler. Unit: Counts of a gl
# bal timer that pulses every 32 clock cycles. There is no known specific requirement for this; it may be set to zero.
# PSU_DDRC_INIT1_FINAL_WAIT_X32 0x0
# Wait period before driving the OCD complete command to SDRAM. Unit: Counts of a global timer that pulses every 32 clock cycle
# . There is no known specific requirement for this; it may be set to zero.
# PSU_DDRC_INIT1_PRE_OCD_X32 0x0
# SDRAM Initialization Register 1
#(OFFSET, MASK, VALUE) (0XFD0700D4, 0x01FF7F0FU ,0x00020000U) */
mask_write 0XFD0700D4 0x01FF7F0F 0x00020000
# Register : INIT2 @ 0XFD0700D8</p>
# Idle time after the reset command, tINIT4. Present only in designs configured to support LPDDR2. Unit: 32 clock cycles.
# PSU_DDRC_INIT2_IDLE_AFTER_RESET_X32 0x23
# Time to wait after the first CKE high, tINIT2. Present only in designs configured to support LPDDR2/LPDDR3. Unit: 1 clock cyc
# e. LPDDR2/LPDDR3 typically requires 5 x tCK delay.
# PSU_DDRC_INIT2_MIN_STABLE_CLOCK_X1 0x5
# SDRAM Initialization Register 2
#(OFFSET, MASK, VALUE) (0XFD0700D8, 0x0000FF0FU ,0x00002305U) */
mask_write 0XFD0700D8 0x0000FF0F 0x00002305
# Register : INIT3 @ 0XFD0700DC</p>
# DDR2: Value to write to MR register. Bit 8 is for DLL and the setting here is ignored. The uMCTL2 sets this bit appropriately
# DDR3/DDR4: Value loaded into MR0 register. mDDR: Value to write to MR register. LPDDR2/LPDDR3/LPDDR4 - Value to write to MR1
# register
# PSU_DDRC_INIT3_MR 0x930
# DDR2: Value to write to EMR register. Bits 9:7 are for OCD and the setting in this register is ignored. The uMCTL2 sets those
# bits appropriately. DDR3/DDR4: Value to write to MR1 register Set bit 7 to 0. If PHY-evaluation mode training is enabled, thi
# bit is set appropriately by the uMCTL2 during write leveling. mDDR: Value to write to EMR register. LPDDR2/LPDDR3/LPDDR4 - V
# lue to write to MR2 register
# PSU_DDRC_INIT3_EMR 0x301
# SDRAM Initialization Register 3
#(OFFSET, MASK, VALUE) (0XFD0700DC, 0xFFFFFFFFU ,0x09300301U) */
mask_write 0XFD0700DC 0xFFFFFFFF 0x09300301
# Register : INIT4 @ 0XFD0700E0</p>
# DDR2: Value to write to EMR2 register. DDR3/DDR4: Value to write to MR2 register LPDDR2/LPDDR3/LPDDR4: Value to write to MR3
# egister mDDR: Unused
# PSU_DDRC_INIT4_EMR2 0x20
# DDR2: Value to write to EMR3 register. DDR3/DDR4: Value to write to MR3 register mDDR/LPDDR2/LPDDR3: Unused LPDDR4: Value to
# rite to MR13 register
# PSU_DDRC_INIT4_EMR3 0x200
# SDRAM Initialization Register 4
#(OFFSET, MASK, VALUE) (0XFD0700E0, 0xFFFFFFFFU ,0x00200200U) */
mask_write 0XFD0700E0 0xFFFFFFFF 0x00200200
# Register : INIT5 @ 0XFD0700E4</p>
# ZQ initial calibration, tZQINIT. Present only in designs configured to support DDR3 or DDR4 or LPDDR2/LPDDR3. Unit: 32 clock
# ycles. DDR3 typically requires 512 clocks. DDR4 requires 1024 clocks. LPDDR2/LPDDR3 requires 1 us.
# PSU_DDRC_INIT5_DEV_ZQINIT_X32 0x21
# Maximum duration of the auto initialization, tINIT5. Present only in designs configured to support LPDDR2/LPDDR3. LPDDR2/LPDD
# 3 typically requires 10 us.
# PSU_DDRC_INIT5_MAX_AUTO_INIT_X1024 0x4
# SDRAM Initialization Register 5
#(OFFSET, MASK, VALUE) (0XFD0700E4, 0x00FF03FFU ,0x00210004U) */
mask_write 0XFD0700E4 0x00FF03FF 0x00210004
# Register : INIT6 @ 0XFD0700E8</p>
# DDR4- Value to be loaded into SDRAM MR4 registers. Used in DDR4 designs only.
# PSU_DDRC_INIT6_MR4 0x0
# DDR4- Value to be loaded into SDRAM MR5 registers. Used in DDR4 designs only.
# PSU_DDRC_INIT6_MR5 0x6c0
# SDRAM Initialization Register 6
#(OFFSET, MASK, VALUE) (0XFD0700E8, 0xFFFFFFFFU ,0x000006C0U) */
mask_write 0XFD0700E8 0xFFFFFFFF 0x000006C0
# Register : INIT7 @ 0XFD0700EC</p>
# DDR4- Value to be loaded into SDRAM MR6 registers. Used in DDR4 designs only.
# PSU_DDRC_INIT7_MR6 0x819
# SDRAM Initialization Register 7
#(OFFSET, MASK, VALUE) (0XFD0700EC, 0xFFFF0000U ,0x08190000U) */
mask_write 0XFD0700EC 0xFFFF0000 0x08190000
# Register : DIMMCTL @ 0XFD0700F0</p>
# Disabling Address Mirroring for BG bits. When this is set to 1, BG0 and BG1 are NOT swapped even if Address Mirroring is enab
# ed. This will be required for DDR4 DIMMs with x16 devices. - 1 - BG0 and BG1 are NOT swapped. - 0 - BG0 and BG1 are swapped i
# address mirroring is enabled.
# PSU_DDRC_DIMMCTL_DIMM_DIS_BG_MIRRORING 0x0
# Enable for BG1 bit of MRS command. BG1 bit of the mode register address is specified as RFU (Reserved for Future Use) and mus
# be programmed to 0 during MRS. In case where DRAMs which do not have BG1 are attached and both the CA parity and the Output
# nversion are enabled, this must be set to 0, so that the calculation of CA parity will not include BG1 bit. Note: This has no
# effect on the address of any other memory accesses, or of software-driven mode register accesses. If address mirroring is ena
# led, this is applied to BG1 of even ranks and BG0 of odd ranks. - 1 - Enabled - 0 - Disabled
# PSU_DDRC_DIMMCTL_MRS_BG1_EN 0x1
# Enable for A17 bit of MRS command. A17 bit of the mode register address is specified as RFU (Reserved for Future Use) and mus
# be programmed to 0 during MRS. In case where DRAMs which do not have A17 are attached and the Output Inversion are enabled,
# his must be set to 0, so that the calculation of CA parity will not include A17 bit. Note: This has no effect on the address
# f any other memory accesses, or of software-driven mode register accesses. - 1 - Enabled - 0 - Disabled
# PSU_DDRC_DIMMCTL_MRS_A17_EN 0x0
# Output Inversion Enable (for DDR4 RDIMM implementations only). DDR4 RDIMM implements the Output Inversion feature by default,
# which means that the following address, bank address and bank group bits of B-side DRAMs are inverted: A3-A9, A11, A13, A17,
# A0-BA1, BG0-BG1. Setting this bit ensures that, for mode register accesses generated by the uMCTL2 during the automatic initi
# lization routine and enabling of a particular DDR4 feature, separate A-side and B-side mode register accesses are generated.
# or B-side mode register accesses, these bits are inverted within the uMCTL2 to compensate for this RDIMM inversion. Note: Thi
# has no effect on the address of any other memory accesses, or of software-driven mode register accesses. - 1 - Implement out
# ut inversion for B-side DRAMs. - 0 - Do not implement output inversion for B-side DRAMs.
# PSU_DDRC_DIMMCTL_DIMM_OUTPUT_INV_EN 0x0
# Address Mirroring Enable (for multi-rank UDIMM implementations and multi-rank DDR4 RDIMM implementations). Some UDIMMs and DD
# 4 RDIMMs implement address mirroring for odd ranks, which means that the following address, bank address and bank group bits
# re swapped: (A3, A4), (A5, A6), (A7, A8), (BA0, BA1) and also (A11, A13), (BG0, BG1) for the DDR4. Setting this bit ensures t
# at, for mode register accesses during the automatic initialization routine, these bits are swapped within the uMCTL2 to compe
# sate for this UDIMM/RDIMM swapping. In addition to the automatic initialization routine, in case of DDR4 UDIMM/RDIMM, they ar
# swapped during the automatic MRS access to enable/disable of a particular DDR4 feature. Note: This has no effect on the addr
# ss of any other memory accesses, or of software-driven mode register accesses. This is not supported for mDDR, LPDDR2, LPDDR3
# or LPDDR4 SDRAMs. Note: In case of x16 DDR4 DIMMs, BG1 output of MRS for the odd ranks is same as BG0 because BG1 is invalid,
# hence dimm_dis_bg_mirroring register must be set to 1. - 1 - For odd ranks, implement address mirroring for MRS commands to d
# ring initialization and for any automatic DDR4 MRS commands (to be used if UDIMM/RDIMM implements address mirroring) - 0 - Do
# not implement address mirroring
# PSU_DDRC_DIMMCTL_DIMM_ADDR_MIRR_EN 0x0
# Staggering enable for multi-rank accesses (for multi-rank UDIMM and RDIMM implementations only). This is not supported for mD
# R, LPDDR2, LPDDR3 or LPDDR4 SDRAMs. Note: Even if this bit is set it does not take care of software driven MR commands (via M
# CTRL0/MRCTRL1), where software is responsible to send them to seperate ranks as appropriate. - 1 - (DDR4) Send MRS commands t
# each ranks seperately - 1 - (non-DDR4) Send all commands to even and odd ranks seperately - 0 - Do not stagger accesses
# PSU_DDRC_DIMMCTL_DIMM_STAGGER_CS_EN 0x0
# DIMM Control Register
#(OFFSET, MASK, VALUE) (0XFD0700F0, 0x0000003FU ,0x00000010U) */
mask_write 0XFD0700F0 0x0000003F 0x00000010
# Register : RANKCTL @ 0XFD0700F4</p>
# Only present for multi-rank configurations. Indicates the number of clocks of gap in data responses when performing consecuti
# e writes to different ranks. This is used to switch the delays in the PHY to match the rank requirements. This value should c
# nsider both PHY requirement and ODT requirement. - PHY requirement: tphy_wrcsgap + 1 (see PHY databook for value of tphy_wrcs
# ap) If CRC feature is enabled, should be increased by 1. If write preamble is set to 2tCK(DDR4/LPDDR4 only), should be increa
# ed by 1. If write postamble is set to 1.5tCK(LPDDR4 only), should be increased by 1. - ODT requirement: The value programmed
# n this register takes care of the ODT switch off timing requirement when switching ranks during writes. For LPDDR4, the requi
# ement is ODTLoff - ODTLon - BL/2 + 1 For configurations with MEMC_FREQ_RATIO=1, program this to the larger of PHY requirement
# or ODT requirement. For configurations with MEMC_FREQ_RATIO=2, program this to the larger value divided by two and round it u
# to the next integer.
# PSU_DDRC_RANKCTL_DIFF_RANK_WR_GAP 0x6
# Only present for multi-rank configurations. Indicates the number of clocks of gap in data responses when performing consecuti
# e reads to different ranks. This is used to switch the delays in the PHY to match the rank requirements. This value should co
# sider both PHY requirement and ODT requirement. - PHY requirement: tphy_rdcsgap + 1 (see PHY databook for value of tphy_rdcsg
# p) If read preamble is set to 2tCK(DDR4/LPDDR4 only), should be increased by 1. If read postamble is set to 1.5tCK(LPDDR4 onl
# ), should be increased by 1. - ODT requirement: The value programmed in this register takes care of the ODT switch off timing
# requirement when switching ranks during reads. For configurations with MEMC_FREQ_RATIO=1, program this to the larger of PHY r
# quirement or ODT requirement. For configurations with MEMC_FREQ_RATIO=2, program this to the larger value divided by two and
# ound it up to the next integer.
# PSU_DDRC_RANKCTL_DIFF_RANK_RD_GAP 0x6
# Only present for multi-rank configurations. Background: Reads to the same rank can be performed back-to-back. Reads to differ
# nt ranks require additional gap dictated by the register RANKCTL.diff_rank_rd_gap. This is to avoid possible data bus content
# on as well as to give PHY enough time to switch the delay when changing ranks. The uMCTL2 arbitrates for bus access on a cycl
# -by-cycle basis; therefore after a read is scheduled, there are few clock cycles (determined by the value on RANKCTL.diff_ran
# _rd_gap register) in which only reads from the same rank are eligible to be scheduled. This prevents reads from other ranks f
# om having fair access to the data bus. This parameter represents the maximum number of reads that can be scheduled consecutiv
# ly to the same rank. After this number is reached, a delay equal to RANKCTL.diff_rank_rd_gap is inserted by the scheduler to
# llow all ranks a fair opportunity to be scheduled. Higher numbers increase bandwidth utilization, lower numbers increase fair
# ess. This feature can be DISABLED by setting this register to 0. When set to 0, the Controller will stay on the same rank as
# ong as commands are available for it. Minimum programmable value is 0 (feature disabled) and maximum programmable value is 0x
# . FOR PERFORMANCE ONLY.
# PSU_DDRC_RANKCTL_MAX_RANK_RD 0xf
# Rank Control Register
#(OFFSET, MASK, VALUE) (0XFD0700F4, 0x00000FFFU ,0x0000066FU) */
mask_write 0XFD0700F4 0x00000FFF 0x0000066F
# Register : DRAMTMG0 @ 0XFD070100</p>
# Minimum time between write and precharge to same bank. Unit: Clocks Specifications: WL + BL/2 + tWR = approximately 8 cycles
# 15 ns = 14 clocks @400MHz and less for lower frequencies where: - WL = write latency - BL = burst length. This must match th
# value programmed in the BL bit of the mode register to the SDRAM. BST (burst terminate) is not supported at present. - tWR =
# Write recovery time. This comes directly from the SDRAM specification. Add one extra cycle for LPDDR2/LPDDR3/LPDDR4 for this
# arameter. For configurations with MEMC_FREQ_RATIO=2, 1T mode, divide the above value by 2. No rounding up. For configurations
# with MEMC_FREQ_RATIO=2, 2T mode or LPDDR4 mode, divide the above value by 2 and round it up to the next integer value.
# PSU_DDRC_DRAMTMG0_WR2PRE 0x11
# tFAW Valid only when 8 or more banks(or banks x bank groups) are present. In 8-bank design, at most 4 banks must be activated
# in a rolling window of tFAW cycles. For configurations with MEMC_FREQ_RATIO=2, program this to (tFAW/2) and round up to next
# nteger value. In a 4-bank design, set this register to 0x1 independent of the MEMC_FREQ_RATIO configuration. Unit: Clocks
# PSU_DDRC_DRAMTMG0_T_FAW 0xc
# tRAS(max): Maximum time between activate and precharge to same bank. This is the maximum time that a page can be kept open Mi
# imum value of this register is 1. Zero is invalid. For configurations with MEMC_FREQ_RATIO=2, program this to (tRAS(max)-1)/2
# No rounding up. Unit: Multiples of 1024 clocks.
# PSU_DDRC_DRAMTMG0_T_RAS_MAX 0x24
# tRAS(min): Minimum time between activate and precharge to the same bank. For configurations with MEMC_FREQ_RATIO=2, 1T mode,
# rogram this to tRAS(min)/2. No rounding up. For configurations with MEMC_FREQ_RATIO=2, 2T mode or LPDDR4 mode, program this t
# (tRAS(min)/2) and round it up to the next integer value. Unit: Clocks
# PSU_DDRC_DRAMTMG0_T_RAS_MIN 0x12
# SDRAM Timing Register 0
#(OFFSET, MASK, VALUE) (0XFD070100, 0x7F3F7F3FU ,0x110C2412U) */
mask_write 0XFD070100 0x7F3F7F3F 0x110C2412
# Register : DRAMTMG1 @ 0XFD070104</p>
# tXP: Minimum time after power-down exit to any operation. For DDR3, this should be programmed to tXPDLL if slow powerdown exi
# is selected in MR0[12]. If C/A parity for DDR4 is used, set to (tXP+PL) instead. For configurations with MEMC_FREQ_RATIO=2,
# rogram this to (tXP/2) and round it up to the next integer value. Units: Clocks
# PSU_DDRC_DRAMTMG1_T_XP 0x4
# tRTP: Minimum time from read to precharge of same bank. - DDR2: tAL + BL/2 + max(tRTP, 2) - 2 - DDR3: tAL + max (tRTP, 4) - D
# R4: Max of following two equations: tAL + max (tRTP, 4) or, RL + BL/2 - tRP. - mDDR: BL/2 - LPDDR2: Depends on if it's LPDDR2
# S2 or LPDDR2-S4: LPDDR2-S2: BL/2 + tRTP - 1. LPDDR2-S4: BL/2 + max(tRTP,2) - 2. - LPDDR3: BL/2 + max(tRTP,4) - 4 - LPDDR4: BL
# 2 + max(tRTP,8) - 8 For configurations with MEMC_FREQ_RATIO=2, 1T mode, divide the above value by 2. No rounding up. For conf
# gurations with MEMC_FREQ_RATIO=2, 2T mode or LPDDR4 mode, divide the above value by 2 and round it up to the next integer val
# e. Unit: Clocks.
# PSU_DDRC_DRAMTMG1_RD2PRE 0x4
# tRC: Minimum time between activates to same bank. For configurations with MEMC_FREQ_RATIO=2, program this to (tRC/2) and roun
# up to next integer value. Unit: Clocks.
# PSU_DDRC_DRAMTMG1_T_RC 0x19
# SDRAM Timing Register 1
#(OFFSET, MASK, VALUE) (0XFD070104, 0x001F1F7FU ,0x00040419U) */
mask_write 0XFD070104 0x001F1F7F 0x00040419
# Register : DRAMTMG2 @ 0XFD070108</p>
# Set to WL Time from write command to write data on SDRAM interface. This must be set to WL. For mDDR, it should normally be s
# t to 1. Note that, depending on the PHY, if using RDIMM, it may be necessary to use a value of WL + 1 to compensate for the e
# tra cycle of latency through the RDIMM For configurations with MEMC_FREQ_RATIO=2, divide the value calculated using the above
# equation by 2, and round it up to next integer. This register field is not required for DDR2 and DDR3 (except if MEMC_TRAININ
# is set), as the DFI read and write latencies defined in DFITMG0 and DFITMG1 are sufficient for those protocols Unit: clocks
# PSU_DDRC_DRAMTMG2_WRITE_LATENCY 0x7
# Set to RL Time from read command to read data on SDRAM interface. This must be set to RL. Note that, depending on the PHY, if
# using RDIMM, it mat be necessary to use a value of RL + 1 to compensate for the extra cycle of latency through the RDIMM For
# onfigurations with MEMC_FREQ_RATIO=2, divide the value calculated using the above equation by 2, and round it up to next inte
# er. This register field is not required for DDR2 and DDR3 (except if MEMC_TRAINING is set), as the DFI read and write latenci
# s defined in DFITMG0 and DFITMG1 are sufficient for those protocols Unit: clocks
# PSU_DDRC_DRAMTMG2_READ_LATENCY 0x8
# DDR2/3/mDDR: RL + BL/2 + 2 - WL DDR4: RL + BL/2 + 1 + WR_PREAMBLE - WL LPDDR2/LPDDR3: RL + BL/2 + RU(tDQSCKmax/tCK) + 1 - WL
# PDDR4(DQ ODT is Disabled): RL + BL/2 + RU(tDQSCKmax/tCK) + WR_PREAMBLE + RD_POSTAMBLE - WL LPDDR4(DQ ODT is Enabled) : RL + B
# /2 + RU(tDQSCKmax/tCK) + RD_POSTAMBLE - ODTLon - RU(tODTon(min)/tCK) Minimum time from read command to write command. Include
# time for bus turnaround and all per-bank, per-rank, and global constraints. Unit: Clocks. Where: - WL = write latency - BL =
# urst length. This must match the value programmed in the BL bit of the mode register to the SDRAM - RL = read latency = CAS l
# tency - WR_PREAMBLE = write preamble. This is unique to DDR4 and LPDDR4. - RD_POSTAMBLE = read postamble. This is unique to L
# DDR4. For LPDDR2/LPDDR3/LPDDR4, if derating is enabled (DERATEEN.derate_enable=1), derated tDQSCKmax should be used. For conf
# gurations with MEMC_FREQ_RATIO=2, divide the value calculated using the above equation by 2, and round it up to next integer.
# PSU_DDRC_DRAMTMG2_RD2WR 0x6
# DDR4: CWL + PL + BL/2 + tWTR_L Others: CWL + BL/2 + tWTR In DDR4, minimum time from write command to read command for same ba
# k group. In others, minimum time from write command to read command. Includes time for bus turnaround, recovery times, and al
# per-bank, per-rank, and global constraints. Unit: Clocks. Where: - CWL = CAS write latency - PL = Parity latency - BL = burs
# length. This must match the value programmed in the BL bit of the mode register to the SDRAM - tWTR_L = internal write to re
# d command delay for same bank group. This comes directly from the SDRAM specification. - tWTR = internal write to read comman
# delay. This comes directly from the SDRAM specification. Add one extra cycle for LPDDR2/LPDDR3/LPDDR4 operation. For configu
# ations with MEMC_FREQ_RATIO=2, divide the value calculated using the above equation by 2, and round it up to next integer.
# PSU_DDRC_DRAMTMG2_WR2RD 0xe
# SDRAM Timing Register 2
#(OFFSET, MASK, VALUE) (0XFD070108, 0x3F3F3F3FU ,0x0708060EU) */
mask_write 0XFD070108 0x3F3F3F3F 0x0708060E
# Register : DRAMTMG3 @ 0XFD07010C</p>
# Time to wait after a mode register write or read (MRW or MRR). Present only in designs configured to support LPDDR2, LPDDR3 o
# LPDDR4. LPDDR2 typically requires value of 5. LPDDR3 typically requires value of 10. LPDDR4: Set this to the larger of tMRW
# nd tMRWCKEL. For LPDDR2, this register is used for the time from a MRW/MRR to all other commands. For LDPDR3, this register i
# used for the time from a MRW/MRR to a MRW/MRR.
# PSU_DDRC_DRAMTMG3_T_MRW 0x5
# tMRD: Cycles to wait after a mode register write or read. Depending on the connected SDRAM, tMRD represents: DDR2/mDDR: Time
# rom MRS to any command DDR3/4: Time from MRS to MRS command LPDDR2: not used LPDDR3/4: Time from MRS to non-MRS command For c
# nfigurations with MEMC_FREQ_RATIO=2, program this to (tMRD/2) and round it up to the next integer value. If C/A parity for DD
# 4 is used, set to tMRD_PAR(tMOD+PL) instead.
# PSU_DDRC_DRAMTMG3_T_MRD 0x4
# tMOD: Parameter used only in DDR3 and DDR4. Cycles between load mode command and following non-load mode command. If C/A pari
# y for DDR4 is used, set to tMOD_PAR(tMOD+PL) instead. Set to tMOD if MEMC_FREQ_RATIO=1, or tMOD/2 (rounded up to next integer
# if MEMC_FREQ_RATIO=2. Note that if using RDIMM, depending on the PHY, it may be necessary to use a value of tMOD + 1 or (tMO
# + 1)/2 to compensate for the extra cycle of latency applied to mode register writes by the RDIMM chip.
# PSU_DDRC_DRAMTMG3_T_MOD 0xc
# SDRAM Timing Register 3
#(OFFSET, MASK, VALUE) (0XFD07010C, 0x3FF3F3FFU ,0x0050400CU) */
mask_write 0XFD07010C 0x3FF3F3FF 0x0050400C
# Register : DRAMTMG4 @ 0XFD070110</p>
# tRCD - tAL: Minimum time from activate to read or write command to same bank. For configurations with MEMC_FREQ_RATIO=2, prog
# am this to ((tRCD - tAL)/2) and round it up to the next integer value. Minimum value allowed for this register is 1, which im
# lies minimum (tRCD - tAL) value to be 2 in configurations with MEMC_FREQ_RATIO=2. Unit: Clocks.
# PSU_DDRC_DRAMTMG4_T_RCD 0x8
# DDR4: tCCD_L: This is the minimum time between two reads or two writes for same bank group. Others: tCCD: This is the minimum
# time between two reads or two writes. For configurations with MEMC_FREQ_RATIO=2, program this to (tCCD_L/2 or tCCD/2) and rou
# d it up to the next integer value. Unit: clocks.
# PSU_DDRC_DRAMTMG4_T_CCD 0x3
# DDR4: tRRD_L: Minimum time between activates from bank 'a' to bank 'b' for same bank group. Others: tRRD: Minimum time betwee
# activates from bank 'a' to bank 'b'For configurations with MEMC_FREQ_RATIO=2, program this to (tRRD_L/2 or tRRD/2) and round
# it up to the next integer value. Unit: Clocks.
# PSU_DDRC_DRAMTMG4_T_RRD 0x3
# tRP: Minimum time from precharge to activate of same bank. For MEMC_FREQ_RATIO=1 configurations, t_rp should be set to RoundU
# (tRP/tCK). For MEMC_FREQ_RATIO=2 configurations, t_rp should be set to RoundDown(RoundUp(tRP/tCK)/2) + 1. For MEMC_FREQ_RATIO
# 2 configurations in LPDDR4, t_rp should be set to RoundUp(RoundUp(tRP/tCK)/2). Unit: Clocks.
# PSU_DDRC_DRAMTMG4_T_RP 0x9
# SDRAM Timing Register 4
#(OFFSET, MASK, VALUE) (0XFD070110, 0x1F0F0F1FU ,0x08030309U) */
mask_write 0XFD070110 0x1F0F0F1F 0x08030309
# Register : DRAMTMG5 @ 0XFD070114</p>
# This is the time before Self Refresh Exit that CK is maintained as a valid clock before issuing SRX. Specifies the clock stab
# e time before SRX. Recommended settings: - mDDR: 1 - LPDDR2: 2 - LPDDR3: 2 - LPDDR4: tCKCKEH - DDR2: 1 - DDR3: tCKSRX - DDR4:
# tCKSRX For configurations with MEMC_FREQ_RATIO=2, program this to recommended value divided by two and round it up to next in
# eger.
# PSU_DDRC_DRAMTMG5_T_CKSRX 0x6
# This is the time after Self Refresh Down Entry that CK is maintained as a valid clock. Specifies the clock disable delay afte
# SRE. Recommended settings: - mDDR: 0 - LPDDR2: 2 - LPDDR3: 2 - LPDDR4: tCKCKEL - DDR2: 1 - DDR3: max (10 ns, 5 tCK) - DDR4:
# ax (10 ns, 5 tCK) For configurations with MEMC_FREQ_RATIO=2, program this to recommended value divided by two and round it up
# to next integer.
# PSU_DDRC_DRAMTMG5_T_CKSRE 0x6
# Minimum CKE low width for Self refresh or Self refresh power down entry to exit timing in memory clock cycles. Recommended se
# tings: - mDDR: tRFC - LPDDR2: tCKESR - LPDDR3: tCKESR - LPDDR4: max(tCKELPD, tSR) - DDR2: tCKE - DDR3: tCKE + 1 - DDR4: tCKE
# 1 For configurations with MEMC_FREQ_RATIO=2, program this to recommended value divided by two and round it up to next intege
# .
# PSU_DDRC_DRAMTMG5_T_CKESR 0x4
# Minimum number of cycles of CKE HIGH/LOW during power-down and self refresh. - LPDDR2/LPDDR3 mode: Set this to the larger of
# CKE or tCKESR - LPDDR4 mode: Set this to the larger of tCKE, tCKELPD or tSR. - Non-LPDDR2/non-LPDDR3/non-LPDDR4 designs: Set
# his to tCKE value. For configurations with MEMC_FREQ_RATIO=2, program this to (value described above)/2 and round it up to th
# next integer value. Unit: Clocks.
# PSU_DDRC_DRAMTMG5_T_CKE 0x3
# SDRAM Timing Register 5
#(OFFSET, MASK, VALUE) (0XFD070114, 0x0F0F3F1FU ,0x06060403U) */
mask_write 0XFD070114 0x0F0F3F1F 0x06060403
# Register : DRAMTMG6 @ 0XFD070118</p>
# This is the time after Deep Power Down Entry that CK is maintained as a valid clock. Specifies the clock disable delay after
# PDE. Recommended settings: - mDDR: 0 - LPDDR2: 2 - LPDDR3: 2 For configurations with MEMC_FREQ_RATIO=2, program this to recom
# ended value divided by two and round it up to next integer. This is only present for designs supporting mDDR or LPDDR2/LPDDR3
# devices.
# PSU_DDRC_DRAMTMG6_T_CKDPDE 0x1
# This is the time before Deep Power Down Exit that CK is maintained as a valid clock before issuing DPDX. Specifies the clock
# table time before DPDX. Recommended settings: - mDDR: 1 - LPDDR2: 2 - LPDDR3: 2 For configurations with MEMC_FREQ_RATIO=2, pr
# gram this to recommended value divided by two and round it up to next integer. This is only present for designs supporting mD
# R or LPDDR2 devices.
# PSU_DDRC_DRAMTMG6_T_CKDPDX 0x1
# This is the time before Clock Stop Exit that CK is maintained as a valid clock before issuing Clock Stop Exit. Specifies the
# lock stable time before next command after Clock Stop Exit. Recommended settings: - mDDR: 1 - LPDDR2: tXP + 2 - LPDDR3: tXP +
# 2 - LPDDR4: tXP + 2 For configurations with MEMC_FREQ_RATIO=2, program this to recommended value divided by two and round it
# p to next integer. This is only present for designs supporting mDDR or LPDDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_DRAMTMG6_T_CKCSX 0x4
# SDRAM Timing Register 6
#(OFFSET, MASK, VALUE) (0XFD070118, 0x0F0F000FU ,0x01010004U) */
mask_write 0XFD070118 0x0F0F000F 0x01010004
# Register : DRAMTMG7 @ 0XFD07011C</p>
# This is the time after Power Down Entry that CK is maintained as a valid clock. Specifies the clock disable delay after PDE.
# ecommended settings: - mDDR: 0 - LPDDR2: 2 - LPDDR3: 2 - LPDDR4: tCKCKEL For configurations with MEMC_FREQ_RATIO=2, program t
# is to recommended value divided by two and round it up to next integer. This is only present for designs supporting mDDR or L
# DDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_DRAMTMG7_T_CKPDE 0x6
# This is the time before Power Down Exit that CK is maintained as a valid clock before issuing PDX. Specifies the clock stable
# time before PDX. Recommended settings: - mDDR: 0 - LPDDR2: 2 - LPDDR3: 2 - LPDDR4: 2 For configurations with MEMC_FREQ_RATIO=
# , program this to recommended value divided by two and round it up to next integer. This is only present for designs supporti
# g mDDR or LPDDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_DRAMTMG7_T_CKPDX 0x6
# SDRAM Timing Register 7
#(OFFSET, MASK, VALUE) (0XFD07011C, 0x00000F0FU ,0x00000606U) */
mask_write 0XFD07011C 0x00000F0F 0x00000606
# Register : DRAMTMG8 @ 0XFD070120</p>
# tXS_FAST: Exit Self Refresh to ZQCL, ZQCS and MRS (only CL, WR, RTP and Geardown mode). For configurations with MEMC_FREQ_RAT
# O=2, program this to the above value divided by 2 and round up to next integer value. Unit: Multiples of 32 clocks. Note: Thi
# is applicable to only ZQCL/ZQCS commands. Note: Ensure this is less than or equal to t_xs_x32.
# PSU_DDRC_DRAMTMG8_T_XS_FAST_X32 0x4
# tXS_ABORT: Exit Self Refresh to commands not requiring a locked DLL in Self Refresh Abort. For configurations with MEMC_FREQ_
# ATIO=2, program this to the above value divided by 2 and round up to next integer value. Unit: Multiples of 32 clocks. Note:
# nsure this is less than or equal to t_xs_x32.
# PSU_DDRC_DRAMTMG8_T_XS_ABORT_X32 0x4
# tXSDLL: Exit Self Refresh to commands requiring a locked DLL. For configurations with MEMC_FREQ_RATIO=2, program this to the
# bove value divided by 2 and round up to next integer value. Unit: Multiples of 32 clocks. Note: Used only for DDR2, DDR3 and
# DR4 SDRAMs.
# PSU_DDRC_DRAMTMG8_T_XS_DLL_X32 0xd
# tXS: Exit Self Refresh to commands not requiring a locked DLL. For configurations with MEMC_FREQ_RATIO=2, program this to the
# above value divided by 2 and round up to next integer value. Unit: Multiples of 32 clocks. Note: Used only for DDR2, DDR3 and
# DDR4 SDRAMs.
# PSU_DDRC_DRAMTMG8_T_XS_X32 0x6
# SDRAM Timing Register 8
#(OFFSET, MASK, VALUE) (0XFD070120, 0x7F7F7F7FU ,0x04040D06U) */
mask_write 0XFD070120 0x7F7F7F7F 0x04040D06
# Register : DRAMTMG9 @ 0XFD070124</p>
# DDR4 Write preamble mode - 0: 1tCK preamble - 1: 2tCK preamble Present only with MEMC_FREQ_RATIO=2
# PSU_DDRC_DRAMTMG9_DDR4_WR_PREAMBLE 0x0
# tCCD_S: This is the minimum time between two reads or two writes for different bank group. For bank switching (from bank 'a'
# o bank 'b'), the minimum time is this value + 1. For configurations with MEMC_FREQ_RATIO=2, program this to (tCCD_S/2) and ro
# nd it up to the next integer value. Present only in designs configured to support DDR4. Unit: clocks.
# PSU_DDRC_DRAMTMG9_T_CCD_S 0x2
# tRRD_S: Minimum time between activates from bank 'a' to bank 'b' for different bank group. For configurations with MEMC_FREQ_
# ATIO=2, program this to (tRRD_S/2) and round it up to the next integer value. Present only in designs configured to support D
# R4. Unit: Clocks.
# PSU_DDRC_DRAMTMG9_T_RRD_S 0x2
# CWL + PL + BL/2 + tWTR_S Minimum time from write command to read command for different bank group. Includes time for bus turn
# round, recovery times, and all per-bank, per-rank, and global constraints. Present only in designs configured to support DDR4
# Unit: Clocks. Where: - CWL = CAS write latency - PL = Parity latency - BL = burst length. This must match the value programm
# d in the BL bit of the mode register to the SDRAM - tWTR_S = internal write to read command delay for different bank group. T
# is comes directly from the SDRAM specification. For configurations with MEMC_FREQ_RATIO=2, divide the value calculated using
# he above equation by 2, and round it up to next integer.
# PSU_DDRC_DRAMTMG9_WR2RD_S 0xb
# SDRAM Timing Register 9
#(OFFSET, MASK, VALUE) (0XFD070124, 0x40070F3FU ,0x0002020BU) */
mask_write 0XFD070124 0x40070F3F 0x0002020B
# Register : DRAMTMG11 @ 0XFD07012C</p>
# tXMPDLL: This is the minimum Exit MPSM to commands requiring a locked DLL. For configurations with MEMC_FREQ_RATIO=2, program
# this to (tXMPDLL/2) and round it up to the next integer value. Present only in designs configured to support DDR4. Unit: Mult
# ples of 32 clocks.
# PSU_DDRC_DRAMTMG11_POST_MPSM_GAP_X32 0x6f
# tMPX_LH: This is the minimum CS_n Low hold time to CKE rising edge. For configurations with MEMC_FREQ_RATIO=2, program this t
# RoundUp(tMPX_LH/2)+1. Present only in designs configured to support DDR4. Unit: clocks.
# PSU_DDRC_DRAMTMG11_T_MPX_LH 0x7
# tMPX_S: Minimum time CS setup time to CKE. For configurations with MEMC_FREQ_RATIO=2, program this to (tMPX_S/2) and round it
# up to the next integer value. Present only in designs configured to support DDR4. Unit: Clocks.
# PSU_DDRC_DRAMTMG11_T_MPX_S 0x1
# tCKMPE: Minimum valid clock requirement after MPSM entry. Present only in designs configured to support DDR4. Unit: Clocks. F
# r configurations with MEMC_FREQ_RATIO=2, divide the value calculated using the above equation by 2, and round it up to next i
# teger.
# PSU_DDRC_DRAMTMG11_T_CKMPE 0xe
# SDRAM Timing Register 11
#(OFFSET, MASK, VALUE) (0XFD07012C, 0x7F1F031FU ,0x6F07010EU) */
mask_write 0XFD07012C 0x7F1F031F 0x6F07010E
# Register : DRAMTMG12 @ 0XFD070130</p>
# tCMDCKE: Delay from valid command to CKE input LOW. Set this to the larger of tESCKE or tCMDCKE For configurations with MEMC_
# REQ_RATIO=2, program this to (max(tESCKE, tCMDCKE)/2) and round it up to next integer value.
# PSU_DDRC_DRAMTMG12_T_CMDCKE 0x2
# tCKEHCMD: Valid command requirement after CKE input HIGH. For configurations with MEMC_FREQ_RATIO=2, program this to (tCKEHCM
# /2) and round it up to next integer value.
# PSU_DDRC_DRAMTMG12_T_CKEHCMD 0x6
# tMRD_PDA: This is the Mode Register Set command cycle time in PDA mode. For configurations with MEMC_FREQ_RATIO=2, program th
# s to (tMRD_PDA/2) and round it up to next integer value.
# PSU_DDRC_DRAMTMG12_T_MRD_PDA 0x8
# SDRAM Timing Register 12
#(OFFSET, MASK, VALUE) (0XFD070130, 0x00030F1FU ,0x00020608U) */
mask_write 0XFD070130 0x00030F1F 0x00020608
# Register : ZQCTL0 @ 0XFD070180</p>
# - 1 - Disable uMCTL2 generation of ZQCS/MPC(ZQ calibration) command. Register DBGCMD.zq_calib_short can be used instead to is
# ue ZQ calibration request from APB module. - 0 - Internally generate ZQCS/MPC(ZQ calibration) commands based on ZQCTL1.t_zq_s
# ort_interval_x1024. This is only present for designs supporting DDR3/DDR4 or LPDDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_ZQCTL0_DIS_AUTO_ZQ 0x1
# - 1 - Disable issuing of ZQCL/MPC(ZQ calibration) command at Self-Refresh/SR-Powerdown exit. Only applicable when run in DDR3
# or DDR4 or LPDDR2 or LPDDR3 or LPDDR4 mode. - 0 - Enable issuing of ZQCL/MPC(ZQ calibration) command at Self-Refresh/SR-Power
# own exit. Only applicable when run in DDR3 or DDR4 or LPDDR2 or LPDDR3 or LPDDR4 mode. This is only present for designs suppo
# ting DDR3/DDR4 or LPDDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_ZQCTL0_DIS_SRX_ZQCL 0x0
# - 1 - Denotes that ZQ resistor is shared between ranks. Means ZQinit/ZQCL/ZQCS/MPC(ZQ calibration) commands are sent to one r
# nk at a time with tZQinit/tZQCL/tZQCS/tZQCAL/tZQLAT timing met between commands so that commands to different ranks do not ov
# rlap. - 0 - ZQ resistor is not shared. This is only present for designs supporting DDR3/DDR4 or LPDDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_ZQCTL0_ZQ_RESISTOR_SHARED 0x0
# - 1 - Disable issuing of ZQCL command at Maximum Power Saving Mode exit. Only applicable when run in DDR4 mode. - 0 - Enable
# ssuing of ZQCL command at Maximum Power Saving Mode exit. Only applicable when run in DDR4 mode. This is only present for des
# gns supporting DDR4 devices.
# PSU_DDRC_ZQCTL0_DIS_MPSMX_ZQCL 0x0
# tZQoper for DDR3/DDR4, tZQCL for LPDDR2/LPDDR3, tZQCAL for LPDDR4: Number of cycles of NOP required after a ZQCL (ZQ calibrat
# on long)/MPC(ZQ Start) command is issued to SDRAM. For configurations with MEMC_FREQ_RATIO=2: DDR3/DDR4: program this to tZQo
# er/2 and round it up to the next integer value. LPDDR2/LPDDR3: program this to tZQCL/2 and round it up to the next integer va
# ue. LPDDR4: program this to tZQCAL/2 and round it up to the next integer value. Unit: Clock cycles. This is only present for
# esigns supporting DDR3/DDR4 or LPDDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_ZQCTL0_T_ZQ_LONG_NOP 0x100
# tZQCS for DDR3/DD4/LPDDR2/LPDDR3, tZQLAT for LPDDR4: Number of cycles of NOP required after a ZQCS (ZQ calibration short)/MPC
# ZQ Latch) command is issued to SDRAM. For configurations with MEMC_FREQ_RATIO=2, program this to tZQCS/2 and round it up to t
# e next integer value. Unit: Clock cycles. This is only present for designs supporting DDR3/DDR4 or LPDDR2/LPDDR3/LPDDR4 devic
# s.
# PSU_DDRC_ZQCTL0_T_ZQ_SHORT_NOP 0x40
# ZQ Control Register 0
#(OFFSET, MASK, VALUE) (0XFD070180, 0xF7FF03FFU ,0x81000040U) */
mask_write 0XFD070180 0xF7FF03FF 0x81000040
# Register : ZQCTL1 @ 0XFD070184</p>
# tZQReset: Number of cycles of NOP required after a ZQReset (ZQ calibration Reset) command is issued to SDRAM. For configurati
# ns with MEMC_FREQ_RATIO=2, program this to tZQReset/2 and round it up to the next integer value. Unit: Clock cycles. This is
# nly present for designs supporting LPDDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_ZQCTL1_T_ZQ_RESET_NOP 0x20
# Average interval to wait between automatically issuing ZQCS (ZQ calibration short)/MPC(ZQ calibration) commands to DDR3/DDR4/
# PDDR2/LPDDR3/LPDDR4 devices. Meaningless, if ZQCTL0.dis_auto_zq=1. Unit: 1024 clock cycles. This is only present for designs
# upporting DDR3/DDR4 or LPDDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_ZQCTL1_T_ZQ_SHORT_INTERVAL_X1024 0x19707
# ZQ Control Register 1
#(OFFSET, MASK, VALUE) (0XFD070184, 0x3FFFFFFFU ,0x02019707U) */
mask_write 0XFD070184 0x3FFFFFFF 0x02019707
# Register : DFITMG0 @ 0XFD070190</p>
# Specifies the number of DFI clock cycles after an assertion or de-assertion of the DFI control signals that the control signa
# s at the PHY-DRAM interface reflect the assertion or de-assertion. If the DFI clock and the memory clock are not phase-aligne
# , this timing parameter should be rounded up to the next integer value. Note that if using RDIMM, it is necessary to incremen
# this parameter by RDIMM's extra cycle of latency in terms of DFI clock.
# PSU_DDRC_DFITMG0_DFI_T_CTRL_DELAY 0x4
# Defines whether dfi_rddata_en/dfi_rddata/dfi_rddata_valid is generated using HDR or SDR values Selects whether value in DFITM
# 0.dfi_t_rddata_en is in terms of SDR or HDR clock cycles: - 0 in terms of HDR clock cycles - 1 in terms of SDR clock cycles R
# fer to PHY specification for correct value.
# PSU_DDRC_DFITMG0_DFI_RDDATA_USE_SDR 0x1
# Time from the assertion of a read command on the DFI interface to the assertion of the dfi_rddata_en signal. Refer to PHY spe
# ification for correct value. This corresponds to the DFI parameter trddata_en. Note that, depending on the PHY, if using RDIM
# , it may be necessary to use the value (CL + 1) in the calculation of trddata_en. This is to compensate for the extra cycle o
# latency through the RDIMM. Unit: Clocks
# PSU_DDRC_DFITMG0_DFI_T_RDDATA_EN 0xb
# Defines whether dfi_wrdata_en/dfi_wrdata/dfi_wrdata_mask is generated using HDR or SDR values Selects whether value in DFITMG
# .dfi_tphy_wrlat is in terms of SDR or HDR clock cycles Selects whether value in DFITMG0.dfi_tphy_wrdata is in terms of SDR or
# HDR clock cycles - 0 in terms of HDR clock cycles - 1 in terms of SDR clock cycles Refer to PHY specification for correct val
# e.
# PSU_DDRC_DFITMG0_DFI_WRDATA_USE_SDR 0x1
# Specifies the number of clock cycles between when dfi_wrdata_en is asserted to when the associated write data is driven on th
# dfi_wrdata signal. This corresponds to the DFI timing parameter tphy_wrdata. Refer to PHY specification for correct value. N
# te, max supported value is 8. Unit: Clocks
# PSU_DDRC_DFITMG0_DFI_TPHY_WRDATA 0x2
# Write latency Number of clocks from the write command to write data enable (dfi_wrdata_en). This corresponds to the DFI timin
# parameter tphy_wrlat. Refer to PHY specification for correct value.Note that, depending on the PHY, if using RDIMM, it may b
# necessary to use the value (CL + 1) in the calculation of tphy_wrlat. This is to compensate for the extra cycle of latency t
# rough the RDIMM.
# PSU_DDRC_DFITMG0_DFI_TPHY_WRLAT 0xb
# DFI Timing Register 0
#(OFFSET, MASK, VALUE) (0XFD070190, 0x1FBFBF3FU ,0x048B820BU) */
mask_write 0XFD070190 0x1FBFBF3F 0x048B820B
# Register : DFITMG1 @ 0XFD070194</p>
# Specifies the number of DFI PHY clocks between when the dfi_cs signal is asserted and when the associated command is driven.
# his field is used for CAL mode, should be set to '0' or the value which matches the CAL mode register setting in the DRAM. If
# the PHY can add the latency for CAL mode, this should be set to '0'. Valid Range: 0, 3, 4, 5, 6, and 8
# PSU_DDRC_DFITMG1_DFI_T_CMD_LAT 0x0
# Specifies the number of DFI PHY clocks between when the dfi_cs signal is asserted and when the associated dfi_parity_in signa
# is driven.
# PSU_DDRC_DFITMG1_DFI_T_PARIN_LAT 0x0
# Specifies the number of DFI clocks between when the dfi_wrdata_en signal is asserted and when the corresponding write data tr
# nsfer is completed on the DRAM bus. This corresponds to the DFI timing parameter twrdata_delay. Refer to PHY specification fo
# correct value. For DFI 3.0 PHY, set to twrdata_delay, a new timing parameter introduced in DFI 3.0. For DFI 2.1 PHY, set to
# phy_wrdata + (delay of DFI write data to the DRAM). Value to be programmed is in terms of DFI clocks, not PHY clocks. In FREQ
# RATIO=2, divide PHY's value by 2 and round up to next integer. If using DFITMG0.dfi_wrdata_use_sdr=1, add 1 to the value. Uni
# : Clocks
# PSU_DDRC_DFITMG1_DFI_T_WRDATA_DELAY 0x3
# Specifies the number of DFI clock cycles from the assertion of the dfi_dram_clk_disable signal on the DFI until the clock to
# he DRAM memory devices, at the PHY-DRAM boundary, maintains a low value. If the DFI clock and the memory clock are not phase
# ligned, this timing parameter should be rounded up to the next integer value.
# PSU_DDRC_DFITMG1_DFI_T_DRAM_CLK_DISABLE 0x3
# Specifies the number of DFI clock cycles from the de-assertion of the dfi_dram_clk_disable signal on the DFI until the first
# alid rising edge of the clock to the DRAM memory devices, at the PHY-DRAM boundary. If the DFI clock and the memory clock are
# not phase aligned, this timing parameter should be rounded up to the next integer value.
# PSU_DDRC_DFITMG1_DFI_T_DRAM_CLK_ENABLE 0x4
# DFI Timing Register 1
#(OFFSET, MASK, VALUE) (0XFD070194, 0xF31F0F0FU ,0x00030304U) */
mask_write 0XFD070194 0xF31F0F0F 0x00030304
# Register : DFILPCFG0 @ 0XFD070198</p>
# Setting for DFI's tlp_resp time. Same value is used for both Power Down, Self Refresh, Deep Power Down and Maximum Power Savi
# g modes. DFI 2.1 specification onwards, recommends using a fixed value of 7 always.
# PSU_DDRC_DFILPCFG0_DFI_TLP_RESP 0x7
# Value to drive on dfi_lp_wakeup signal when Deep Power Down mode is entered. Determines the DFI's tlp_wakeup time: - 0x0 - 16
# cycles - 0x1 - 32 cycles - 0x2 - 64 cycles - 0x3 - 128 cycles - 0x4 - 256 cycles - 0x5 - 512 cycles - 0x6 - 1024 cycles - 0x7
# - 2048 cycles - 0x8 - 4096 cycles - 0x9 - 8192 cycles - 0xA - 16384 cycles - 0xB - 32768 cycles - 0xC - 65536 cycles - 0xD -
# 31072 cycles - 0xE - 262144 cycles - 0xF - Unlimited This is only present for designs supporting mDDR or LPDDR2/LPDDR3 device
# .
# PSU_DDRC_DFILPCFG0_DFI_LP_WAKEUP_DPD 0x0
# Enables DFI Low Power interface handshaking during Deep Power Down Entry/Exit. - 0 - Disabled - 1 - Enabled This is only pres
# nt for designs supporting mDDR or LPDDR2/LPDDR3 devices.
# PSU_DDRC_DFILPCFG0_DFI_LP_EN_DPD 0x0
# Value to drive on dfi_lp_wakeup signal when Self Refresh mode is entered. Determines the DFI's tlp_wakeup time: - 0x0 - 16 cy
# les - 0x1 - 32 cycles - 0x2 - 64 cycles - 0x3 - 128 cycles - 0x4 - 256 cycles - 0x5 - 512 cycles - 0x6 - 1024 cycles - 0x7 -
# 048 cycles - 0x8 - 4096 cycles - 0x9 - 8192 cycles - 0xA - 16384 cycles - 0xB - 32768 cycles - 0xC - 65536 cycles - 0xD - 131
# 72 cycles - 0xE - 262144 cycles - 0xF - Unlimited
# PSU_DDRC_DFILPCFG0_DFI_LP_WAKEUP_SR 0x0
# Enables DFI Low Power interface handshaking during Self Refresh Entry/Exit. - 0 - Disabled - 1 - Enabled
# PSU_DDRC_DFILPCFG0_DFI_LP_EN_SR 0x1
# Value to drive on dfi_lp_wakeup signal when Power Down mode is entered. Determines the DFI's tlp_wakeup time: - 0x0 - 16 cycl
# s - 0x1 - 32 cycles - 0x2 - 64 cycles - 0x3 - 128 cycles - 0x4 - 256 cycles - 0x5 - 512 cycles - 0x6 - 1024 cycles - 0x7 - 20
# 8 cycles - 0x8 - 4096 cycles - 0x9 - 8192 cycles - 0xA - 16384 cycles - 0xB - 32768 cycles - 0xC - 65536 cycles - 0xD - 13107
# cycles - 0xE - 262144 cycles - 0xF - Unlimited
# PSU_DDRC_DFILPCFG0_DFI_LP_WAKEUP_PD 0x0
# Enables DFI Low Power interface handshaking during Power Down Entry/Exit. - 0 - Disabled - 1 - Enabled
# PSU_DDRC_DFILPCFG0_DFI_LP_EN_PD 0x1
# DFI Low Power Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD070198, 0x0FF1F1F1U ,0x07000101U) */
mask_write 0XFD070198 0x0FF1F1F1 0x07000101
# Register : DFILPCFG1 @ 0XFD07019C</p>
# Value to drive on dfi_lp_wakeup signal when Maximum Power Saving Mode is entered. Determines the DFI's tlp_wakeup time: - 0x0
# - 16 cycles - 0x1 - 32 cycles - 0x2 - 64 cycles - 0x3 - 128 cycles - 0x4 - 256 cycles - 0x5 - 512 cycles - 0x6 - 1024 cycles
# 0x7 - 2048 cycles - 0x8 - 4096 cycles - 0x9 - 8192 cycles - 0xA - 16384 cycles - 0xB - 32768 cycles - 0xC - 65536 cycles - 0
# D - 131072 cycles - 0xE - 262144 cycles - 0xF - Unlimited This is only present for designs supporting DDR4 devices.
# PSU_DDRC_DFILPCFG1_DFI_LP_WAKEUP_MPSM 0x2
# Enables DFI Low Power interface handshaking during Maximum Power Saving Mode Entry/Exit. - 0 - Disabled - 1 - Enabled This is
# only present for designs supporting DDR4 devices.
# PSU_DDRC_DFILPCFG1_DFI_LP_EN_MPSM 0x1
# DFI Low Power Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD07019C, 0x000000F1U ,0x00000021U) */
mask_write 0XFD07019C 0x000000F1 0x00000021
# Register : DFIUPD1 @ 0XFD0701A4</p>
# This is the minimum amount of time between uMCTL2 initiated DFI update requests (which is executed whenever the uMCTL2 is idl
# ). Set this number higher to reduce the frequency of update requests, which can have a small impact on the latency of the fir
# t read request when the uMCTL2 is idle. Unit: 1024 clocks
# PSU_DDRC_DFIUPD1_DFI_T_CTRLUPD_INTERVAL_MIN_X1024 0x41
# This is the maximum amount of time between uMCTL2 initiated DFI update requests. This timer resets with each update request;
# hen the timer expires dfi_ctrlupd_req is sent and traffic is blocked until the dfi_ctrlupd_ackx is received. PHY can use this
# idle time to recalibrate the delay lines to the DLLs. The DFI controller update is also used to reset PHY FIFO pointers in ca
# e of data capture errors. Updates are required to maintain calibration over PVT, but frequent updates may impact performance.
# Note: Value programmed for DFIUPD1.dfi_t_ctrlupd_interval_max_x1024 must be greater than DFIUPD1.dfi_t_ctrlupd_interval_min_x
# 024. Unit: 1024 clocks
# PSU_DDRC_DFIUPD1_DFI_T_CTRLUPD_INTERVAL_MAX_X1024 0xe2
# DFI Update Register 1
#(OFFSET, MASK, VALUE) (0XFD0701A4, 0x00FF00FFU ,0x004100E2U) */
mask_write 0XFD0701A4 0x00FF00FF 0x004100E2
# Register : DFIMISC @ 0XFD0701B0</p>
# Defines polarity of dfi_wrdata_cs and dfi_rddata_cs signals. - 0: Signals are active low - 1: Signals are active high
# PSU_DDRC_DFIMISC_DFI_DATA_CS_POLARITY 0x0
# DBI implemented in DDRC or PHY. - 0 - DDRC implements DBI functionality. - 1 - PHY implements DBI functionality. Present only
# in designs configured to support DDR4 and LPDDR4.
# PSU_DDRC_DFIMISC_PHY_DBI_MODE 0x0
# PHY initialization complete enable signal. When asserted the dfi_init_complete signal can be used to trigger SDRAM initialisa
# ion
# PSU_DDRC_DFIMISC_DFI_INIT_COMPLETE_EN 0x0
# DFI Miscellaneous Control Register
#(OFFSET, MASK, VALUE) (0XFD0701B0, 0x00000007U ,0x00000000U) */
mask_write 0XFD0701B0 0x00000007 0x00000000
# Register : DFITMG2 @ 0XFD0701B4</p>
# >Number of clocks between when a read command is sent on the DFI control interface and when the associated dfi_rddata_cs sign
# l is asserted. This corresponds to the DFI timing parameter tphy_rdcslat. Refer to PHY specification for correct value.
# PSU_DDRC_DFITMG2_DFI_TPHY_RDCSLAT 0x9
# Number of clocks between when a write command is sent on the DFI control interface and when the associated dfi_wrdata_cs sign
# l is asserted. This corresponds to the DFI timing parameter tphy_wrcslat. Refer to PHY specification for correct value.
# PSU_DDRC_DFITMG2_DFI_TPHY_WRCSLAT 0x6
# DFI Timing Register 2
#(OFFSET, MASK, VALUE) (0XFD0701B4, 0x00003F3FU ,0x00000906U) */
mask_write 0XFD0701B4 0x00003F3F 0x00000906
# Register : DBICTL @ 0XFD0701C0</p>
# Read DBI enable signal in DDRC. - 0 - Read DBI is disabled. - 1 - Read DBI is enabled. This signal must be set the same value
# as DRAM's mode register. - DDR4: MR5 bit A12. When x4 devices are used, this signal must be set to 0. - LPDDR4: MR3[6]
# PSU_DDRC_DBICTL_RD_DBI_EN 0x0
# Write DBI enable signal in DDRC. - 0 - Write DBI is disabled. - 1 - Write DBI is enabled. This signal must be set the same va
# ue as DRAM's mode register. - DDR4: MR5 bit A11. When x4 devices are used, this signal must be set to 0. - LPDDR4: MR3[7]
# PSU_DDRC_DBICTL_WR_DBI_EN 0x0
# DM enable signal in DDRC. - 0 - DM is disabled. - 1 - DM is enabled. This signal must be set the same logical value as DRAM's
# mode register. - DDR4: Set this to same value as MR5 bit A10. When x4 devices are used, this signal must be set to 0. - LPDDR
# : Set this to inverted value of MR13[5] which is opposite polarity from this signal
# PSU_DDRC_DBICTL_DM_EN 0x1
# DM/DBI Control Register
#(OFFSET, MASK, VALUE) (0XFD0701C0, 0x00000007U ,0x00000001U) */
mask_write 0XFD0701C0 0x00000007 0x00000001
# Register : ADDRMAP0 @ 0XFD070200</p>
# Selects the HIF address bit used as rank address bit 0. Valid Range: 0 to 27, and 31 Internal Base: 6 The selected HIF addres
# bit is determined by adding the internal base to the value of this field. If set to 31, rank address bit 0 is set to 0.
# PSU_DDRC_ADDRMAP0_ADDRMAP_CS_BIT0 0x1f
# Address Map Register 0
#(OFFSET, MASK, VALUE) (0XFD070200, 0x0000001FU ,0x0000001FU) */
mask_write 0XFD070200 0x0000001F 0x0000001F
# Register : ADDRMAP1 @ 0XFD070204</p>
# Selects the HIF address bit used as bank address bit 2. Valid Range: 0 to 29 and 31 Internal Base: 4 The selected HIF address
# bit is determined by adding the internal base to the value of this field. If set to 31, bank address bit 2 is set to 0.
# PSU_DDRC_ADDRMAP1_ADDRMAP_BANK_B2 0x1f
# Selects the HIF address bits used as bank address bit 1. Valid Range: 0 to 30 Internal Base: 3 The selected HIF address bit f
# r each of the bank address bits is determined by adding the internal base to the value of this field.
# PSU_DDRC_ADDRMAP1_ADDRMAP_BANK_B1 0xa
# Selects the HIF address bits used as bank address bit 0. Valid Range: 0 to 30 Internal Base: 2 The selected HIF address bit f
# r each of the bank address bits is determined by adding the internal base to the value of this field.
# PSU_DDRC_ADDRMAP1_ADDRMAP_BANK_B0 0xa
# Address Map Register 1
#(OFFSET, MASK, VALUE) (0XFD070204, 0x001F1F1FU ,0x001F0A0AU) */
mask_write 0XFD070204 0x001F1F1F 0x001F0A0A
# Register : ADDRMAP2 @ 0XFD070208</p>
# - Full bus width mode: Selects the HIF address bit used as column address bit 5. - Half bus width mode: Selects the HIF addre
# s bit used as column address bit 6. - Quarter bus width mode: Selects the HIF address bit used as column address bit 7 . Vali
# Range: 0 to 7, and 15 Internal Base: 5 The selected HIF address bit is determined by adding the internal base to the value o
# this field. If set to 15, this column address bit is set to 0.
# PSU_DDRC_ADDRMAP2_ADDRMAP_COL_B5 0x0
# - Full bus width mode: Selects the HIF address bit used as column address bit 4. - Half bus width mode: Selects the HIF addre
# s bit used as column address bit 5. - Quarter bus width mode: Selects the HIF address bit used as column address bit 6. Valid
# Range: 0 to 7, and 15 Internal Base: 4 The selected HIF address bit is determined by adding the internal base to the value of
# this field. If set to 15, this column address bit is set to 0.
# PSU_DDRC_ADDRMAP2_ADDRMAP_COL_B4 0x0
# - Full bus width mode: Selects the HIF address bit used as column address bit 3. - Half bus width mode: Selects the HIF addre
# s bit used as column address bit 4. - Quarter bus width mode: Selects the HIF address bit used as column address bit 5. Valid
# Range: 0 to 7 Internal Base: 3 The selected HIF address bit is determined by adding the internal base to the value of this fi
# ld. Note, if UMCTL2_INCL_ARB=1 and MEMC_BURST_LENGTH=16, it is required to program this to 0, hence register does not exist i
# this case.
# PSU_DDRC_ADDRMAP2_ADDRMAP_COL_B3 0x0
# - Full bus width mode: Selects the HIF address bit used as column address bit 2. - Half bus width mode: Selects the HIF addre
# s bit used as column address bit 3. - Quarter bus width mode: Selects the HIF address bit used as column address bit 4. Valid
# Range: 0 to 7 Internal Base: 2 The selected HIF address bit is determined by adding the internal base to the value of this fi
# ld. Note, if UMCTL2_INCL_ARB=1 and MEMC_BURST_LENGTH=8 or 16, it is required to program this to 0.
# PSU_DDRC_ADDRMAP2_ADDRMAP_COL_B2 0x0
# Address Map Register 2
#(OFFSET, MASK, VALUE) (0XFD070208, 0x0F0F0F0FU ,0x00000000U) */
mask_write 0XFD070208 0x0F0F0F0F 0x00000000
# Register : ADDRMAP3 @ 0XFD07020C</p>
# - Full bus width mode: Selects the HIF address bit used as column address bit 9. - Half bus width mode: Selects the HIF addre
# s bit used as column address bit 11 (10 in LPDDR2/LPDDR3 mode). - Quarter bus width mode: Selects the HIF address bit used as
# column address bit 13 (11 in LPDDR2/LPDDR3 mode). Valid Range: 0 to 7, and 15 Internal Base: 9 The selected HIF address bit i
# determined by adding the internal base to the value of this field. If set to 15, this column address bit is set to 0. Note:
# er JEDEC DDR2/3/mDDR specification, column address bit 10 is reserved for indicating auto-precharge, and hence no source addr
# ss bit can be mapped to column address bit 10. In LPDDR2/LPDDR3, there is a dedicated bit for auto-precharge in the CA bus an
# hence column bit 10 is used.
# PSU_DDRC_ADDRMAP3_ADDRMAP_COL_B9 0x0
# - Full bus width mode: Selects the HIF address bit used as column address bit 8. - Half bus width mode: Selects the HIF addre
# s bit used as column address bit 9. - Quarter bus width mode: Selects the HIF address bit used as column address bit 11 (10 i
# LPDDR2/LPDDR3 mode). Valid Range: 0 to 7, and 15 Internal Base: 8 The selected HIF address bit is determined by adding the i
# ternal base to the value of this field. If set to 15, this column address bit is set to 0. Note: Per JEDEC DDR2/3/mDDR specif
# cation, column address bit 10 is reserved for indicating auto-precharge, and hence no source address bit can be mapped to col
# mn address bit 10. In LPDDR2/LPDDR3, there is a dedicated bit for auto-precharge in the CA bus and hence column bit 10 is use
# .
# PSU_DDRC_ADDRMAP3_ADDRMAP_COL_B8 0x0
# - Full bus width mode: Selects the HIF address bit used as column address bit 7. - Half bus width mode: Selects the HIF addre
# s bit used as column address bit 8. - Quarter bus width mode: Selects the HIF address bit used as column address bit 9. Valid
# Range: 0 to 7, and 15 Internal Base: 7 The selected HIF address bit is determined by adding the internal base to the value of
# this field. If set to 15, this column address bit is set to 0.
# PSU_DDRC_ADDRMAP3_ADDRMAP_COL_B7 0x0
# - Full bus width mode: Selects the HIF address bit used as column address bit 6. - Half bus width mode: Selects the HIF addre
# s bit used as column address bit 7. - Quarter bus width mode: Selects the HIF address bit used as column address bit 8. Valid
# Range: 0 to 7, and 15 Internal Base: 6 The selected HIF address bit is determined by adding the internal base to the value of
# this field. If set to 15, this column address bit is set to 0.
# PSU_DDRC_ADDRMAP3_ADDRMAP_COL_B6 0x0
# Address Map Register 3
#(OFFSET, MASK, VALUE) (0XFD07020C, 0x0F0F0F0FU ,0x00000000U) */
mask_write 0XFD07020C 0x0F0F0F0F 0x00000000
# Register : ADDRMAP4 @ 0XFD070210</p>
# - Full bus width mode: Selects the HIF address bit used as column address bit 13 (11 in LPDDR2/LPDDR3 mode). - Half bus width
# mode: Unused. To make it unused, this should be tied to 4'hF. - Quarter bus width mode: Unused. To make it unused, this must
# e tied to 4'hF. Valid Range: 0 to 7, and 15 Internal Base: 11 The selected HIF address bit is determined by adding the intern
# l base to the value of this field. If set to 15, this column address bit is set to 0. Note: Per JEDEC DDR2/3/mDDR specificati
# n, column address bit 10 is reserved for indicating auto-precharge, and hence no source address bit can be mapped to column a
# dress bit 10. In LPDDR2/LPDDR3, there is a dedicated bit for auto-precharge in the CA bus and hence column bit 10 is used.
# PSU_DDRC_ADDRMAP4_ADDRMAP_COL_B11 0xf
# - Full bus width mode: Selects the HIF address bit used as column address bit 11 (10 in LPDDR2/LPDDR3 mode). - Half bus width
# mode: Selects the HIF address bit used as column address bit 13 (11 in LPDDR2/LPDDR3 mode). - Quarter bus width mode: UNUSED.
# To make it unused, this must be tied to 4'hF. Valid Range: 0 to 7, and 15 Internal Base: 10 The selected HIF address bit is d
# termined by adding the internal base to the value of this field. If set to 15, this column address bit is set to 0. Note: Per
# JEDEC DDR2/3/mDDR specification, column address bit 10 is reserved for indicating auto-precharge, and hence no source address
# bit can be mapped to column address bit 10. In LPDDR2/LPDDR3, there is a dedicated bit for auto-precharge in the CA bus and h
# nce column bit 10 is used.
# PSU_DDRC_ADDRMAP4_ADDRMAP_COL_B10 0xf
# Address Map Register 4
#(OFFSET, MASK, VALUE) (0XFD070210, 0x00000F0FU ,0x00000F0FU) */
mask_write 0XFD070210 0x00000F0F 0x00000F0F
# Register : ADDRMAP5 @ 0XFD070214</p>
# Selects the HIF address bit used as row address bit 11. Valid Range: 0 to 11, and 15 Internal Base: 17 The selected HIF addre
# s bit is determined by adding the internal base to the value of this field. If set to 15, row address bit 11 is set to 0.
# PSU_DDRC_ADDRMAP5_ADDRMAP_ROW_B11 0x8
# Selects the HIF address bits used as row address bits 2 to 10. Valid Range: 0 to 11, and 15 Internal Base: 8 (for row address
# bit 2), 9 (for row address bit 3), 10 (for row address bit 4) etc increasing to 16 (for row address bit 10) The selected HIF
# ddress bit for each of the row address bits is determined by adding the internal base to the value of this field. When value
# 5 is used the values of row address bits 2 to 10 are defined by registers ADDRMAP9, ADDRMAP10, ADDRMAP11.
# PSU_DDRC_ADDRMAP5_ADDRMAP_ROW_B2_10 0xf
# Selects the HIF address bits used as row address bit 1. Valid Range: 0 to 11 Internal Base: 7 The selected HIF address bit fo
# each of the row address bits is determined by adding the internal base to the value of this field.
# PSU_DDRC_ADDRMAP5_ADDRMAP_ROW_B1 0x8
# Selects the HIF address bits used as row address bit 0. Valid Range: 0 to 11 Internal Base: 6 The selected HIF address bit fo
# each of the row address bits is determined by adding the internal base to the value of this field.
# PSU_DDRC_ADDRMAP5_ADDRMAP_ROW_B0 0x8
# Address Map Register 5
#(OFFSET, MASK, VALUE) (0XFD070214, 0x0F0F0F0FU ,0x080F0808U) */
mask_write 0XFD070214 0x0F0F0F0F 0x080F0808
# Register : ADDRMAP6 @ 0XFD070218</p>
# Set this to 1 if there is an LPDDR3 SDRAM 6Gb or 12Gb device in use. - 1 - LPDDR3 SDRAM 6Gb/12Gb device in use. Every address
# having row[14:13]==2'b11 is considered as invalid - 0 - non-LPDDR3 6Gb/12Gb device in use. All addresses are valid Present on
# y in designs configured to support LPDDR3.
# PSU_DDRC_ADDRMAP6_LPDDR3_6GB_12GB 0x0
# Selects the HIF address bit used as row address bit 15. Valid Range: 0 to 11, and 15 Internal Base: 21 The selected HIF addre
# s bit is determined by adding the internal base to the value of this field. If set to 15, row address bit 15 is set to 0.
# PSU_DDRC_ADDRMAP6_ADDRMAP_ROW_B15 0xf
# Selects the HIF address bit used as row address bit 14. Valid Range: 0 to 11, and 15 Internal Base: 20 The selected HIF addre
# s bit is determined by adding the internal base to the value of this field. If set to 15, row address bit 14 is set to 0.
# PSU_DDRC_ADDRMAP6_ADDRMAP_ROW_B14 0x8
# Selects the HIF address bit used as row address bit 13. Valid Range: 0 to 11, and 15 Internal Base: 19 The selected HIF addre
# s bit is determined by adding the internal base to the value of this field. If set to 15, row address bit 13 is set to 0.
# PSU_DDRC_ADDRMAP6_ADDRMAP_ROW_B13 0x8
# Selects the HIF address bit used as row address bit 12. Valid Range: 0 to 11, and 15 Internal Base: 18 The selected HIF addre
# s bit is determined by adding the internal base to the value of this field. If set to 15, row address bit 12 is set to 0.
# PSU_DDRC_ADDRMAP6_ADDRMAP_ROW_B12 0x8
# Address Map Register 6
#(OFFSET, MASK, VALUE) (0XFD070218, 0x8F0F0F0FU ,0x0F080808U) */
mask_write 0XFD070218 0x8F0F0F0F 0x0F080808
# Register : ADDRMAP7 @ 0XFD07021C</p>
# Selects the HIF address bit used as row address bit 17. Valid Range: 0 to 10, and 15 Internal Base: 23 The selected HIF addre
# s bit is determined by adding the internal base to the value of this field. If set to 15, row address bit 17 is set to 0.
# PSU_DDRC_ADDRMAP7_ADDRMAP_ROW_B17 0xf
# Selects the HIF address bit used as row address bit 16. Valid Range: 0 to 11, and 15 Internal Base: 22 The selected HIF addre
# s bit is determined by adding the internal base to the value of this field. If set to 15, row address bit 16 is set to 0.
# PSU_DDRC_ADDRMAP7_ADDRMAP_ROW_B16 0xf
# Address Map Register 7
#(OFFSET, MASK, VALUE) (0XFD07021C, 0x00000F0FU ,0x00000F0FU) */
mask_write 0XFD07021C 0x00000F0F 0x00000F0F
# Register : ADDRMAP8 @ 0XFD070220</p>
# Selects the HIF address bits used as bank group address bit 1. Valid Range: 0 to 30, and 31 Internal Base: 3 The selected HIF
# address bit for each of the bank group address bits is determined by adding the internal base to the value of this field. If
# et to 31, bank group address bit 1 is set to 0.
# PSU_DDRC_ADDRMAP8_ADDRMAP_BG_B1 0x8
# Selects the HIF address bits used as bank group address bit 0. Valid Range: 0 to 30 Internal Base: 2 The selected HIF address
# bit for each of the bank group address bits is determined by adding the internal base to the value of this field.
# PSU_DDRC_ADDRMAP8_ADDRMAP_BG_B0 0x8
# Address Map Register 8
#(OFFSET, MASK, VALUE) (0XFD070220, 0x00001F1FU ,0x00000808U) */
mask_write 0XFD070220 0x00001F1F 0x00000808
# Register : ADDRMAP9 @ 0XFD070224</p>
# Selects the HIF address bits used as row address bit 5. Valid Range: 0 to 11 Internal Base: 11 The selected HIF address bit f
# r each of the row address bits is determined by adding the internal base to the value of this field. This register field is u
# ed only when ADDRMAP5.addrmap_row_b2_10 is set to value 15.
# PSU_DDRC_ADDRMAP9_ADDRMAP_ROW_B5 0x8
# Selects the HIF address bits used as row address bit 4. Valid Range: 0 to 11 Internal Base: 10 The selected HIF address bit f
# r each of the row address bits is determined by adding the internal base to the value of this field. This register field is u
# ed only when ADDRMAP5.addrmap_row_b2_10 is set to value 15.
# PSU_DDRC_ADDRMAP9_ADDRMAP_ROW_B4 0x8
# Selects the HIF address bits used as row address bit 3. Valid Range: 0 to 11 Internal Base: 9 The selected HIF address bit fo
# each of the row address bits is determined by adding the internal base to the value of this field. This register field is us
# d only when ADDRMAP5.addrmap_row_b2_10 is set to value 15.
# PSU_DDRC_ADDRMAP9_ADDRMAP_ROW_B3 0x8
# Selects the HIF address bits used as row address bit 2. Valid Range: 0 to 11 Internal Base: 8 The selected HIF address bit fo
# each of the row address bits is determined by adding the internal base to the value of this field. This register field is us
# d only when ADDRMAP5.addrmap_row_b2_10 is set to value 15.
# PSU_DDRC_ADDRMAP9_ADDRMAP_ROW_B2 0x8
# Address Map Register 9
#(OFFSET, MASK, VALUE) (0XFD070224, 0x0F0F0F0FU ,0x08080808U) */
mask_write 0XFD070224 0x0F0F0F0F 0x08080808
# Register : ADDRMAP10 @ 0XFD070228</p>
# Selects the HIF address bits used as row address bit 9. Valid Range: 0 to 11 Internal Base: 15 The selected HIF address bit f
# r each of the row address bits is determined by adding the internal base to the value of this field. This register field is u
# ed only when ADDRMAP5.addrmap_row_b2_10 is set to value 15.
# PSU_DDRC_ADDRMAP10_ADDRMAP_ROW_B9 0x8
# Selects the HIF address bits used as row address bit 8. Valid Range: 0 to 11 Internal Base: 14 The selected HIF address bit f
# r each of the row address bits is determined by adding the internal base to the value of this field. This register field is u
# ed only when ADDRMAP5.addrmap_row_b2_10 is set to value 15.
# PSU_DDRC_ADDRMAP10_ADDRMAP_ROW_B8 0x8
# Selects the HIF address bits used as row address bit 7. Valid Range: 0 to 11 Internal Base: 13 The selected HIF address bit f
# r each of the row address bits is determined by adding the internal base to the value of this field. This register field is u
# ed only when ADDRMAP5.addrmap_row_b2_10 is set to value 15.
# PSU_DDRC_ADDRMAP10_ADDRMAP_ROW_B7 0x8
# Selects the HIF address bits used as row address bit 6. Valid Range: 0 to 11 Internal Base: 12 The selected HIF address bit f
# r each of the row address bits is determined by adding the internal base to the value of this field. This register field is u
# ed only when ADDRMAP5.addrmap_row_b2_10 is set to value 15.
# PSU_DDRC_ADDRMAP10_ADDRMAP_ROW_B6 0x8
# Address Map Register 10
#(OFFSET, MASK, VALUE) (0XFD070228, 0x0F0F0F0FU ,0x08080808U) */
mask_write 0XFD070228 0x0F0F0F0F 0x08080808
# Register : ADDRMAP11 @ 0XFD07022C</p>
# Selects the HIF address bits used as row address bit 10. Valid Range: 0 to 11 Internal Base: 16 The selected HIF address bit
# or each of the row address bits is determined by adding the internal base to the value of this field. This register field is
# sed only when ADDRMAP5.addrmap_row_b2_10 is set to value 15.
# PSU_DDRC_ADDRMAP11_ADDRMAP_ROW_B10 0x8
# Address Map Register 11
#(OFFSET, MASK, VALUE) (0XFD07022C, 0x0000000FU ,0x00000008U) */
mask_write 0XFD07022C 0x0000000F 0x00000008
# Register : ODTCFG @ 0XFD070240</p>
# Cycles to hold ODT for a write command. The minimum supported value is 2. Recommended values: DDR2: - BL8: 0x5 (DDR2-400/533/
# 67), 0x6 (DDR2-800), 0x7 (DDR2-1066) - BL4: 0x3 (DDR2-400/533/667), 0x4 (DDR2-800), 0x5 (DDR2-1066) DDR3: - BL8: 0x6 DDR4: -
# L8: 5 + WR_PREAMBLE + CRC_MODE WR_PREAMBLE = 1 (1tCK write preamble), 2 (2tCK write preamble) CRC_MODE = 0 (not CRC mode), 1
# CRC mode) LPDDR3: - BL8: 7 + RU(tODTon(max)/tCK)
# PSU_DDRC_ODTCFG_WR_ODT_HOLD 0x6
# The delay, in clock cycles, from issuing a write command to setting ODT values associated with that command. ODT setting must
# remain constant for the entire time that DQS is driven by the uMCTL2. Recommended values: DDR2: - CWL + AL - 3 (DDR2-400/533/
# 67), CWL + AL - 4 (DDR2-800), CWL + AL - 5 (DDR2-1066) If (CWL + AL - 3 < 0), uMCTL2 does not support ODT for write operation
# DDR3: - 0x0 DDR4: - DFITMG1.dfi_t_cmd_lat (to adjust for CAL mode) LPDDR3: - WL - 1 - RU(tODTon(max)/tCK))
# PSU_DDRC_ODTCFG_WR_ODT_DELAY 0x0
# Cycles to hold ODT for a read command. The minimum supported value is 2. Recommended values: DDR2: - BL8: 0x6 (not DDR2-1066)
# 0x7 (DDR2-1066) - BL4: 0x4 (not DDR2-1066), 0x5 (DDR2-1066) DDR3: - BL8 - 0x6 DDR4: - BL8: 5 + RD_PREAMBLE RD_PREAMBLE = 1 (
# tCK write preamble), 2 (2tCK write preamble) LPDDR3: - BL8: 5 + RU(tDQSCK(max)/tCK) - RD(tDQSCK(min)/tCK) + RU(tODTon(max)/tC
# )
# PSU_DDRC_ODTCFG_RD_ODT_HOLD 0x6
# The delay, in clock cycles, from issuing a read command to setting ODT values associated with that command. ODT setting must
# emain constant for the entire time that DQS is driven by the uMCTL2. Recommended values: DDR2: - CL + AL - 4 (not DDR2-1066),
# CL + AL - 5 (DDR2-1066) If (CL + AL - 4 < 0), uMCTL2 does not support ODT for read operation. DDR3: - CL - CWL DDR4: - CL - C
# L - RD_PREAMBLE + WR_PREAMBLE + DFITMG1.dfi_t_cmd_lat (to adjust for CAL mode) WR_PREAMBLE = 1 (1tCK write preamble), 2 (2tCK
# write preamble) RD_PREAMBLE = 1 (1tCK write preamble), 2 (2tCK write preamble) If (CL - CWL - RD_PREAMBLE + WR_PREAMBLE) < 0,
# uMCTL2 does not support ODT for read operation. LPDDR3: - RL + RD(tDQSCK(min)/tCK) - 1 - RU(tODTon(max)/tCK)
# PSU_DDRC_ODTCFG_RD_ODT_DELAY 0x0
# ODT Configuration Register
#(OFFSET, MASK, VALUE) (0XFD070240, 0x0F1F0F7CU ,0x06000600U) */
mask_write 0XFD070240 0x0F1F0F7C 0x06000600
# Register : ODTMAP @ 0XFD070244</p>
# Indicates which remote ODTs must be turned on during a read from rank 1. Each rank has a remote ODT (in the SDRAM) which can
# e turned on by setting the appropriate bit here. Rank 0 is controlled by the LSB; rank 1 is controlled by bit next to the LSB
# etc. For each rank, set its bit to 1 to enable its ODT. Present only in configurations that have 2 or more ranks
# PSU_DDRC_ODTMAP_RANK1_RD_ODT 0x0
# Indicates which remote ODTs must be turned on during a write to rank 1. Each rank has a remote ODT (in the SDRAM) which can b
# turned on by setting the appropriate bit here. Rank 0 is controlled by the LSB; rank 1 is controlled by bit next to the LSB,
# etc. For each rank, set its bit to 1 to enable its ODT. Present only in configurations that have 2 or more ranks
# PSU_DDRC_ODTMAP_RANK1_WR_ODT 0x0
# Indicates which remote ODTs must be turned on during a read from rank 0. Each rank has a remote ODT (in the SDRAM) which can
# e turned on by setting the appropriate bit here. Rank 0 is controlled by the LSB; rank 1 is controlled by bit next to the LSB
# etc. For each rank, set its bit to 1 to enable its ODT.
# PSU_DDRC_ODTMAP_RANK0_RD_ODT 0x0
# Indicates which remote ODTs must be turned on during a write to rank 0. Each rank has a remote ODT (in the SDRAM) which can b
# turned on by setting the appropriate bit here. Rank 0 is controlled by the LSB; rank 1 is controlled by bit next to the LSB,
# etc. For each rank, set its bit to 1 to enable its ODT.
# PSU_DDRC_ODTMAP_RANK0_WR_ODT 0x1
# ODT/Rank Map Register
#(OFFSET, MASK, VALUE) (0XFD070244, 0x00003333U ,0x00000001U) */
mask_write 0XFD070244 0x00003333 0x00000001
# Register : SCHED @ 0XFD070250</p>
# When the preferred transaction store is empty for these many clock cycles, switch to the alternate transaction store if it is
# non-empty. The read transaction store (both high and low priority) is the default preferred transaction store and the write t
# ansaction store is the alternative store. When prefer write over read is set this is reversed. 0x0 is a legal value for this
# egister. When set to 0x0, the transaction store switching will happen immediately when the switching conditions become true.
# OR PERFORMANCE ONLY
# PSU_DDRC_SCHED_RDWR_IDLE_GAP 0x1
# UNUSED
# PSU_DDRC_SCHED_GO2CRITICAL_HYSTERESIS 0x0
# Number of entries in the low priority transaction store is this value + 1. (MEMC_NO_OF_ENTRY - (SCHED.lpr_num_entries + 1)) i
# the number of entries available for the high priority transaction store. Setting this to maximum value allocates all entries
# to low priority transaction store. Setting this to 0 allocates 1 entry to low priority transaction store and the rest to high
# priority transaction store. Note: In ECC configurations, the numbers of write and low priority read credits issued is one les
# than in the non-ECC case. One entry each is reserved in the write and low-priority read CAMs for storing the RMW requests ar
# sing out of single bit error correction RMW operation.
# PSU_DDRC_SCHED_LPR_NUM_ENTRIES 0x20
# If true, bank is kept open only while there are page hit transactions available in the CAM to that bank. The last read or wri
# e command in the CAM with a bank and page hit will be executed with auto-precharge if SCHED1.pageclose_timer=0. Even if this
# egister set to 1 and SCHED1.pageclose_timer is set to 0, explicit precharge (and not auto-precharge) may be issued in some ca
# es where there is a mode switch between Write and Read or between LPR and HPR. The Read and Write commands that are executed
# s part of the ECC scrub requests are also executed without auto-precharge. If false, the bank remains open until there is a n
# ed to close it (to open a different page, or for page timeout or refresh timeout) - also known as open page policy. The open
# age policy can be overridden by setting the per-command-autopre bit on the HIF interface (hif_cmd_autopre). The pageclose fea
# ure provids a midway between Open and Close page policies. FOR PERFORMANCE ONLY.
# PSU_DDRC_SCHED_PAGECLOSE 0x0
# If set then the bank selector prefers writes over reads. FOR DEBUG ONLY.
# PSU_DDRC_SCHED_PREFER_WRITE 0x0
# Active low signal. When asserted ('0'), all incoming transactions are forced to low priority. This implies that all High Prio
# ity Read (HPR) and Variable Priority Read commands (VPR) will be treated as Low Priority Read (LPR) commands. On the write si
# e, all Variable Priority Write (VPW) commands will be treated as Normal Priority Write (NPW) commands. Forcing the incoming t
# ansactions to low priority implicitly turns off Bypass path for read commands. FOR PERFORMANCE ONLY.
# PSU_DDRC_SCHED_FORCE_LOW_PRI_N 0x1
# Scheduler Control Register
#(OFFSET, MASK, VALUE) (0XFD070250, 0x7FFF3F07U ,0x01002001U) */
mask_write 0XFD070250 0x7FFF3F07 0x01002001
# Register : PERFLPR1 @ 0XFD070264</p>
# Number of transactions that are serviced once the LPR queue goes critical is the smaller of: - (a) This number - (b) Number o
# transactions available. Unit: Transaction. FOR PERFORMANCE ONLY.
# PSU_DDRC_PERFLPR1_LPR_XACT_RUN_LENGTH 0x8
# Number of clocks that the LPR queue can be starved before it goes critical. The minimum valid functional value for this regis
# er is 0x1. Programming it to 0x0 will disable the starvation functionality; during normal operation, this function should not
# be disabled as it will cause excessive latencies. Unit: Clock cycles. FOR PERFORMANCE ONLY.
# PSU_DDRC_PERFLPR1_LPR_MAX_STARVE 0x40
# Low Priority Read CAM Register 1
#(OFFSET, MASK, VALUE) (0XFD070264, 0xFF00FFFFU ,0x08000040U) */
mask_write 0XFD070264 0xFF00FFFF 0x08000040
# Register : PERFWR1 @ 0XFD07026C</p>
# Number of transactions that are serviced once the WR queue goes critical is the smaller of: - (a) This number - (b) Number of
# transactions available. Unit: Transaction. FOR PERFORMANCE ONLY.
# PSU_DDRC_PERFWR1_W_XACT_RUN_LENGTH 0x8
# Number of clocks that the WR queue can be starved before it goes critical. The minimum valid functional value for this regist
# r is 0x1. Programming it to 0x0 will disable the starvation functionality; during normal operation, this function should not
# e disabled as it will cause excessive latencies. Unit: Clock cycles. FOR PERFORMANCE ONLY.
# PSU_DDRC_PERFWR1_W_MAX_STARVE 0x40
# Write CAM Register 1
#(OFFSET, MASK, VALUE) (0XFD07026C, 0xFF00FFFFU ,0x08000040U) */
mask_write 0XFD07026C 0xFF00FFFF 0x08000040
# Register : DQMAP5 @ 0XFD070294</p>
# All even ranks have the same DQ mapping controled by DQMAP0-4 register as rank 0. This register provides DQ swap function for
# all odd ranks to support CRC feature. rank based DQ swapping is: swap bit 0 with 1, swap bit 2 with 3, swap bit 4 with 5 and
# wap bit 6 with 7. 1: Disable rank based DQ swapping 0: Enable rank based DQ swapping Present only in designs configured to su
# port DDR4.
# PSU_DDRC_DQMAP5_DIS_DQ_RANK_SWAP 0x1
# DQ Map Register 5
#(OFFSET, MASK, VALUE) (0XFD070294, 0x00000001U ,0x00000001U) */
mask_write 0XFD070294 0x00000001 0x00000001
# Register : DBG0 @ 0XFD070300</p>
# When this is set to '0', auto-precharge is disabled for the flushed command in a collision case. Collision cases are write fo
# lowed by read to same address, read followed by write to same address, or write followed by write to same address with DBG0.d
# s_wc bit = 1 (where same address comparisons exclude the two address bits representing critical word). FOR DEBUG ONLY.
# PSU_DDRC_DBG0_DIS_COLLISION_PAGE_OPT 0x0
# When 1, disable write combine. FOR DEBUG ONLY
# PSU_DDRC_DBG0_DIS_WC 0x0
# Debug Register 0
#(OFFSET, MASK, VALUE) (0XFD070300, 0x00000011U ,0x00000000U) */
mask_write 0XFD070300 0x00000011 0x00000000
# Register : DBGCMD @ 0XFD07030C</p>
# Setting this register bit to 1 allows refresh and ZQCS commands to be triggered from hardware via the IOs ext_*. If set to 1,
# the fields DBGCMD.zq_calib_short and DBGCMD.rank*_refresh have no function, and are ignored by the uMCTL2 logic. Setting this
# register bit to 0 allows refresh and ZQCS to be triggered from software, via the fields DBGCMD.zq_calib_short and DBGCMD.rank
# _refresh. If set to 0, the hardware pins ext_* have no function, and are ignored by the uMCTL2 logic. This register is static
# and may only be changed when the DDRC reset signal, core_ddrc_rstn, is asserted (0).
# PSU_DDRC_DBGCMD_HW_REF_ZQ_EN 0x0
# Setting this register bit to 1 indicates to the uMCTL2 to issue a dfi_ctrlupd_req to the PHY. When this request is stored in
# he uMCTL2, the bit is automatically cleared. This operation must only be performed when DFIUPD0.dis_auto_ctrlupd=1.
# PSU_DDRC_DBGCMD_CTRLUPD 0x0
# Setting this register bit to 1 indicates to the uMCTL2 to issue a ZQCS (ZQ calibration short)/MPC(ZQ calibration) command to
# he SDRAM. When this request is stored in the uMCTL2, the bit is automatically cleared. This operation can be performed only w
# en ZQCTL0.dis_auto_zq=1. It is recommended NOT to set this register bit if in Init operating mode. This register bit is ignor
# d when in Self-Refresh(except LPDDR4) and SR-Powerdown(LPDDR4) and Deep power-down operating modes and Maximum Power Saving M
# de.
# PSU_DDRC_DBGCMD_ZQ_CALIB_SHORT 0x0
# Setting this register bit to 1 indicates to the uMCTL2 to issue a refresh to rank 1. Writing to this bit causes DBGSTAT.rank1
# refresh_busy to be set. When DBGSTAT.rank1_refresh_busy is cleared, the command has been stored in uMCTL2. This operation can
# be performed only when RFSHCTL3.dis_auto_refresh=1. It is recommended NOT to set this register bit if in Init or Deep power-d
# wn operating modes or Maximum Power Saving Mode.
# PSU_DDRC_DBGCMD_RANK1_REFRESH 0x0
# Setting this register bit to 1 indicates to the uMCTL2 to issue a refresh to rank 0. Writing to this bit causes DBGSTAT.rank0
# refresh_busy to be set. When DBGSTAT.rank0_refresh_busy is cleared, the command has been stored in uMCTL2. This operation can
# be performed only when RFSHCTL3.dis_auto_refresh=1. It is recommended NOT to set this register bit if in Init or Deep power-d
# wn operating modes or Maximum Power Saving Mode.
# PSU_DDRC_DBGCMD_RANK0_REFRESH 0x0
# Command Debug Register
#(OFFSET, MASK, VALUE) (0XFD07030C, 0x80000033U ,0x00000000U) */
mask_write 0XFD07030C 0x80000033 0x00000000
# Register : SWCTL @ 0XFD070320</p>
# Enable quasi-dynamic register programming outside reset. Program register to 0 to enable quasi-dynamic programming. Set back
# egister to 1 once programming is done.
# PSU_DDRC_SWCTL_SW_DONE 0x0
# Software register programming control enable
#(OFFSET, MASK, VALUE) (0XFD070320, 0x00000001U ,0x00000000U) */
mask_write 0XFD070320 0x00000001 0x00000000
# Register : PCCFG @ 0XFD070400</p>
# Burst length expansion mode. By default (i.e. bl_exp_mode==0) XPI expands every AXI burst into multiple HIF commands, using t
# e memory burst length as a unit. If set to 1, then XPI will use half of the memory burst length as a unit. This applies to bo
# h reads and writes. When MSTR.data_bus_width==00, setting bl_exp_mode to 1 has no effect. This can be used in cases where Par
# ial Writes is enabled (UMCTL2_PARTIAL_WR=1) and DBG0.dis_wc=1, in order to avoid or minimize t_ccd_l penalty in DDR4 and t_cc
# _mw penalty in LPDDR4. Note that if DBICTL.reg_ddrc_dm_en=0, functionality is not supported in the following cases: - UMCTL2_
# ARTIAL_WR=0 - UMCTL2_PARTIAL_WR=1, MSTR.reg_ddrc_data_bus_width=01, MEMC_BURST_LENGTH=8 and MSTR.reg_ddrc_burst_rdwr=1000 (LP
# DR4 only) - UMCTL2_PARTIAL_WR=1, MSTR.reg_ddrc_data_bus_width=01, MEMC_BURST_LENGTH=4 and MSTR.reg_ddrc_burst_rdwr=0100 (DDR4
# only), with either MSTR.reg_ddrc_burstchop=0 or CRCPARCTL1.reg_ddrc_crc_enable=1 Functionality is also not supported if Share
# -AC is enabled
# PSU_DDRC_PCCFG_BL_EXP_MODE 0x0
# Page match four limit. If set to 1, limits the number of consecutive same page DDRC transactions that can be granted by the P
# rt Arbiter to four when Page Match feature is enabled. If set to 0, there is no limit imposed on number of consecutive same p
# ge DDRC transactions.
# PSU_DDRC_PCCFG_PAGEMATCH_LIMIT 0x0
# If set to 1 (enabled), sets co_gs_go2critical_wr and co_gs_go2critical_lpr/co_gs_go2critical_hpr signals going to DDRC based
# n urgent input (awurgent, arurgent) coming from AXI master. If set to 0 (disabled), co_gs_go2critical_wr and co_gs_go2critica
# _lpr/co_gs_go2critical_hpr signals at DDRC are driven to 1b'0.
# PSU_DDRC_PCCFG_GO2CRITICAL_EN 0x1
# Port Common Configuration Register
#(OFFSET, MASK, VALUE) (0XFD070400, 0x00000111U ,0x00000001U) */
mask_write 0XFD070400 0x00000111 0x00000001
# Register : PCFGR_0 @ 0XFD070404</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesting port is granted, the port is continued to be grant
# d if the following immediate commands are to the same memory page (same bank and same row). See also related PCCFG.pagematch_
# imit register.
# PSU_DDRC_PCFGR_0_RD_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (arurgent). When enabled and arurgent is asserted by the master, that por
# becomes the highest priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DDRC is asserted if enabled in PCCFG.
# o2critical_en register. Note that arurgent signal can be asserted anytime and as long as required which is independent of add
# ess handshaking (it is not associated with any particular command).
# PSU_DDRC_PCFGR_0_RD_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the read channel of the port.
# PSU_DDRC_PCFGR_0_RD_PORT_AGING_EN 0x0
# Determines the initial load value of read aging counters. These counters will be parallel loaded after reset, or after each g
# ant to the corresponding port. The aging counters down-count every clock cycle where the port is requesting but not granted.
# he higher significant 5-bits of the read aging counter sets the priority of the read channel of a given port. Port's priority
# will increase as the higher significant 5-bits of the counter starts to decrease. When the aging counter becomes 0, the corre
# ponding port channel will have the highest priority level (timeout condition - Priority0). For multi-port configurations, the
# aging counters cannot be used to set port priorities when external dynamic priority inputs (arqos) are enabled (timeout is st
# ll applicable). For single port configurations, the aging counters are only used when they timeout (become 0) to force read-w
# ite direction switching. In this case, external dynamic priority input, arqos (for reads only) can still be used to set the D
# RC read priority (2 priority levels: low priority read - LPR, high priority read - HPR) on a command by command basis. Note:
# he two LSBs of this register field are tied internally to 2'b00.
# PSU_DDRC_PCFGR_0_RD_PORT_PRIORITY 0xf
# Port n Configuration Read Register
#(OFFSET, MASK, VALUE) (0XFD070404, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD070404 0x000073FF 0x0000200F
# Register : PCFGW_0 @ 0XFD070408</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesting port is granted, the port is continued to be grant
# d if the following immediate commands are to the same memory page (same bank and same row). See also related PCCFG.pagematch_
# imit register.
# PSU_DDRC_PCFGW_0_WR_PORT_PAGEMATCH_EN 0x1
# If set to 1, enables the AXI urgent sideband signal (awurgent). When enabled and awurgent is asserted by the master, that por
# becomes the highest priority and co_gs_go2critical_wr signal to DDRC is asserted if enabled in PCCFG.go2critical_en register
# Note that awurgent signal can be asserted anytime and as long as required which is independent of address handshaking (it is
# not associated with any particular command).
# PSU_DDRC_PCFGW_0_WR_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the write channel of the port.
# PSU_DDRC_PCFGW_0_WR_PORT_AGING_EN 0x0
# Determines the initial load value of write aging counters. These counters will be parallel loaded after reset, or after each
# rant to the corresponding port. The aging counters down-count every clock cycle where the port is requesting but not granted.
# The higher significant 5-bits of the write aging counter sets the initial priority of the write channel of a given port. Port
# s priority will increase as the higher significant 5-bits of the counter starts to decrease. When the aging counter becomes 0
# the corresponding port channel will have the highest priority level. For multi-port configurations, the aging counters canno
# be used to set port priorities when external dynamic priority inputs (awqos) are enabled (timeout is still applicable). For
# ingle port configurations, the aging counters are only used when they timeout (become 0) to force read-write direction switch
# ng. Note: The two LSBs of this register field are tied internally to 2'b00.
# PSU_DDRC_PCFGW_0_WR_PORT_PRIORITY 0xf
# Port n Configuration Write Register
#(OFFSET, MASK, VALUE) (0XFD070408, 0x000073FFU ,0x0000600FU) */
mask_write 0XFD070408 0x000073FF 0x0000600F
# Register : PCTRL_0 @ 0XFD070490</p>
# Enables port n.
# PSU_DDRC_PCTRL_0_PORT_EN 0x1
# Port n Control Register
#(OFFSET, MASK, VALUE) (0XFD070490, 0x00000001U ,0x00000001U) */
mask_write 0XFD070490 0x00000001 0x00000001
# Register : PCFGQOS0_0 @ 0XFD070494</p>
# This bitfield indicates the traffic class of region 1. Valid values are: 0 : LPR, 1: VPR, 2: HPR. For dual address queue conf
# gurations, region1 maps to the blue address queue. In this case, valid values are 0: LPR and 1: VPR only. When VPR support is
# disabled (UMCTL2_VPR_EN = 0) and traffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR traffic.
# PSU_DDRC_PCFGQOS0_0_RQOS_MAP_REGION1 0x2
# This bitfield indicates the traffic class of region 0. Valid values are: 0: LPR, 1: VPR, 2: HPR. For dual address queue confi
# urations, region 0 maps to the blue address queue. In this case, valid values are: 0: LPR and 1: VPR only. When VPR support i
# disabled (UMCTL2_VPR_EN = 0) and traffic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR traffic.
# PSU_DDRC_PCFGQOS0_0_RQOS_MAP_REGION0 0x0
# Separation level1 indicating the end of region0 mapping; start of region0 is 0. Possible values for level1 are 0 to 13 (for d
# al RAQ) or 0 to 14 (for single RAQ) which corresponds to arqos. Note that for PA, arqos values are used directly as port prio
# ities, where the higher the value corresponds to higher port priority. All of the map_level* registers must be set to distinc
# values.
# PSU_DDRC_PCFGQOS0_0_RQOS_MAP_LEVEL1 0xb
# Port n Read QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD070494, 0x0033000FU ,0x0020000BU) */
mask_write 0XFD070494 0x0033000F 0x0020000B
# Register : PCFGQOS1_0 @ 0XFD070498</p>
# Specifies the timeout value for transactions mapped to the red address queue.
# PSU_DDRC_PCFGQOS1_0_RQOS_MAP_TIMEOUTR 0x0
# Specifies the timeout value for transactions mapped to the blue address queue.
# PSU_DDRC_PCFGQOS1_0_RQOS_MAP_TIMEOUTB 0x0
# Port n Read QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD070498, 0x07FF07FFU ,0x00000000U) */
mask_write 0XFD070498 0x07FF07FF 0x00000000
# Register : PCFGR_1 @ 0XFD0704B4</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesting port is granted, the port is continued to be grant
# d if the following immediate commands are to the same memory page (same bank and same row). See also related PCCFG.pagematch_
# imit register.
# PSU_DDRC_PCFGR_1_RD_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (arurgent). When enabled and arurgent is asserted by the master, that por
# becomes the highest priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DDRC is asserted if enabled in PCCFG.
# o2critical_en register. Note that arurgent signal can be asserted anytime and as long as required which is independent of add
# ess handshaking (it is not associated with any particular command).
# PSU_DDRC_PCFGR_1_RD_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the read channel of the port.
# PSU_DDRC_PCFGR_1_RD_PORT_AGING_EN 0x0
# Determines the initial load value of read aging counters. These counters will be parallel loaded after reset, or after each g
# ant to the corresponding port. The aging counters down-count every clock cycle where the port is requesting but not granted.
# he higher significant 5-bits of the read aging counter sets the priority of the read channel of a given port. Port's priority
# will increase as the higher significant 5-bits of the counter starts to decrease. When the aging counter becomes 0, the corre
# ponding port channel will have the highest priority level (timeout condition - Priority0). For multi-port configurations, the
# aging counters cannot be used to set port priorities when external dynamic priority inputs (arqos) are enabled (timeout is st
# ll applicable). For single port configurations, the aging counters are only used when they timeout (become 0) to force read-w
# ite direction switching. In this case, external dynamic priority input, arqos (for reads only) can still be used to set the D
# RC read priority (2 priority levels: low priority read - LPR, high priority read - HPR) on a command by command basis. Note:
# he two LSBs of this register field are tied internally to 2'b00.
# PSU_DDRC_PCFGR_1_RD_PORT_PRIORITY 0xf
# Port n Configuration Read Register
#(OFFSET, MASK, VALUE) (0XFD0704B4, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD0704B4 0x000073FF 0x0000200F
# Register : PCFGW_1 @ 0XFD0704B8</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesting port is granted, the port is continued to be grant
# d if the following immediate commands are to the same memory page (same bank and same row). See also related PCCFG.pagematch_
# imit register.
# PSU_DDRC_PCFGW_1_WR_PORT_PAGEMATCH_EN 0x1
# If set to 1, enables the AXI urgent sideband signal (awurgent). When enabled and awurgent is asserted by the master, that por
# becomes the highest priority and co_gs_go2critical_wr signal to DDRC is asserted if enabled in PCCFG.go2critical_en register
# Note that awurgent signal can be asserted anytime and as long as required which is independent of address handshaking (it is
# not associated with any particular command).
# PSU_DDRC_PCFGW_1_WR_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the write channel of the port.
# PSU_DDRC_PCFGW_1_WR_PORT_AGING_EN 0x0
# Determines the initial load value of write aging counters. These counters will be parallel loaded after reset, or after each
# rant to the corresponding port. The aging counters down-count every clock cycle where the port is requesting but not granted.
# The higher significant 5-bits of the write aging counter sets the initial priority of the write channel of a given port. Port
# s priority will increase as the higher significant 5-bits of the counter starts to decrease. When the aging counter becomes 0
# the corresponding port channel will have the highest priority level. For multi-port configurations, the aging counters canno
# be used to set port priorities when external dynamic priority inputs (awqos) are enabled (timeout is still applicable). For
# ingle port configurations, the aging counters are only used when they timeout (become 0) to force read-write direction switch
# ng. Note: The two LSBs of this register field are tied internally to 2'b00.
# PSU_DDRC_PCFGW_1_WR_PORT_PRIORITY 0xf
# Port n Configuration Write Register
#(OFFSET, MASK, VALUE) (0XFD0704B8, 0x000073FFU ,0x0000600FU) */
mask_write 0XFD0704B8 0x000073FF 0x0000600F
# Register : PCTRL_1 @ 0XFD070540</p>
# Enables port n.
# PSU_DDRC_PCTRL_1_PORT_EN 0x1
# Port n Control Register
#(OFFSET, MASK, VALUE) (0XFD070540, 0x00000001U ,0x00000001U) */
mask_write 0XFD070540 0x00000001 0x00000001
# Register : PCFGQOS0_1 @ 0XFD070544</p>
# This bitfield indicates the traffic class of region2. For dual address queue configurations, region2 maps to the red address
# ueue. Valid values are 1: VPR and 2: HPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and traffic class of region2
# s set to 1 (VPR), VPR traffic is aliased to LPR traffic.
# PSU_DDRC_PCFGQOS0_1_RQOS_MAP_REGION2 0x2
# This bitfield indicates the traffic class of region 1. Valid values are: 0 : LPR, 1: VPR, 2: HPR. For dual address queue conf
# gurations, region1 maps to the blue address queue. In this case, valid values are 0: LPR and 1: VPR only. When VPR support is
# disabled (UMCTL2_VPR_EN = 0) and traffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR traffic.
# PSU_DDRC_PCFGQOS0_1_RQOS_MAP_REGION1 0x0
# This bitfield indicates the traffic class of region 0. Valid values are: 0: LPR, 1: VPR, 2: HPR. For dual address queue confi
# urations, region 0 maps to the blue address queue. In this case, valid values are: 0: LPR and 1: VPR only. When VPR support i
# disabled (UMCTL2_VPR_EN = 0) and traffic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR traffic.
# PSU_DDRC_PCFGQOS0_1_RQOS_MAP_REGION0 0x0
# Separation level2 indicating the end of region1 mapping; start of region1 is (level1 + 1). Possible values for level2 are (le
# el1 + 1) to 14 which corresponds to arqos. Region2 starts from (level2 + 1) up to 15. Note that for PA, arqos values are used
# directly as port priorities, where the higher the value corresponds to higher port priority. All of the map_level* registers
# ust be set to distinct values.
# PSU_DDRC_PCFGQOS0_1_RQOS_MAP_LEVEL2 0xb
# Separation level1 indicating the end of region0 mapping; start of region0 is 0. Possible values for level1 are 0 to 13 (for d
# al RAQ) or 0 to 14 (for single RAQ) which corresponds to arqos. Note that for PA, arqos values are used directly as port prio
# ities, where the higher the value corresponds to higher port priority. All of the map_level* registers must be set to distinc
# values.
# PSU_DDRC_PCFGQOS0_1_RQOS_MAP_LEVEL1 0x3
# Port n Read QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD070544, 0x03330F0FU ,0x02000B03U) */
mask_write 0XFD070544 0x03330F0F 0x02000B03
# Register : PCFGQOS1_1 @ 0XFD070548</p>
# Specifies the timeout value for transactions mapped to the red address queue.
# PSU_DDRC_PCFGQOS1_1_RQOS_MAP_TIMEOUTR 0x0
# Specifies the timeout value for transactions mapped to the blue address queue.
# PSU_DDRC_PCFGQOS1_1_RQOS_MAP_TIMEOUTB 0x0
# Port n Read QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD070548, 0x07FF07FFU ,0x00000000U) */
mask_write 0XFD070548 0x07FF07FF 0x00000000
# Register : PCFGR_2 @ 0XFD070564</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesting port is granted, the port is continued to be grant
# d if the following immediate commands are to the same memory page (same bank and same row). See also related PCCFG.pagematch_
# imit register.
# PSU_DDRC_PCFGR_2_RD_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (arurgent). When enabled and arurgent is asserted by the master, that por
# becomes the highest priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DDRC is asserted if enabled in PCCFG.
# o2critical_en register. Note that arurgent signal can be asserted anytime and as long as required which is independent of add
# ess handshaking (it is not associated with any particular command).
# PSU_DDRC_PCFGR_2_RD_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the read channel of the port.
# PSU_DDRC_PCFGR_2_RD_PORT_AGING_EN 0x0
# Determines the initial load value of read aging counters. These counters will be parallel loaded after reset, or after each g
# ant to the corresponding port. The aging counters down-count every clock cycle where the port is requesting but not granted.
# he higher significant 5-bits of the read aging counter sets the priority of the read channel of a given port. Port's priority
# will increase as the higher significant 5-bits of the counter starts to decrease. When the aging counter becomes 0, the corre
# ponding port channel will have the highest priority level (timeout condition - Priority0). For multi-port configurations, the
# aging counters cannot be used to set port priorities when external dynamic priority inputs (arqos) are enabled (timeout is st
# ll applicable). For single port configurations, the aging counters are only used when they timeout (become 0) to force read-w
# ite direction switching. In this case, external dynamic priority input, arqos (for reads only) can still be used to set the D
# RC read priority (2 priority levels: low priority read - LPR, high priority read - HPR) on a command by command basis. Note:
# he two LSBs of this register field are tied internally to 2'b00.
# PSU_DDRC_PCFGR_2_RD_PORT_PRIORITY 0xf
# Port n Configuration Read Register
#(OFFSET, MASK, VALUE) (0XFD070564, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD070564 0x000073FF 0x0000200F
# Register : PCFGW_2 @ 0XFD070568</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesting port is granted, the port is continued to be grant
# d if the following immediate commands are to the same memory page (same bank and same row). See also related PCCFG.pagematch_
# imit register.
# PSU_DDRC_PCFGW_2_WR_PORT_PAGEMATCH_EN 0x1
# If set to 1, enables the AXI urgent sideband signal (awurgent). When enabled and awurgent is asserted by the master, that por
# becomes the highest priority and co_gs_go2critical_wr signal to DDRC is asserted if enabled in PCCFG.go2critical_en register
# Note that awurgent signal can be asserted anytime and as long as required which is independent of address handshaking (it is
# not associated with any particular command).
# PSU_DDRC_PCFGW_2_WR_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the write channel of the port.
# PSU_DDRC_PCFGW_2_WR_PORT_AGING_EN 0x0
# Determines the initial load value of write aging counters. These counters will be parallel loaded after reset, or after each
# rant to the corresponding port. The aging counters down-count every clock cycle where the port is requesting but not granted.
# The higher significant 5-bits of the write aging counter sets the initial priority of the write channel of a given port. Port
# s priority will increase as the higher significant 5-bits of the counter starts to decrease. When the aging counter becomes 0
# the corresponding port channel will have the highest priority level. For multi-port configurations, the aging counters canno
# be used to set port priorities when external dynamic priority inputs (awqos) are enabled (timeout is still applicable). For
# ingle port configurations, the aging counters are only used when they timeout (become 0) to force read-write direction switch
# ng. Note: The two LSBs of this register field are tied internally to 2'b00.
# PSU_DDRC_PCFGW_2_WR_PORT_PRIORITY 0xf
# Port n Configuration Write Register
#(OFFSET, MASK, VALUE) (0XFD070568, 0x000073FFU ,0x0000600FU) */
mask_write 0XFD070568 0x000073FF 0x0000600F
# Register : PCTRL_2 @ 0XFD0705F0</p>
# Enables port n.
# PSU_DDRC_PCTRL_2_PORT_EN 0x1
# Port n Control Register
#(OFFSET, MASK, VALUE) (0XFD0705F0, 0x00000001U ,0x00000001U) */
mask_write 0XFD0705F0 0x00000001 0x00000001
# Register : PCFGQOS0_2 @ 0XFD0705F4</p>
# This bitfield indicates the traffic class of region2. For dual address queue configurations, region2 maps to the red address
# ueue. Valid values are 1: VPR and 2: HPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and traffic class of region2
# s set to 1 (VPR), VPR traffic is aliased to LPR traffic.
# PSU_DDRC_PCFGQOS0_2_RQOS_MAP_REGION2 0x2
# This bitfield indicates the traffic class of region 1. Valid values are: 0 : LPR, 1: VPR, 2: HPR. For dual address queue conf
# gurations, region1 maps to the blue address queue. In this case, valid values are 0: LPR and 1: VPR only. When VPR support is
# disabled (UMCTL2_VPR_EN = 0) and traffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR traffic.
# PSU_DDRC_PCFGQOS0_2_RQOS_MAP_REGION1 0x0
# This bitfield indicates the traffic class of region 0. Valid values are: 0: LPR, 1: VPR, 2: HPR. For dual address queue confi
# urations, region 0 maps to the blue address queue. In this case, valid values are: 0: LPR and 1: VPR only. When VPR support i
# disabled (UMCTL2_VPR_EN = 0) and traffic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR traffic.
# PSU_DDRC_PCFGQOS0_2_RQOS_MAP_REGION0 0x0
# Separation level2 indicating the end of region1 mapping; start of region1 is (level1 + 1). Possible values for level2 are (le
# el1 + 1) to 14 which corresponds to arqos. Region2 starts from (level2 + 1) up to 15. Note that for PA, arqos values are used
# directly as port priorities, where the higher the value corresponds to higher port priority. All of the map_level* registers
# ust be set to distinct values.
# PSU_DDRC_PCFGQOS0_2_RQOS_MAP_LEVEL2 0xb
# Separation level1 indicating the end of region0 mapping; start of region0 is 0. Possible values for level1 are 0 to 13 (for d
# al RAQ) or 0 to 14 (for single RAQ) which corresponds to arqos. Note that for PA, arqos values are used directly as port prio
# ities, where the higher the value corresponds to higher port priority. All of the map_level* registers must be set to distinc
# values.
# PSU_DDRC_PCFGQOS0_2_RQOS_MAP_LEVEL1 0x3
# Port n Read QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD0705F4, 0x03330F0FU ,0x02000B03U) */
mask_write 0XFD0705F4 0x03330F0F 0x02000B03
# Register : PCFGQOS1_2 @ 0XFD0705F8</p>
# Specifies the timeout value for transactions mapped to the red address queue.
# PSU_DDRC_PCFGQOS1_2_RQOS_MAP_TIMEOUTR 0x0
# Specifies the timeout value for transactions mapped to the blue address queue.
# PSU_DDRC_PCFGQOS1_2_RQOS_MAP_TIMEOUTB 0x0
# Port n Read QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD0705F8, 0x07FF07FFU ,0x00000000U) */
mask_write 0XFD0705F8 0x07FF07FF 0x00000000
# Register : PCFGR_3 @ 0XFD070614</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesting port is granted, the port is continued to be grant
# d if the following immediate commands are to the same memory page (same bank and same row). See also related PCCFG.pagematch_
# imit register.
# PSU_DDRC_PCFGR_3_RD_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (arurgent). When enabled and arurgent is asserted by the master, that por
# becomes the highest priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DDRC is asserted if enabled in PCCFG.
# o2critical_en register. Note that arurgent signal can be asserted anytime and as long as required which is independent of add
# ess handshaking (it is not associated with any particular command).
# PSU_DDRC_PCFGR_3_RD_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the read channel of the port.
# PSU_DDRC_PCFGR_3_RD_PORT_AGING_EN 0x0
# Determines the initial load value of read aging counters. These counters will be parallel loaded after reset, or after each g
# ant to the corresponding port. The aging counters down-count every clock cycle where the port is requesting but not granted.
# he higher significant 5-bits of the read aging counter sets the priority of the read channel of a given port. Port's priority
# will increase as the higher significant 5-bits of the counter starts to decrease. When the aging counter becomes 0, the corre
# ponding port channel will have the highest priority level (timeout condition - Priority0). For multi-port configurations, the
# aging counters cannot be used to set port priorities when external dynamic priority inputs (arqos) are enabled (timeout is st
# ll applicable). For single port configurations, the aging counters are only used when they timeout (become 0) to force read-w
# ite direction switching. In this case, external dynamic priority input, arqos (for reads only) can still be used to set the D
# RC read priority (2 priority levels: low priority read - LPR, high priority read - HPR) on a command by command basis. Note:
# he two LSBs of this register field are tied internally to 2'b00.
# PSU_DDRC_PCFGR_3_RD_PORT_PRIORITY 0xf
# Port n Configuration Read Register
#(OFFSET, MASK, VALUE) (0XFD070614, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD070614 0x000073FF 0x0000200F
# Register : PCFGW_3 @ 0XFD070618</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesting port is granted, the port is continued to be grant
# d if the following immediate commands are to the same memory page (same bank and same row). See also related PCCFG.pagematch_
# imit register.
# PSU_DDRC_PCFGW_3_WR_PORT_PAGEMATCH_EN 0x1
# If set to 1, enables the AXI urgent sideband signal (awurgent). When enabled and awurgent is asserted by the master, that por
# becomes the highest priority and co_gs_go2critical_wr signal to DDRC is asserted if enabled in PCCFG.go2critical_en register
# Note that awurgent signal can be asserted anytime and as long as required which is independent of address handshaking (it is
# not associated with any particular command).
# PSU_DDRC_PCFGW_3_WR_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the write channel of the port.
# PSU_DDRC_PCFGW_3_WR_PORT_AGING_EN 0x0
# Determines the initial load value of write aging counters. These counters will be parallel loaded after reset, or after each
# rant to the corresponding port. The aging counters down-count every clock cycle where the port is requesting but not granted.
# The higher significant 5-bits of the write aging counter sets the initial priority of the write channel of a given port. Port
# s priority will increase as the higher significant 5-bits of the counter starts to decrease. When the aging counter becomes 0
# the corresponding port channel will have the highest priority level. For multi-port configurations, the aging counters canno
# be used to set port priorities when external dynamic priority inputs (awqos) are enabled (timeout is still applicable). For
# ingle port configurations, the aging counters are only used when they timeout (become 0) to force read-write direction switch
# ng. Note: The two LSBs of this register field are tied internally to 2'b00.
# PSU_DDRC_PCFGW_3_WR_PORT_PRIORITY 0xf
# Port n Configuration Write Register
#(OFFSET, MASK, VALUE) (0XFD070618, 0x000073FFU ,0x0000600FU) */
mask_write 0XFD070618 0x000073FF 0x0000600F
# Register : PCTRL_3 @ 0XFD0706A0</p>
# Enables port n.
# PSU_DDRC_PCTRL_3_PORT_EN 0x1
# Port n Control Register
#(OFFSET, MASK, VALUE) (0XFD0706A0, 0x00000001U ,0x00000001U) */
mask_write 0XFD0706A0 0x00000001 0x00000001
# Register : PCFGQOS0_3 @ 0XFD0706A4</p>
# This bitfield indicates the traffic class of region 1. Valid values are: 0 : LPR, 1: VPR, 2: HPR. For dual address queue conf
# gurations, region1 maps to the blue address queue. In this case, valid values are 0: LPR and 1: VPR only. When VPR support is
# disabled (UMCTL2_VPR_EN = 0) and traffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR traffic.
# PSU_DDRC_PCFGQOS0_3_RQOS_MAP_REGION1 0x1
# This bitfield indicates the traffic class of region 0. Valid values are: 0: LPR, 1: VPR, 2: HPR. For dual address queue confi
# urations, region 0 maps to the blue address queue. In this case, valid values are: 0: LPR and 1: VPR only. When VPR support i
# disabled (UMCTL2_VPR_EN = 0) and traffic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR traffic.
# PSU_DDRC_PCFGQOS0_3_RQOS_MAP_REGION0 0x0
# Separation level1 indicating the end of region0 mapping; start of region0 is 0. Possible values for level1 are 0 to 13 (for d
# al RAQ) or 0 to 14 (for single RAQ) which corresponds to arqos. Note that for PA, arqos values are used directly as port prio
# ities, where the higher the value corresponds to higher port priority. All of the map_level* registers must be set to distinc
# values.
# PSU_DDRC_PCFGQOS0_3_RQOS_MAP_LEVEL1 0x3
# Port n Read QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD0706A4, 0x0033000FU ,0x00100003U) */
mask_write 0XFD0706A4 0x0033000F 0x00100003
# Register : PCFGQOS1_3 @ 0XFD0706A8</p>
# Specifies the timeout value for transactions mapped to the red address queue.
# PSU_DDRC_PCFGQOS1_3_RQOS_MAP_TIMEOUTR 0x0
# Specifies the timeout value for transactions mapped to the blue address queue.
# PSU_DDRC_PCFGQOS1_3_RQOS_MAP_TIMEOUTB 0x4f
# Port n Read QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD0706A8, 0x07FF07FFU ,0x0000004FU) */
mask_write 0XFD0706A8 0x07FF07FF 0x0000004F
# Register : PCFGWQOS0_3 @ 0XFD0706AC</p>
# This bitfield indicates the traffic class of region 1. Valid values are: 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2
# VPW_EN = 0) and traffic class of region 1 is set to 1 (VPW), VPW traffic is aliased to LPW traffic.
# PSU_DDRC_PCFGWQOS0_3_WQOS_MAP_REGION1 0x1
# This bitfield indicates the traffic class of region 0. Valid values are: 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2
# VPW_EN = 0) and traffic class of region0 is set to 1 (VPW), VPW traffic is aliased to NPW traffic.
# PSU_DDRC_PCFGWQOS0_3_WQOS_MAP_REGION0 0x0
# Separation level indicating the end of region0 mapping; start of region0 is 0. Possible values for level1 are 0 to 14 which c
# rresponds to awqos. Note that for PA, awqos values are used directly as port priorities, where the higher the value correspon
# s to higher port priority.
# PSU_DDRC_PCFGWQOS0_3_WQOS_MAP_LEVEL 0x3
# Port n Write QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD0706AC, 0x0033000FU ,0x00100003U) */
mask_write 0XFD0706AC 0x0033000F 0x00100003
# Register : PCFGWQOS1_3 @ 0XFD0706B0</p>
# Specifies the timeout value for write transactions.
# PSU_DDRC_PCFGWQOS1_3_WQOS_MAP_TIMEOUT 0x4f
# Port n Write QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD0706B0, 0x000007FFU ,0x0000004FU) */
mask_write 0XFD0706B0 0x000007FF 0x0000004F
# Register : PCFGR_4 @ 0XFD0706C4</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesting port is granted, the port is continued to be grant
# d if the following immediate commands are to the same memory page (same bank and same row). See also related PCCFG.pagematch_
# imit register.
# PSU_DDRC_PCFGR_4_RD_PORT_PAGEMATCH_EN 0x1
# If set to 1, enables the AXI urgent sideband signal (arurgent). When enabled and arurgent is asserted by the master, that por
# becomes the highest priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DDRC is asserted if enabled in PCCFG.
# o2critical_en register. Note that arurgent signal can be asserted anytime and as long as required which is independent of add
# ess handshaking (it is not associated with any particular command).
# PSU_DDRC_PCFGR_4_RD_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the read channel of the port.
# PSU_DDRC_PCFGR_4_RD_PORT_AGING_EN 0x0
# Determines the initial load value of read aging counters. These counters will be parallel loaded after reset, or after each g
# ant to the corresponding port. The aging counters down-count every clock cycle where the port is requesting but not granted.
# he higher significant 5-bits of the read aging counter sets the priority of the read channel of a given port. Port's priority
# will increase as the higher significant 5-bits of the counter starts to decrease. When the aging counter becomes 0, the corre
# ponding port channel will have the highest priority level (timeout condition - Priority0). For multi-port configurations, the
# aging counters cannot be used to set port priorities when external dynamic priority inputs (arqos) are enabled (timeout is st
# ll applicable). For single port configurations, the aging counters are only used when they timeout (become 0) to force read-w
# ite direction switching. In this case, external dynamic priority input, arqos (for reads only) can still be used to set the D
# RC read priority (2 priority levels: low priority read - LPR, high priority read - HPR) on a command by command basis. Note:
# he two LSBs of this register field are tied internally to 2'b00.
# PSU_DDRC_PCFGR_4_RD_PORT_PRIORITY 0xf
# Port n Configuration Read Register
#(OFFSET, MASK, VALUE) (0XFD0706C4, 0x000073FFU ,0x0000600FU) */
mask_write 0XFD0706C4 0x000073FF 0x0000600F
# Register : PCFGW_4 @ 0XFD0706C8</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesting port is granted, the port is continued to be grant
# d if the following immediate commands are to the same memory page (same bank and same row). See also related PCCFG.pagematch_
# imit register.
# PSU_DDRC_PCFGW_4_WR_PORT_PAGEMATCH_EN 0x1
# If set to 1, enables the AXI urgent sideband signal (awurgent). When enabled and awurgent is asserted by the master, that por
# becomes the highest priority and co_gs_go2critical_wr signal to DDRC is asserted if enabled in PCCFG.go2critical_en register
# Note that awurgent signal can be asserted anytime and as long as required which is independent of address handshaking (it is
# not associated with any particular command).
# PSU_DDRC_PCFGW_4_WR_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the write channel of the port.
# PSU_DDRC_PCFGW_4_WR_PORT_AGING_EN 0x0
# Determines the initial load value of write aging counters. These counters will be parallel loaded after reset, or after each
# rant to the corresponding port. The aging counters down-count every clock cycle where the port is requesting but not granted.
# The higher significant 5-bits of the write aging counter sets the initial priority of the write channel of a given port. Port
# s priority will increase as the higher significant 5-bits of the counter starts to decrease. When the aging counter becomes 0
# the corresponding port channel will have the highest priority level. For multi-port configurations, the aging counters canno
# be used to set port priorities when external dynamic priority inputs (awqos) are enabled (timeout is still applicable). For
# ingle port configurations, the aging counters are only used when they timeout (become 0) to force read-write direction switch
# ng. Note: The two LSBs of this register field are tied internally to 2'b00.
# PSU_DDRC_PCFGW_4_WR_PORT_PRIORITY 0xf
# Port n Configuration Write Register
#(OFFSET, MASK, VALUE) (0XFD0706C8, 0x000073FFU ,0x0000600FU) */
mask_write 0XFD0706C8 0x000073FF 0x0000600F
# Register : PCTRL_4 @ 0XFD070750</p>
# Enables port n.
# PSU_DDRC_PCTRL_4_PORT_EN 0x1
# Port n Control Register
#(OFFSET, MASK, VALUE) (0XFD070750, 0x00000001U ,0x00000001U) */
mask_write 0XFD070750 0x00000001 0x00000001
# Register : PCFGQOS0_4 @ 0XFD070754</p>
# This bitfield indicates the traffic class of region 1. Valid values are: 0 : LPR, 1: VPR, 2: HPR. For dual address queue conf
# gurations, region1 maps to the blue address queue. In this case, valid values are 0: LPR and 1: VPR only. When VPR support is
# disabled (UMCTL2_VPR_EN = 0) and traffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR traffic.
# PSU_DDRC_PCFGQOS0_4_RQOS_MAP_REGION1 0x1
# This bitfield indicates the traffic class of region 0. Valid values are: 0: LPR, 1: VPR, 2: HPR. For dual address queue confi
# urations, region 0 maps to the blue address queue. In this case, valid values are: 0: LPR and 1: VPR only. When VPR support i
# disabled (UMCTL2_VPR_EN = 0) and traffic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR traffic.
# PSU_DDRC_PCFGQOS0_4_RQOS_MAP_REGION0 0x0
# Separation level1 indicating the end of region0 mapping; start of region0 is 0. Possible values for level1 are 0 to 13 (for d
# al RAQ) or 0 to 14 (for single RAQ) which corresponds to arqos. Note that for PA, arqos values are used directly as port prio
# ities, where the higher the value corresponds to higher port priority. All of the map_level* registers must be set to distinc
# values.
# PSU_DDRC_PCFGQOS0_4_RQOS_MAP_LEVEL1 0x3
# Port n Read QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD070754, 0x0033000FU ,0x00100003U) */
mask_write 0XFD070754 0x0033000F 0x00100003
# Register : PCFGQOS1_4 @ 0XFD070758</p>
# Specifies the timeout value for transactions mapped to the red address queue.
# PSU_DDRC_PCFGQOS1_4_RQOS_MAP_TIMEOUTR 0x0
# Specifies the timeout value for transactions mapped to the blue address queue.
# PSU_DDRC_PCFGQOS1_4_RQOS_MAP_TIMEOUTB 0x4f
# Port n Read QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD070758, 0x07FF07FFU ,0x0000004FU) */
mask_write 0XFD070758 0x07FF07FF 0x0000004F
# Register : PCFGWQOS0_4 @ 0XFD07075C</p>
# This bitfield indicates the traffic class of region 1. Valid values are: 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2
# VPW_EN = 0) and traffic class of region 1 is set to 1 (VPW), VPW traffic is aliased to LPW traffic.
# PSU_DDRC_PCFGWQOS0_4_WQOS_MAP_REGION1 0x1
# This bitfield indicates the traffic class of region 0. Valid values are: 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2
# VPW_EN = 0) and traffic class of region0 is set to 1 (VPW), VPW traffic is aliased to NPW traffic.
# PSU_DDRC_PCFGWQOS0_4_WQOS_MAP_REGION0 0x0
# Separation level indicating the end of region0 mapping; start of region0 is 0. Possible values for level1 are 0 to 14 which c
# rresponds to awqos. Note that for PA, awqos values are used directly as port priorities, where the higher the value correspon
# s to higher port priority.
# PSU_DDRC_PCFGWQOS0_4_WQOS_MAP_LEVEL 0x3
# Port n Write QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD07075C, 0x0033000FU ,0x00100003U) */
mask_write 0XFD07075C 0x0033000F 0x00100003
# Register : PCFGWQOS1_4 @ 0XFD070760</p>
# Specifies the timeout value for write transactions.
# PSU_DDRC_PCFGWQOS1_4_WQOS_MAP_TIMEOUT 0x4f
# Port n Write QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD070760, 0x000007FFU ,0x0000004FU) */
mask_write 0XFD070760 0x000007FF 0x0000004F
# Register : PCFGR_5 @ 0XFD070774</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesting port is granted, the port is continued to be grant
# d if the following immediate commands are to the same memory page (same bank and same row). See also related PCCFG.pagematch_
# imit register.
# PSU_DDRC_PCFGR_5_RD_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (arurgent). When enabled and arurgent is asserted by the master, that por
# becomes the highest priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DDRC is asserted if enabled in PCCFG.
# o2critical_en register. Note that arurgent signal can be asserted anytime and as long as required which is independent of add
# ess handshaking (it is not associated with any particular command).
# PSU_DDRC_PCFGR_5_RD_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the read channel of the port.
# PSU_DDRC_PCFGR_5_RD_PORT_AGING_EN 0x0
# Determines the initial load value of read aging counters. These counters will be parallel loaded after reset, or after each g
# ant to the corresponding port. The aging counters down-count every clock cycle where the port is requesting but not granted.
# he higher significant 5-bits of the read aging counter sets the priority of the read channel of a given port. Port's priority
# will increase as the higher significant 5-bits of the counter starts to decrease. When the aging counter becomes 0, the corre
# ponding port channel will have the highest priority level (timeout condition - Priority0). For multi-port configurations, the
# aging counters cannot be used to set port priorities when external dynamic priority inputs (arqos) are enabled (timeout is st
# ll applicable). For single port configurations, the aging counters are only used when they timeout (become 0) to force read-w
# ite direction switching. In this case, external dynamic priority input, arqos (for reads only) can still be used to set the D
# RC read priority (2 priority levels: low priority read - LPR, high priority read - HPR) on a command by command basis. Note:
# he two LSBs of this register field are tied internally to 2'b00.
# PSU_DDRC_PCFGR_5_RD_PORT_PRIORITY 0xf
# Port n Configuration Read Register
#(OFFSET, MASK, VALUE) (0XFD070774, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD070774 0x000073FF 0x0000200F
# Register : PCFGW_5 @ 0XFD070778</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesting port is granted, the port is continued to be grant
# d if the following immediate commands are to the same memory page (same bank and same row). See also related PCCFG.pagematch_
# imit register.
# PSU_DDRC_PCFGW_5_WR_PORT_PAGEMATCH_EN 0x1
# If set to 1, enables the AXI urgent sideband signal (awurgent). When enabled and awurgent is asserted by the master, that por
# becomes the highest priority and co_gs_go2critical_wr signal to DDRC is asserted if enabled in PCCFG.go2critical_en register
# Note that awurgent signal can be asserted anytime and as long as required which is independent of address handshaking (it is
# not associated with any particular command).
# PSU_DDRC_PCFGW_5_WR_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the write channel of the port.
# PSU_DDRC_PCFGW_5_WR_PORT_AGING_EN 0x0
# Determines the initial load value of write aging counters. These counters will be parallel loaded after reset, or after each
# rant to the corresponding port. The aging counters down-count every clock cycle where the port is requesting but not granted.
# The higher significant 5-bits of the write aging counter sets the initial priority of the write channel of a given port. Port
# s priority will increase as the higher significant 5-bits of the counter starts to decrease. When the aging counter becomes 0
# the corresponding port channel will have the highest priority level. For multi-port configurations, the aging counters canno
# be used to set port priorities when external dynamic priority inputs (awqos) are enabled (timeout is still applicable). For
# ingle port configurations, the aging counters are only used when they timeout (become 0) to force read-write direction switch
# ng. Note: The two LSBs of this register field are tied internally to 2'b00.
# PSU_DDRC_PCFGW_5_WR_PORT_PRIORITY 0xf
# Port n Configuration Write Register
#(OFFSET, MASK, VALUE) (0XFD070778, 0x000073FFU ,0x0000600FU) */
mask_write 0XFD070778 0x000073FF 0x0000600F
# Register : PCTRL_5 @ 0XFD070800</p>
# Enables port n.
# PSU_DDRC_PCTRL_5_PORT_EN 0x1
# Port n Control Register
#(OFFSET, MASK, VALUE) (0XFD070800, 0x00000001U ,0x00000001U) */
mask_write 0XFD070800 0x00000001 0x00000001
# Register : PCFGQOS0_5 @ 0XFD070804</p>
# This bitfield indicates the traffic class of region 1. Valid values are: 0 : LPR, 1: VPR, 2: HPR. For dual address queue conf
# gurations, region1 maps to the blue address queue. In this case, valid values are 0: LPR and 1: VPR only. When VPR support is
# disabled (UMCTL2_VPR_EN = 0) and traffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR traffic.
# PSU_DDRC_PCFGQOS0_5_RQOS_MAP_REGION1 0x1
# This bitfield indicates the traffic class of region 0. Valid values are: 0: LPR, 1: VPR, 2: HPR. For dual address queue confi
# urations, region 0 maps to the blue address queue. In this case, valid values are: 0: LPR and 1: VPR only. When VPR support i
# disabled (UMCTL2_VPR_EN = 0) and traffic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR traffic.
# PSU_DDRC_PCFGQOS0_5_RQOS_MAP_REGION0 0x0
# Separation level1 indicating the end of region0 mapping; start of region0 is 0. Possible values for level1 are 0 to 13 (for d
# al RAQ) or 0 to 14 (for single RAQ) which corresponds to arqos. Note that for PA, arqos values are used directly as port prio
# ities, where the higher the value corresponds to higher port priority. All of the map_level* registers must be set to distinc
# values.
# PSU_DDRC_PCFGQOS0_5_RQOS_MAP_LEVEL1 0x3
# Port n Read QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD070804, 0x0033000FU ,0x00100003U) */
mask_write 0XFD070804 0x0033000F 0x00100003
# Register : PCFGQOS1_5 @ 0XFD070808</p>
# Specifies the timeout value for transactions mapped to the red address queue.
# PSU_DDRC_PCFGQOS1_5_RQOS_MAP_TIMEOUTR 0x0
# Specifies the timeout value for transactions mapped to the blue address queue.
# PSU_DDRC_PCFGQOS1_5_RQOS_MAP_TIMEOUTB 0x4f
# Port n Read QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD070808, 0x07FF07FFU ,0x0000004FU) */
mask_write 0XFD070808 0x07FF07FF 0x0000004F
# Register : PCFGWQOS0_5 @ 0XFD07080C</p>
# This bitfield indicates the traffic class of region 1. Valid values are: 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2
# VPW_EN = 0) and traffic class of region 1 is set to 1 (VPW), VPW traffic is aliased to LPW traffic.
# PSU_DDRC_PCFGWQOS0_5_WQOS_MAP_REGION1 0x1
# This bitfield indicates the traffic class of region 0. Valid values are: 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2
# VPW_EN = 0) and traffic class of region0 is set to 1 (VPW), VPW traffic is aliased to NPW traffic.
# PSU_DDRC_PCFGWQOS0_5_WQOS_MAP_REGION0 0x0
# Separation level indicating the end of region0 mapping; start of region0 is 0. Possible values for level1 are 0 to 14 which c
# rresponds to awqos. Note that for PA, awqos values are used directly as port priorities, where the higher the value correspon
# s to higher port priority.
# PSU_DDRC_PCFGWQOS0_5_WQOS_MAP_LEVEL 0x3
# Port n Write QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD07080C, 0x0033000FU ,0x00100003U) */
mask_write 0XFD07080C 0x0033000F 0x00100003
# Register : PCFGWQOS1_5 @ 0XFD070810</p>
# Specifies the timeout value for write transactions.
# PSU_DDRC_PCFGWQOS1_5_WQOS_MAP_TIMEOUT 0x4f
# Port n Write QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD070810, 0x000007FFU ,0x0000004FU) */
mask_write 0XFD070810 0x000007FF 0x0000004F
# Register : SARBASE0 @ 0XFD070F04</p>
# Base address for address region n specified as awaddr[UMCTL2_A_ADDRW-1:x] and araddr[UMCTL2_A_ADDRW-1:x] where x is determine
# by the minimum block size parameter UMCTL2_SARMINSIZE: (x=log2(block size)).
# PSU_DDRC_SARBASE0_BASE_ADDR 0x0
# SAR Base Address Register n
#(OFFSET, MASK, VALUE) (0XFD070F04, 0x000001FFU ,0x00000000U) */
mask_write 0XFD070F04 0x000001FF 0x00000000
# Register : SARSIZE0 @ 0XFD070F08</p>
# Number of blocks for address region n. This register determines the total size of the region in multiples of minimum block si
# e as specified by the hardware parameter UMCTL2_SARMINSIZE. The register value is encoded as number of blocks = nblocks + 1.
# or example, if register is programmed to 0, region will have 1 block.
# PSU_DDRC_SARSIZE0_NBLOCKS 0x0
# SAR Size Register n
#(OFFSET, MASK, VALUE) (0XFD070F08, 0x000000FFU ,0x00000000U) */
mask_write 0XFD070F08 0x000000FF 0x00000000
# Register : SARBASE1 @ 0XFD070F0C</p>
# Base address for address region n specified as awaddr[UMCTL2_A_ADDRW-1:x] and araddr[UMCTL2_A_ADDRW-1:x] where x is determine
# by the minimum block size parameter UMCTL2_SARMINSIZE: (x=log2(block size)).
# PSU_DDRC_SARBASE1_BASE_ADDR 0x10
# SAR Base Address Register n
#(OFFSET, MASK, VALUE) (0XFD070F0C, 0x000001FFU ,0x00000010U) */
mask_write 0XFD070F0C 0x000001FF 0x00000010
# Register : SARSIZE1 @ 0XFD070F10</p>
# Number of blocks for address region n. This register determines the total size of the region in multiples of minimum block si
# e as specified by the hardware parameter UMCTL2_SARMINSIZE. The register value is encoded as number of blocks = nblocks + 1.
# or example, if register is programmed to 0, region will have 1 block.
# PSU_DDRC_SARSIZE1_NBLOCKS 0xf
# SAR Size Register n
#(OFFSET, MASK, VALUE) (0XFD070F10, 0x000000FFU ,0x0000000FU) */
mask_write 0XFD070F10 0x000000FF 0x0000000F
# Register : DFITMG0_SHADOW @ 0XFD072190</p>
# Specifies the number of DFI clock cycles after an assertion or de-assertion of the DFI control signals that the control signa
# s at the PHY-DRAM interface reflect the assertion or de-assertion. If the DFI clock and the memory clock are not phase-aligne
# , this timing parameter should be rounded up to the next integer value. Note that if using RDIMM, it is necessary to incremen
# this parameter by RDIMM's extra cycle of latency in terms of DFI clock.
# PSU_DDRC_DFITMG0_SHADOW_DFI_T_CTRL_DELAY 0x7
# Defines whether dfi_rddata_en/dfi_rddata/dfi_rddata_valid is generated using HDR or SDR values Selects whether value in DFITM
# 0.dfi_t_rddata_en is in terms of SDR or HDR clock cycles: - 0 in terms of HDR clock cycles - 1 in terms of SDR clock cycles R
# fer to PHY specification for correct value.
# PSU_DDRC_DFITMG0_SHADOW_DFI_RDDATA_USE_SDR 0x1
# Time from the assertion of a read command on the DFI interface to the assertion of the dfi_rddata_en signal. Refer to PHY spe
# ification for correct value. This corresponds to the DFI parameter trddata_en. Note that, depending on the PHY, if using RDIM
# , it may be necessary to use the value (CL + 1) in the calculation of trddata_en. This is to compensate for the extra cycle o
# latency through the RDIMM. Unit: Clocks
# PSU_DDRC_DFITMG0_SHADOW_DFI_T_RDDATA_EN 0x2
# Defines whether dfi_wrdata_en/dfi_wrdata/dfi_wrdata_mask is generated using HDR or SDR values Selects whether value in DFITMG
# .dfi_tphy_wrlat is in terms of SDR or HDR clock cycles Selects whether value in DFITMG0.dfi_tphy_wrdata is in terms of SDR or
# HDR clock cycles - 0 in terms of HDR clock cycles - 1 in terms of SDR clock cycles Refer to PHY specification for correct val
# e.
# PSU_DDRC_DFITMG0_SHADOW_DFI_WRDATA_USE_SDR 0x1
# Specifies the number of clock cycles between when dfi_wrdata_en is asserted to when the associated write data is driven on th
# dfi_wrdata signal. This corresponds to the DFI timing parameter tphy_wrdata. Refer to PHY specification for correct value. N
# te, max supported value is 8. Unit: Clocks
# PSU_DDRC_DFITMG0_SHADOW_DFI_TPHY_WRDATA 0x0
# Write latency Number of clocks from the write command to write data enable (dfi_wrdata_en). This corresponds to the DFI timin
# parameter tphy_wrlat. Refer to PHY specification for correct value.Note that, depending on the PHY, if using RDIMM, it may b
# necessary to use the value (CL + 1) in the calculation of tphy_wrlat. This is to compensate for the extra cycle of latency t
# rough the RDIMM.
# PSU_DDRC_DFITMG0_SHADOW_DFI_TPHY_WRLAT 0x2
# DFI Timing Shadow Register 0
#(OFFSET, MASK, VALUE) (0XFD072190, 0x1FBFBF3FU ,0x07828002U) */
mask_write 0XFD072190 0x1FBFBF3F 0x07828002
# : DDR CONTROLLER RESET
# Register : RST_DDR_SS @ 0XFD1A0108</p>
# DDR block level reset inside of the DDR Sub System
# PSU_CRF_APB_RST_DDR_SS_DDR_RESET 0X0
# DDR sub system block level reset
#(OFFSET, MASK, VALUE) (0XFD1A0108, 0x00000008U ,0x00000000U) */
mask_write 0XFD1A0108 0x00000008 0x00000000
# : DDR PHY
# Register : PGCR0 @ 0XFD080010</p>
# Address Copy
# PSU_DDR_PHY_PGCR0_ADCP 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_PGCR0_RESERVED_30_27 0x0
# PHY FIFO Reset
# PSU_DDR_PHY_PGCR0_PHYFRST 0x1
# Oscillator Mode Address/Command Delay Line Select
# PSU_DDR_PHY_PGCR0_OSCACDL 0x3
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_PGCR0_RESERVED_23_19 0x0
# Digital Test Output Select
# PSU_DDR_PHY_PGCR0_DTOSEL 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_PGCR0_RESERVED_13 0x0
# Oscillator Mode Division
# PSU_DDR_PHY_PGCR0_OSCDIV 0xf
# Oscillator Enable
# PSU_DDR_PHY_PGCR0_OSCEN 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_PGCR0_RESERVED_7_0 0x0
# PHY General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080010, 0xFFFFFFFFU ,0x07001E00U) */
mask_write 0XFD080010 0xFFFFFFFF 0x07001E00
# Register : PGCR2 @ 0XFD080018</p>
# Clear Training Status Registers
# PSU_DDR_PHY_PGCR2_CLRTSTAT 0x0
# Clear Impedance Calibration
# PSU_DDR_PHY_PGCR2_CLRZCAL 0x0
# Clear Parity Error
# PSU_DDR_PHY_PGCR2_CLRPERR 0x0
# Initialization Complete Pin Configuration
# PSU_DDR_PHY_PGCR2_ICPC 0x0
# Data Training PUB Mode Exit Timer
# PSU_DDR_PHY_PGCR2_DTPMXTMR 0xf
# Initialization Bypass
# PSU_DDR_PHY_PGCR2_INITFSMBYP 0x0
# PLL FSM Bypass
# PSU_DDR_PHY_PGCR2_PLLFSMBYP 0x0
# Refresh Period
# PSU_DDR_PHY_PGCR2_TREFPRD 0x10028
# PHY General Configuration Register 2
#(OFFSET, MASK, VALUE) (0XFD080018, 0xFFFFFFFFU ,0x00F10028U) */
mask_write 0XFD080018 0xFFFFFFFF 0x00F10028
# Register : PGCR3 @ 0XFD08001C</p>
# CKN Enable
# PSU_DDR_PHY_PGCR3_CKNEN 0x55
# CK Enable
# PSU_DDR_PHY_PGCR3_CKEN 0xaa
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_PGCR3_RESERVED_15 0x0
# Enable Clock Gating for AC [0] ctl_rd_clk
# PSU_DDR_PHY_PGCR3_GATEACRDCLK 0x2
# Enable Clock Gating for AC [0] ddr_clk
# PSU_DDR_PHY_PGCR3_GATEACDDRCLK 0x2
# Enable Clock Gating for AC [0] ctl_clk
# PSU_DDR_PHY_PGCR3_GATEACCTLCLK 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_PGCR3_RESERVED_8 0x0
# Controls DDL Bypass Modes
# PSU_DDR_PHY_PGCR3_DDLBYPMODE 0x2
# IO Loop-Back Select
# PSU_DDR_PHY_PGCR3_IOLB 0x0
# AC Receive FIFO Read Mode
# PSU_DDR_PHY_PGCR3_RDMODE 0x0
# Read FIFO Reset Disable
# PSU_DDR_PHY_PGCR3_DISRST 0x0
# Clock Level when Clock Gating
# PSU_DDR_PHY_PGCR3_CLKLEVEL 0x0
# PHY General Configuration Register 3
#(OFFSET, MASK, VALUE) (0XFD08001C, 0xFFFFFFFFU ,0x55AA5480U) */
mask_write 0XFD08001C 0xFFFFFFFF 0x55AA5480
# Register : PGCR5 @ 0XFD080024</p>
# Frequency B Ratio Term
# PSU_DDR_PHY_PGCR5_FRQBT 0x1
# Frequency A Ratio Term
# PSU_DDR_PHY_PGCR5_FRQAT 0x1
# DFI Disconnect Time Period
# PSU_DDR_PHY_PGCR5_DISCNPERIOD 0x0
# Receiver bias core side control
# PSU_DDR_PHY_PGCR5_VREF_RBCTRL 0xf
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_PGCR5_RESERVED_3 0x0
# Internal VREF generator REFSEL ragne select
# PSU_DDR_PHY_PGCR5_DXREFISELRANGE 0x1
# DDL Page Read Write select
# PSU_DDR_PHY_PGCR5_DDLPGACT 0x0
# DDL Page Read Write select
# PSU_DDR_PHY_PGCR5_DDLPGRW 0x0
# PHY General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080024, 0xFFFFFFFFU ,0x010100F4U) */
mask_write 0XFD080024 0xFFFFFFFF 0x010100F4
# Register : PTR0 @ 0XFD080040</p>
# PLL Power-Down Time
# PSU_DDR_PHY_PTR0_TPLLPD 0x2f0
# PLL Gear Shift Time
# PSU_DDR_PHY_PTR0_TPLLGS 0x60
# PHY Reset Time
# PSU_DDR_PHY_PTR0_TPHYRST 0x10
# PHY Timing Register 0
#(OFFSET, MASK, VALUE) (0XFD080040, 0xFFFFFFFFU ,0x5E001810U) */
mask_write 0XFD080040 0xFFFFFFFF 0x5E001810
# Register : PTR1 @ 0XFD080044</p>
# PLL Lock Time
# PSU_DDR_PHY_PTR1_TPLLLOCK 0x80
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_PTR1_RESERVED_15_13 0x0
# PLL Reset Time
# PSU_DDR_PHY_PTR1_TPLLRST 0x5f0
# PHY Timing Register 1
#(OFFSET, MASK, VALUE) (0XFD080044, 0xFFFFFFFFU ,0x008005F0U) */
mask_write 0XFD080044 0xFFFFFFFF 0x008005F0
# Register : DSGCR @ 0XFD080090</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DSGCR_RESERVED_31_28 0x0
# When RDBI enabled, this bit is used to select RDBI CL calculation, if it is 1b1, calculation will use RDBICL, otherwise use d
# fault calculation.
# PSU_DDR_PHY_DSGCR_RDBICLSEL 0x0
# When RDBI enabled, if RDBICLSEL is asserted, RDBI CL adjust using this value.
# PSU_DDR_PHY_DSGCR_RDBICL 0x2
# PHY Impedance Update Enable
# PSU_DDR_PHY_DSGCR_PHYZUEN 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DSGCR_RESERVED_22 0x0
# SDRAM Reset Output Enable
# PSU_DDR_PHY_DSGCR_RSTOE 0x1
# Single Data Rate Mode
# PSU_DDR_PHY_DSGCR_SDRMODE 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DSGCR_RESERVED_18 0x0
# ATO Analog Test Enable
# PSU_DDR_PHY_DSGCR_ATOAE 0x0
# DTO Output Enable
# PSU_DDR_PHY_DSGCR_DTOOE 0x0
# DTO I/O Mode
# PSU_DDR_PHY_DSGCR_DTOIOM 0x0
# DTO Power Down Receiver
# PSU_DDR_PHY_DSGCR_DTOPDR 0x1
# Reserved. Return zeroes on reads
# PSU_DDR_PHY_DSGCR_RESERVED_13 0x0
# DTO On-Die Termination
# PSU_DDR_PHY_DSGCR_DTOODT 0x0
# PHY Update Acknowledge Delay
# PSU_DDR_PHY_DSGCR_PUAD 0x4
# Controller Update Acknowledge Enable
# PSU_DDR_PHY_DSGCR_CUAEN 0x1
# Reserved. Return zeroes on reads
# PSU_DDR_PHY_DSGCR_RESERVED_4_3 0x0
# Controller Impedance Update Enable
# PSU_DDR_PHY_DSGCR_CTLZUEN 0x0
# Reserved. Return zeroes on reads
# PSU_DDR_PHY_DSGCR_RESERVED_1 0x0
# PHY Update Request Enable
# PSU_DDR_PHY_DSGCR_PUREN 0x1
# DDR System General Configuration Register
#(OFFSET, MASK, VALUE) (0XFD080090, 0xFFFFFFFFU ,0x02A04121U) */
mask_write 0XFD080090 0xFFFFFFFF 0x02A04121
# Register : DCR @ 0XFD080100</p>
# DDR4 Gear Down Timing.
# PSU_DDR_PHY_DCR_GEARDN 0x0
# Un-used Bank Group
# PSU_DDR_PHY_DCR_UBG 0x0
# Un-buffered DIMM Address Mirroring
# PSU_DDR_PHY_DCR_UDIMM 0x0
# DDR 2T Timing
# PSU_DDR_PHY_DCR_DDR2T 0x0
# No Simultaneous Rank Access
# PSU_DDR_PHY_DCR_NOSRA 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DCR_RESERVED_26_18 0x0
# Byte Mask
# PSU_DDR_PHY_DCR_BYTEMASK 0x1
# DDR Type
# PSU_DDR_PHY_DCR_DDRTYPE 0x0
# Multi-Purpose Register (MPR) DQ (DDR3 Only)
# PSU_DDR_PHY_DCR_MPRDQ 0x0
# Primary DQ (DDR3 Only)
# PSU_DDR_PHY_DCR_PDQ 0x0
# DDR 8-Bank
# PSU_DDR_PHY_DCR_DDR8BNK 0x1
# DDR Mode
# PSU_DDR_PHY_DCR_DDRMD 0x4
# DRAM Configuration Register
#(OFFSET, MASK, VALUE) (0XFD080100, 0xFFFFFFFFU ,0x0800040CU) */
mask_write 0XFD080100 0xFFFFFFFF 0x0800040C
# Register : DTPR0 @ 0XFD080110</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR0_RESERVED_31_29 0x0
# Activate to activate command delay (different banks)
# PSU_DDR_PHY_DTPR0_TRRD 0x6
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR0_RESERVED_23 0x0
# Activate to precharge command delay
# PSU_DDR_PHY_DTPR0_TRAS 0x24
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR0_RESERVED_15 0x0
# Precharge command period
# PSU_DDR_PHY_DTPR0_TRP 0xf
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR0_RESERVED_7_5 0x0
# Internal read to precharge command delay
# PSU_DDR_PHY_DTPR0_TRTP 0x9
# DRAM Timing Parameters Register 0
#(OFFSET, MASK, VALUE) (0XFD080110, 0xFFFFFFFFU ,0x06240F09U) */
mask_write 0XFD080110 0xFFFFFFFF 0x06240F09
# Register : DTPR1 @ 0XFD080114</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR1_RESERVED_31 0x0
# Minimum delay from when write leveling mode is programmed to the first DQS/DQS# rising edge.
# PSU_DDR_PHY_DTPR1_TWLMRD 0x28
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR1_RESERVED_23 0x0
# 4-bank activate period
# PSU_DDR_PHY_DTPR1_TFAW 0x18
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR1_RESERVED_15_11 0x0
# Load mode update delay (DDR4 and DDR3 only)
# PSU_DDR_PHY_DTPR1_TMOD 0x7
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR1_RESERVED_7_5 0x0
# Load mode cycle time
# PSU_DDR_PHY_DTPR1_TMRD 0x8
# DRAM Timing Parameters Register 1
#(OFFSET, MASK, VALUE) (0XFD080114, 0xFFFFFFFFU ,0x28180708U) */
mask_write 0XFD080114 0xFFFFFFFF 0x28180708
# Register : DTPR2 @ 0XFD080118</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR2_RESERVED_31_29 0x0
# Read to Write command delay. Valid values are
# PSU_DDR_PHY_DTPR2_TRTW 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR2_RESERVED_27_25 0x0
# Read to ODT delay (DDR3 only)
# PSU_DDR_PHY_DTPR2_TRTODT 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR2_RESERVED_23_20 0x0
# CKE minimum pulse width
# PSU_DDR_PHY_DTPR2_TCKE 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR2_RESERVED_15_10 0x0
# Self refresh exit delay
# PSU_DDR_PHY_DTPR2_TXS 0x200
# DRAM Timing Parameters Register 2
#(OFFSET, MASK, VALUE) (0XFD080118, 0xFFFFFFFFU ,0x00080200U) */
mask_write 0XFD080118 0xFFFFFFFF 0x00080200
# Register : DTPR3 @ 0XFD08011C</p>
# ODT turn-off delay extension
# PSU_DDR_PHY_DTPR3_TOFDX 0x4
# Read to read and write to write command delay
# PSU_DDR_PHY_DTPR3_TCCD 0x0
# DLL locking time
# PSU_DDR_PHY_DTPR3_TDLLK 0x300
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR3_RESERVED_15_12 0x0
# Maximum DQS output access time from CK/CK# (LPDDR2/3 only)
# PSU_DDR_PHY_DTPR3_TDQSCKMAX 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR3_RESERVED_7_3 0x0
# DQS output access time from CK/CK# (LPDDR2/3 only)
# PSU_DDR_PHY_DTPR3_TDQSCK 0x0
# DRAM Timing Parameters Register 3
#(OFFSET, MASK, VALUE) (0XFD08011C, 0xFFFFFFFFU ,0x83000800U) */
mask_write 0XFD08011C 0xFFFFFFFF 0x83000800
# Register : DTPR4 @ 0XFD080120</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR4_RESERVED_31_30 0x0
# ODT turn-on/turn-off delays (DDR2 only)
# PSU_DDR_PHY_DTPR4_TAOND_TAOFD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR4_RESERVED_27_26 0x0
# Refresh-to-Refresh
# PSU_DDR_PHY_DTPR4_TRFC 0x116
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR4_RESERVED_15_14 0x0
# Write leveling output delay
# PSU_DDR_PHY_DTPR4_TWLO 0x2b
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR4_RESERVED_7_5 0x0
# Power down exit delay
# PSU_DDR_PHY_DTPR4_TXP 0x8
# DRAM Timing Parameters Register 4
#(OFFSET, MASK, VALUE) (0XFD080120, 0xFFFFFFFFU ,0x01162B08U) */
mask_write 0XFD080120 0xFFFFFFFF 0x01162B08
# Register : DTPR5 @ 0XFD080124</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR5_RESERVED_31_24 0x0
# Activate to activate command delay (same bank)
# PSU_DDR_PHY_DTPR5_TRC 0x32
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR5_RESERVED_15 0x0
# Activate to read or write delay
# PSU_DDR_PHY_DTPR5_TRCD 0xf
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR5_RESERVED_7_5 0x0
# Internal write to read command delay
# PSU_DDR_PHY_DTPR5_TWTR 0x9
# DRAM Timing Parameters Register 5
#(OFFSET, MASK, VALUE) (0XFD080124, 0xFFFFFFFFU ,0x00320F09U) */
mask_write 0XFD080124 0xFFFFFFFF 0x00320F09
# Register : DTPR6 @ 0XFD080128</p>
# PUB Write Latency Enable
# PSU_DDR_PHY_DTPR6_PUBWLEN 0x0
# PUB Read Latency Enable
# PSU_DDR_PHY_DTPR6_PUBRLEN 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR6_RESERVED_29_14 0x0
# Write Latency
# PSU_DDR_PHY_DTPR6_PUBWL 0xe
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR6_RESERVED_7_6 0x0
# Read Latency
# PSU_DDR_PHY_DTPR6_PUBRL 0xf
# DRAM Timing Parameters Register 6
#(OFFSET, MASK, VALUE) (0XFD080128, 0xFFFFFFFFU ,0x00000E0FU) */
mask_write 0XFD080128 0xFFFFFFFF 0x00000E0F
# Register : RDIMMGCR0 @ 0XFD080140</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR0_RESERVED_31 0x0
# RDMIMM Quad CS Enable
# PSU_DDR_PHY_RDIMMGCR0_QCSEN 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR0_RESERVED_29_28 0x0
# RDIMM Outputs I/O Mode
# PSU_DDR_PHY_RDIMMGCR0_RDIMMIOM 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR0_RESERVED_26_24 0x0
# ERROUT# Output Enable
# PSU_DDR_PHY_RDIMMGCR0_ERROUTOE 0x0
# ERROUT# I/O Mode
# PSU_DDR_PHY_RDIMMGCR0_ERROUTIOM 0x1
# ERROUT# Power Down Receiver
# PSU_DDR_PHY_RDIMMGCR0_ERROUTPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR0_RESERVED_20 0x0
# ERROUT# On-Die Termination
# PSU_DDR_PHY_RDIMMGCR0_ERROUTODT 0x0
# Load Reduced DIMM
# PSU_DDR_PHY_RDIMMGCR0_LRDIMM 0x0
# PAR_IN I/O Mode
# PSU_DDR_PHY_RDIMMGCR0_PARINIOM 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR0_RESERVED_16_8 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR0_RNKMRREN_RSVD 0x0
# Rank Mirror Enable.
# PSU_DDR_PHY_RDIMMGCR0_RNKMRREN 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR0_RESERVED_3 0x0
# Stop on Parity Error
# PSU_DDR_PHY_RDIMMGCR0_SOPERR 0x0
# Parity Error No Registering
# PSU_DDR_PHY_RDIMMGCR0_ERRNOREG 0x0
# Registered DIMM
# PSU_DDR_PHY_RDIMMGCR0_RDIMM 0x0
# RDIMM General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080140, 0xFFFFFFFFU ,0x08400020U) */
mask_write 0XFD080140 0xFFFFFFFF 0x08400020
# Register : RDIMMGCR1 @ 0XFD080144</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR1_RESERVED_31_29 0x0
# Address [17] B-side Inversion Disable
# PSU_DDR_PHY_RDIMMGCR1_A17BID 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR1_RESERVED_27 0x0
# Command word to command word programming delay
# PSU_DDR_PHY_RDIMMGCR1_TBCMRD_L2 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR1_RESERVED_23 0x0
# Command word to command word programming delay
# PSU_DDR_PHY_RDIMMGCR1_TBCMRD_L 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR1_RESERVED_19 0x0
# Command word to command word programming delay
# PSU_DDR_PHY_RDIMMGCR1_TBCMRD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR1_RESERVED_15_14 0x0
# Stabilization time
# PSU_DDR_PHY_RDIMMGCR1_TBCSTAB 0xc80
# RDIMM General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080144, 0xFFFFFFFFU ,0x00000C80U) */
mask_write 0XFD080144 0xFFFFFFFF 0x00000C80
# Register : RDIMMCR0 @ 0XFD080150</p>
# DDR4/DDR3 Control Word 7
# PSU_DDR_PHY_RDIMMCR0_RC7 0x0
# DDR4 Control Word 6 (Comman space Control Word) / DDR3 Reserved
# PSU_DDR_PHY_RDIMMCR0_RC6 0x0
# DDR4/DDR3 Control Word 5 (CK Driver Characteristics Control Word)
# PSU_DDR_PHY_RDIMMCR0_RC5 0x0
# DDR4 Control Word 4 (ODT and CKE Signals Driver Characteristics Control Word) / DDR3 Control Word 4 (Control Signals Driver C
# aracteristics Control Word)
# PSU_DDR_PHY_RDIMMCR0_RC4 0x0
# DDR4 Control Word 3 (CA and CS Signals Driver Characteristics Control Word) / DDR3 Control Word 3 (Command/Address Signals Dr
# ver Characteristrics Control Word)
# PSU_DDR_PHY_RDIMMCR0_RC3 0x0
# DDR4 Control Word 2 (Timing and IBT Control Word) / DDR3 Control Word 2 (Timing Control Word)
# PSU_DDR_PHY_RDIMMCR0_RC2 0x0
# DDR4/DDR3 Control Word 1 (Clock Driver Enable Control Word)
# PSU_DDR_PHY_RDIMMCR0_RC1 0x0
# DDR4/DDR3 Control Word 0 (Global Features Control Word)
# PSU_DDR_PHY_RDIMMCR0_RC0 0x0
# RDIMM Control Register 0
#(OFFSET, MASK, VALUE) (0XFD080150, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080150 0xFFFFFFFF 0x00000000
# Register : RDIMMCR1 @ 0XFD080154</p>
# Control Word 15
# PSU_DDR_PHY_RDIMMCR1_RC15 0x0
# DDR4 Control Word 14 (Parity Control Word) / DDR3 Reserved
# PSU_DDR_PHY_RDIMMCR1_RC14 0x0
# DDR4 Control Word 13 (DIMM Configuration Control Word) / DDR3 Reserved
# PSU_DDR_PHY_RDIMMCR1_RC13 0x0
# DDR4 Control Word 12 (Training Control Word) / DDR3 Reserved
# PSU_DDR_PHY_RDIMMCR1_RC12 0x0
# DDR4 Control Word 11 (Operating Voltage VDD and VREFCA Source Control Word) / DDR3 Control Word 11 (Operation Voltage VDD Con
# rol Word)
# PSU_DDR_PHY_RDIMMCR1_RC11 0x0
# DDR4/DDR3 Control Word 10 (RDIMM Operating Speed Control Word)
# PSU_DDR_PHY_RDIMMCR1_RC10 0x2
# DDR4/DDR3 Control Word 9 (Power Saving Settings Control Word)
# PSU_DDR_PHY_RDIMMCR1_RC9 0x0
# DDR4 Control Word 8 (Input/Output Configuration Control Word) / DDR3 Control Word 8 (Additional Input Bus Termination Setting
# Control Word)
# PSU_DDR_PHY_RDIMMCR1_RC8 0x0
# RDIMM Control Register 1
#(OFFSET, MASK, VALUE) (0XFD080154, 0xFFFFFFFFU ,0x00000200U) */
mask_write 0XFD080154 0xFFFFFFFF 0x00000200
# Register : MR0 @ 0XFD080180</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR0_RESERVED_31_8 0x8
# CA Terminating Rank
# PSU_DDR_PHY_MR0_CATR 0x0
# Reserved. These are JEDEC reserved bits and are recommended by JEDEC to be programmed to 0x0.
# PSU_DDR_PHY_MR0_RSVD_6_5 0x1
# Built-in Self-Test for RZQ
# PSU_DDR_PHY_MR0_RZQI 0x2
# Reserved. These are JEDEC reserved bits and are recommended by JEDEC to be programmed to 0x0.
# PSU_DDR_PHY_MR0_RSVD_2_0 0x0
# LPDDR4 Mode Register 0
#(OFFSET, MASK, VALUE) (0XFD080180, 0xFFFFFFFFU ,0x00000830U) */
mask_write 0XFD080180 0xFFFFFFFF 0x00000830
# Register : MR1 @ 0XFD080184</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR1_RESERVED_31_8 0x3
# Read Postamble Length
# PSU_DDR_PHY_MR1_RDPST 0x0
# Write-recovery for auto-precharge command
# PSU_DDR_PHY_MR1_NWR 0x0
# Read Preamble Length
# PSU_DDR_PHY_MR1_RDPRE 0x0
# Write Preamble Length
# PSU_DDR_PHY_MR1_WRPRE 0x0
# Burst Length
# PSU_DDR_PHY_MR1_BL 0x1
# LPDDR4 Mode Register 1
#(OFFSET, MASK, VALUE) (0XFD080184, 0xFFFFFFFFU ,0x00000301U) */
mask_write 0XFD080184 0xFFFFFFFF 0x00000301
# Register : MR2 @ 0XFD080188</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR2_RESERVED_31_8 0x0
# Write Leveling
# PSU_DDR_PHY_MR2_WRL 0x0
# Write Latency Set
# PSU_DDR_PHY_MR2_WLS 0x0
# Write Latency
# PSU_DDR_PHY_MR2_WL 0x4
# Read Latency
# PSU_DDR_PHY_MR2_RL 0x0
# LPDDR4 Mode Register 2
#(OFFSET, MASK, VALUE) (0XFD080188, 0xFFFFFFFFU ,0x00000020U) */
mask_write 0XFD080188 0xFFFFFFFF 0x00000020
# Register : MR3 @ 0XFD08018C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR3_RESERVED_31_8 0x2
# DBI-Write Enable
# PSU_DDR_PHY_MR3_DBIWR 0x0
# DBI-Read Enable
# PSU_DDR_PHY_MR3_DBIRD 0x0
# Pull-down Drive Strength
# PSU_DDR_PHY_MR3_PDDS 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be programmed to 0x0.
# PSU_DDR_PHY_MR3_RSVD 0x0
# Write Postamble Length
# PSU_DDR_PHY_MR3_WRPST 0x0
# Pull-up Calibration Point
# PSU_DDR_PHY_MR3_PUCAL 0x0
# LPDDR4 Mode Register 3
#(OFFSET, MASK, VALUE) (0XFD08018C, 0xFFFFFFFFU ,0x00000200U) */
mask_write 0XFD08018C 0xFFFFFFFF 0x00000200
# Register : MR4 @ 0XFD080190</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR4_RESERVED_31_16 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be programmed to 0x0.
# PSU_DDR_PHY_MR4_RSVD_15_13 0x0
# Write Preamble
# PSU_DDR_PHY_MR4_WRP 0x0
# Read Preamble
# PSU_DDR_PHY_MR4_RDP 0x0
# Read Preamble Training Mode
# PSU_DDR_PHY_MR4_RPTM 0x0
# Self Refresh Abort
# PSU_DDR_PHY_MR4_SRA 0x0
# CS to Command Latency Mode
# PSU_DDR_PHY_MR4_CS2CMDL 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be programmed to 0x0.
# PSU_DDR_PHY_MR4_RSVD1 0x0
# Internal VREF Monitor
# PSU_DDR_PHY_MR4_IVM 0x0
# Temperature Controlled Refresh Mode
# PSU_DDR_PHY_MR4_TCRM 0x0
# Temperature Controlled Refresh Range
# PSU_DDR_PHY_MR4_TCRR 0x0
# Maximum Power Down Mode
# PSU_DDR_PHY_MR4_MPDM 0x0
# This is a JEDEC reserved bit and is recommended by JEDEC to be programmed to 0x0.
# PSU_DDR_PHY_MR4_RSVD_0 0x0
# DDR4 Mode Register 4
#(OFFSET, MASK, VALUE) (0XFD080190, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080190 0xFFFFFFFF 0x00000000
# Register : MR5 @ 0XFD080194</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR5_RESERVED_31_16 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be programmed to 0x0.
# PSU_DDR_PHY_MR5_RSVD 0x0
# Read DBI
# PSU_DDR_PHY_MR5_RDBI 0x0
# Write DBI
# PSU_DDR_PHY_MR5_WDBI 0x0
# Data Mask
# PSU_DDR_PHY_MR5_DM 0x1
# CA Parity Persistent Error
# PSU_DDR_PHY_MR5_CAPPE 0x1
# RTT_PARK
# PSU_DDR_PHY_MR5_RTTPARK 0x3
# ODT Input Buffer during Power Down mode
# PSU_DDR_PHY_MR5_ODTIBPD 0x0
# C/A Parity Error Status
# PSU_DDR_PHY_MR5_CAPES 0x0
# CRC Error Clear
# PSU_DDR_PHY_MR5_CRCEC 0x0
# C/A Parity Latency Mode
# PSU_DDR_PHY_MR5_CAPM 0x0
# DDR4 Mode Register 5
#(OFFSET, MASK, VALUE) (0XFD080194, 0xFFFFFFFFU ,0x000006C0U) */
mask_write 0XFD080194 0xFFFFFFFF 0x000006C0
# Register : MR6 @ 0XFD080198</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR6_RESERVED_31_16 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be programmed to 0x0.
# PSU_DDR_PHY_MR6_RSVD_15_13 0x0
# CAS_n to CAS_n command delay for same bank group (tCCD_L)
# PSU_DDR_PHY_MR6_TCCDL 0x2
# These are JEDEC reserved bits and are recommended by JEDEC to be programmed to 0x0.
# PSU_DDR_PHY_MR6_RSVD_9_8 0x0
# VrefDQ Training Enable
# PSU_DDR_PHY_MR6_VDDQTEN 0x0
# VrefDQ Training Range
# PSU_DDR_PHY_MR6_VDQTRG 0x0
# VrefDQ Training Values
# PSU_DDR_PHY_MR6_VDQTVAL 0x19
# DDR4 Mode Register 6
#(OFFSET, MASK, VALUE) (0XFD080198, 0xFFFFFFFFU ,0x00000819U) */
mask_write 0XFD080198 0xFFFFFFFF 0x00000819
# Register : MR11 @ 0XFD0801AC</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR11_RESERVED_31_8 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be programmed to 0x0.
# PSU_DDR_PHY_MR11_RSVD 0x0
# Power Down Control
# PSU_DDR_PHY_MR11_PDCTL 0x0
# DQ Bus Receiver On-Die-Termination
# PSU_DDR_PHY_MR11_DQODT 0x0
# LPDDR4 Mode Register 11
#(OFFSET, MASK, VALUE) (0XFD0801AC, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD0801AC 0xFFFFFFFF 0x00000000
# Register : MR12 @ 0XFD0801B0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR12_RESERVED_31_8 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be programmed to 0x0.
# PSU_DDR_PHY_MR12_RSVD 0x0
# VREF_CA Range Select.
# PSU_DDR_PHY_MR12_VR_CA 0x1
# Controls the VREF(ca) levels for Frequency-Set-Point[1:0].
# PSU_DDR_PHY_MR12_VREF_CA 0xd
# LPDDR4 Mode Register 12
#(OFFSET, MASK, VALUE) (0XFD0801B0, 0xFFFFFFFFU ,0x0000004DU) */
mask_write 0XFD0801B0 0xFFFFFFFF 0x0000004D
# Register : MR13 @ 0XFD0801B4</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR13_RESERVED_31_8 0x0
# Frequency Set Point Operation Mode
# PSU_DDR_PHY_MR13_FSPOP 0x0
# Frequency Set Point Write Enable
# PSU_DDR_PHY_MR13_FSPWR 0x0
# Data Mask Enable
# PSU_DDR_PHY_MR13_DMD 0x0
# Refresh Rate Option
# PSU_DDR_PHY_MR13_RRO 0x0
# VREF Current Generator
# PSU_DDR_PHY_MR13_VRCG 0x1
# VREF Output
# PSU_DDR_PHY_MR13_VRO 0x0
# Read Preamble Training Mode
# PSU_DDR_PHY_MR13_RPT 0x0
# Command Bus Training
# PSU_DDR_PHY_MR13_CBT 0x0
# LPDDR4 Mode Register 13
#(OFFSET, MASK, VALUE) (0XFD0801B4, 0xFFFFFFFFU ,0x00000008U) */
mask_write 0XFD0801B4 0xFFFFFFFF 0x00000008
# Register : MR14 @ 0XFD0801B8</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR14_RESERVED_31_8 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be programmed to 0x0.
# PSU_DDR_PHY_MR14_RSVD 0x0
# VREFDQ Range Selects.
# PSU_DDR_PHY_MR14_VR_DQ 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR14_VREF_DQ 0xd
# LPDDR4 Mode Register 14
#(OFFSET, MASK, VALUE) (0XFD0801B8, 0xFFFFFFFFU ,0x0000004DU) */
mask_write 0XFD0801B8 0xFFFFFFFF 0x0000004D
# Register : MR22 @ 0XFD0801D8</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR22_RESERVED_31_8 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be programmed to 0x0.
# PSU_DDR_PHY_MR22_RSVD 0x0
# CA ODT termination disable.
# PSU_DDR_PHY_MR22_ODTD_CA 0x0
# ODT CS override.
# PSU_DDR_PHY_MR22_ODTE_CS 0x0
# ODT CK override.
# PSU_DDR_PHY_MR22_ODTE_CK 0x0
# Controller ODT value for VOH calibration.
# PSU_DDR_PHY_MR22_CODT 0x0
# LPDDR4 Mode Register 22
#(OFFSET, MASK, VALUE) (0XFD0801D8, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD0801D8 0xFFFFFFFF 0x00000000
# Register : DTCR0 @ 0XFD080200</p>
# Refresh During Training
# PSU_DDR_PHY_DTCR0_RFSHDT 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTCR0_RESERVED_27_26 0x0
# Data Training Debug Rank Select
# PSU_DDR_PHY_DTCR0_DTDRS 0x0
# Data Training with Early/Extended Gate
# PSU_DDR_PHY_DTCR0_DTEXG 0x0
# Data Training Extended Write DQS
# PSU_DDR_PHY_DTCR0_DTEXD 0x0
# Data Training Debug Step
# PSU_DDR_PHY_DTCR0_DTDSTP 0x0
# Data Training Debug Enable
# PSU_DDR_PHY_DTCR0_DTDEN 0x0
# Data Training Debug Byte Select
# PSU_DDR_PHY_DTCR0_DTDBS 0x0
# Data Training read DBI deskewing configuration
# PSU_DDR_PHY_DTCR0_DTRDBITR 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTCR0_RESERVED_13 0x0
# Data Training Write Bit Deskew Data Mask
# PSU_DDR_PHY_DTCR0_DTWBDDM 0x1
# Refreshes Issued During Entry to Training
# PSU_DDR_PHY_DTCR0_RFSHEN 0x1
# Data Training Compare Data
# PSU_DDR_PHY_DTCR0_DTCMPD 0x1
# Data Training Using MPR
# PSU_DDR_PHY_DTCR0_DTMPR 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTCR0_RESERVED_5_4 0x0
# Data Training Repeat Number
# PSU_DDR_PHY_DTCR0_DTRPTN 0x7
# Data Training Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080200, 0xFFFFFFFFU ,0x800091C7U) */
mask_write 0XFD080200 0xFFFFFFFF 0x800091C7
# Register : DTCR1 @ 0XFD080204</p>
# Rank Enable.
# PSU_DDR_PHY_DTCR1_RANKEN_RSVD 0x0
# Rank Enable.
# PSU_DDR_PHY_DTCR1_RANKEN 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTCR1_RESERVED_15_14 0x0
# Data Training Rank
# PSU_DDR_PHY_DTCR1_DTRANK 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTCR1_RESERVED_11 0x0
# Read Leveling Gate Sampling Difference
# PSU_DDR_PHY_DTCR1_RDLVLGDIFF 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTCR1_RESERVED_7 0x0
# Read Leveling Gate Shift
# PSU_DDR_PHY_DTCR1_RDLVLGS 0x3
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTCR1_RESERVED_3 0x0
# Read Preamble Training enable
# PSU_DDR_PHY_DTCR1_RDPRMVL_TRN 0x1
# Read Leveling Enable
# PSU_DDR_PHY_DTCR1_RDLVLEN 0x1
# Basic Gate Training Enable
# PSU_DDR_PHY_DTCR1_BSTEN 0x0
# Data Training Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080204, 0xFFFFFFFFU ,0x00010236U) */
mask_write 0XFD080204 0xFFFFFFFF 0x00010236
# Register : CATR0 @ 0XFD080240</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_CATR0_RESERVED_31_21 0x0
# Minimum time (in terms of number of dram clocks) between two consectuve CA calibration command
# PSU_DDR_PHY_CATR0_CACD 0x14
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_CATR0_RESERVED_15_13 0x0
# Minimum time (in terms of number of dram clocks) PUB should wait before sampling the CA response after Calibration command ha
# been sent to the memory
# PSU_DDR_PHY_CATR0_CAADR 0x10
# CA_1 Response Byte Lane 1
# PSU_DDR_PHY_CATR0_CA1BYTE1 0x5
# CA_1 Response Byte Lane 0
# PSU_DDR_PHY_CATR0_CA1BYTE0 0x4
# CA Training Register 0
#(OFFSET, MASK, VALUE) (0XFD080240, 0xFFFFFFFFU ,0x00141054U) */
mask_write 0XFD080240 0xFFFFFFFF 0x00141054
# Register : BISTLSR @ 0XFD080414</p>
# LFSR seed for pseudo-random BIST patterns
# PSU_DDR_PHY_BISTLSR_SEED 0x12341000
# BIST LFSR Seed Register
#(OFFSET, MASK, VALUE) (0XFD080414, 0xFFFFFFFFU ,0x12341000U) */
mask_write 0XFD080414 0xFFFFFFFF 0x12341000
# Register : RIOCR5 @ 0XFD0804F4</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RIOCR5_RESERVED_31_16 0x0
# Reserved. Return zeros on reads.
# PSU_DDR_PHY_RIOCR5_ODTOEMODE_RSVD 0x0
# SDRAM On-die Termination Output Enable (OE) Mode Selection.
# PSU_DDR_PHY_RIOCR5_ODTOEMODE 0x5
# Rank I/O Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD0804F4, 0xFFFFFFFFU ,0x00000005U) */
mask_write 0XFD0804F4 0xFFFFFFFF 0x00000005
# Register : ACIOCR0 @ 0XFD080500</p>
# Address/Command Slew Rate (D3F I/O Only)
# PSU_DDR_PHY_ACIOCR0_ACSR 0x0
# SDRAM Reset I/O Mode
# PSU_DDR_PHY_ACIOCR0_RSTIOM 0x1
# SDRAM Reset Power Down Receiver
# PSU_DDR_PHY_ACIOCR0_RSTPDR 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACIOCR0_RESERVED_27 0x0
# SDRAM Reset On-Die Termination
# PSU_DDR_PHY_ACIOCR0_RSTODT 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACIOCR0_RESERVED_25_10 0x0
# CK Duty Cycle Correction
# PSU_DDR_PHY_ACIOCR0_CKDCC 0x0
# AC Power Down Receiver Mode
# PSU_DDR_PHY_ACIOCR0_ACPDRMODE 0x2
# AC On-die Termination Mode
# PSU_DDR_PHY_ACIOCR0_ACODTMODE 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACIOCR0_RESERVED_1 0x0
# Control delayed or non-delayed clock to CS_N/ODT?CKE AC slices.
# PSU_DDR_PHY_ACIOCR0_ACRANKCLKSEL 0x0
# AC I/O Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080500, 0xFFFFFFFFU ,0x30000028U) */
mask_write 0XFD080500 0xFFFFFFFF 0x30000028
# Register : ACIOCR2 @ 0XFD080508</p>
# Clock gating for glue logic inside CLKGEN and glue logic inside CONTROL slice
# PSU_DDR_PHY_ACIOCR2_CLKGENCLKGATE 0x0
# Clock gating for Output Enable D slices [0]
# PSU_DDR_PHY_ACIOCR2_ACOECLKGATE0 0x0
# Clock gating for Power Down Receiver D slices [0]
# PSU_DDR_PHY_ACIOCR2_ACPDRCLKGATE0 0x0
# Clock gating for Termination Enable D slices [0]
# PSU_DDR_PHY_ACIOCR2_ACTECLKGATE0 0x0
# Clock gating for CK# D slices [1:0]
# PSU_DDR_PHY_ACIOCR2_CKNCLKGATE0 0x2
# Clock gating for CK D slices [1:0]
# PSU_DDR_PHY_ACIOCR2_CKCLKGATE0 0x2
# Clock gating for AC D slices [23:0]
# PSU_DDR_PHY_ACIOCR2_ACCLKGATE0 0x0
# AC I/O Configuration Register 2
#(OFFSET, MASK, VALUE) (0XFD080508, 0xFFFFFFFFU ,0x0A000000U) */
mask_write 0XFD080508 0xFFFFFFFF 0x0A000000
# Register : ACIOCR3 @ 0XFD08050C</p>
# SDRAM Parity Output Enable (OE) Mode Selection
# PSU_DDR_PHY_ACIOCR3_PAROEMODE 0x0
# SDRAM Bank Group Output Enable (OE) Mode Selection
# PSU_DDR_PHY_ACIOCR3_BGOEMODE 0x0
# SDRAM Bank Address Output Enable (OE) Mode Selection
# PSU_DDR_PHY_ACIOCR3_BAOEMODE 0x0
# SDRAM A[17] Output Enable (OE) Mode Selection
# PSU_DDR_PHY_ACIOCR3_A17OEMODE 0x0
# SDRAM A[16] / RAS_n Output Enable (OE) Mode Selection
# PSU_DDR_PHY_ACIOCR3_A16OEMODE 0x0
# SDRAM ACT_n Output Enable (OE) Mode Selection (DDR4 only)
# PSU_DDR_PHY_ACIOCR3_ACTOEMODE 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACIOCR3_RESERVED_15_8 0x0
# Reserved. Return zeros on reads.
# PSU_DDR_PHY_ACIOCR3_CKOEMODE_RSVD 0x0
# SDRAM CK Output Enable (OE) Mode Selection.
# PSU_DDR_PHY_ACIOCR3_CKOEMODE 0x9
# AC I/O Configuration Register 3
#(OFFSET, MASK, VALUE) (0XFD08050C, 0xFFFFFFFFU ,0x00000009U) */
mask_write 0XFD08050C 0xFFFFFFFF 0x00000009
# Register : ACIOCR4 @ 0XFD080510</p>
# Clock gating for AC LB slices and loopback read valid slices
# PSU_DDR_PHY_ACIOCR4_LBCLKGATE 0x0
# Clock gating for Output Enable D slices [1]
# PSU_DDR_PHY_ACIOCR4_ACOECLKGATE1 0x0
# Clock gating for Power Down Receiver D slices [1]
# PSU_DDR_PHY_ACIOCR4_ACPDRCLKGATE1 0x0
# Clock gating for Termination Enable D slices [1]
# PSU_DDR_PHY_ACIOCR4_ACTECLKGATE1 0x0
# Clock gating for CK# D slices [3:2]
# PSU_DDR_PHY_ACIOCR4_CKNCLKGATE1 0x2
# Clock gating for CK D slices [3:2]
# PSU_DDR_PHY_ACIOCR4_CKCLKGATE1 0x2
# Clock gating for AC D slices [47:24]
# PSU_DDR_PHY_ACIOCR4_ACCLKGATE1 0x0
# AC I/O Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080510, 0xFFFFFFFFU ,0x0A000000U) */
mask_write 0XFD080510 0xFFFFFFFF 0x0A000000
# Register : IOVCR0 @ 0XFD080520</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_IOVCR0_RESERVED_31_29 0x0
# Address/command lane VREF Pad Enable
# PSU_DDR_PHY_IOVCR0_ACREFPEN 0x0
# Address/command lane Internal VREF Enable
# PSU_DDR_PHY_IOVCR0_ACREFEEN 0x0
# Address/command lane Single-End VREF Enable
# PSU_DDR_PHY_IOVCR0_ACREFSEN 0x1
# Address/command lane Internal VREF Enable
# PSU_DDR_PHY_IOVCR0_ACREFIEN 0x1
# External VREF generato REFSEL range select
# PSU_DDR_PHY_IOVCR0_ACREFESELRANGE 0x0
# Address/command lane External VREF Select
# PSU_DDR_PHY_IOVCR0_ACREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_IOVCR0_ACREFSSELRANGE 0x1
# Address/command lane Single-End VREF Select
# PSU_DDR_PHY_IOVCR0_ACREFSSEL 0x30
# Internal VREF generator REFSEL ragne select
# PSU_DDR_PHY_IOVCR0_ACVREFISELRANGE 0x1
# REFSEL Control for internal AC IOs
# PSU_DDR_PHY_IOVCR0_ACVREFISEL 0x30
# IO VREF Control Register 0
#(OFFSET, MASK, VALUE) (0XFD080520, 0xFFFFFFFFU ,0x0300B0B0U) */
mask_write 0XFD080520 0xFFFFFFFF 0x0300B0B0
# Register : VTCR0 @ 0XFD080528</p>
# Number of ctl_clk required to meet (> 150ns) timing requirements during DRAM DQ VREF training
# PSU_DDR_PHY_VTCR0_TVREF 0x7
# DRM DQ VREF training Enable
# PSU_DDR_PHY_VTCR0_DVEN 0x1
# Per Device Addressability Enable
# PSU_DDR_PHY_VTCR0_PDAEN 0x1
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_VTCR0_RESERVED_26 0x0
# VREF Word Count
# PSU_DDR_PHY_VTCR0_VWCR 0x4
# DRAM DQ VREF step size used during DRAM VREF training
# PSU_DDR_PHY_VTCR0_DVSS 0x0
# Maximum VREF limit value used during DRAM VREF training
# PSU_DDR_PHY_VTCR0_DVMAX 0x32
# Minimum VREF limit value used during DRAM VREF training
# PSU_DDR_PHY_VTCR0_DVMIN 0x0
# Initial DRAM DQ VREF value used during DRAM VREF training
# PSU_DDR_PHY_VTCR0_DVINIT 0x19
# VREF Training Control Register 0
#(OFFSET, MASK, VALUE) (0XFD080528, 0xFFFFFFFFU ,0xF9032019U) */
mask_write 0XFD080528 0xFFFFFFFF 0xF9032019
# Register : VTCR1 @ 0XFD08052C</p>
# Host VREF step size used during VREF training. The register value of N indicates step size of (N+1)
# PSU_DDR_PHY_VTCR1_HVSS 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_VTCR1_RESERVED_27 0x0
# Maximum VREF limit value used during DRAM VREF training.
# PSU_DDR_PHY_VTCR1_HVMAX 0x7f
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_VTCR1_RESERVED_19 0x0
# Minimum VREF limit value used during DRAM VREF training.
# PSU_DDR_PHY_VTCR1_HVMIN 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_VTCR1_RESERVED_11 0x0
# Static Host Vref Rank Value
# PSU_DDR_PHY_VTCR1_SHRNK 0x0
# Static Host Vref Rank Enable
# PSU_DDR_PHY_VTCR1_SHREN 0x1
# Number of ctl_clk required to meet (> 200ns) VREF Settling timing requirements during Host IO VREF training
# PSU_DDR_PHY_VTCR1_TVREFIO 0x7
# Eye LCDL Offset value for VREF training
# PSU_DDR_PHY_VTCR1_EOFF 0x0
# Number of LCDL Eye points for which VREF training is repeated
# PSU_DDR_PHY_VTCR1_ENUM 0x0
# HOST (IO) internal VREF training Enable
# PSU_DDR_PHY_VTCR1_HVEN 0x1
# Host IO Type Control
# PSU_DDR_PHY_VTCR1_HVIO 0x1
# VREF Training Control Register 1
#(OFFSET, MASK, VALUE) (0XFD08052C, 0xFFFFFFFFU ,0x07F001E3U) */
mask_write 0XFD08052C 0xFFFFFFFF 0x07F001E3
# Register : ACBDLR1 @ 0XFD080544</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR1_RESERVED_31_30 0x0
# Delay select for the BDL on Parity.
# PSU_DDR_PHY_ACBDLR1_PARBD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR1_RESERVED_23_22 0x0
# Delay select for the BDL on Address A[16]. In DDR3 mode this pin is connected to WE.
# PSU_DDR_PHY_ACBDLR1_A16BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR1_RESERVED_15_14 0x0
# Delay select for the BDL on Address A[17]. When not in DDR4 modemode this pin is connected to CAS.
# PSU_DDR_PHY_ACBDLR1_A17BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR1_RESERVED_7_6 0x0
# Delay select for the BDL on ACTN.
# PSU_DDR_PHY_ACBDLR1_ACTBD 0x0
# AC Bit Delay Line Register 1
#(OFFSET, MASK, VALUE) (0XFD080544, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080544 0xFFFFFFFF 0x00000000
# Register : ACBDLR2 @ 0XFD080548</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR2_RESERVED_31_30 0x0
# Delay select for the BDL on BG[1].
# PSU_DDR_PHY_ACBDLR2_BG1BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR2_RESERVED_23_22 0x0
# Delay select for the BDL on BG[0].
# PSU_DDR_PHY_ACBDLR2_BG0BD 0x0
# Reser.ved Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR2_RESERVED_15_14 0x0
# Delay select for the BDL on BA[1].
# PSU_DDR_PHY_ACBDLR2_BA1BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR2_RESERVED_7_6 0x0
# Delay select for the BDL on BA[0].
# PSU_DDR_PHY_ACBDLR2_BA0BD 0x0
# AC Bit Delay Line Register 2
#(OFFSET, MASK, VALUE) (0XFD080548, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080548 0xFFFFFFFF 0x00000000
# Register : ACBDLR6 @ 0XFD080558</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR6_RESERVED_31_30 0x0
# Delay select for the BDL on Address A[3].
# PSU_DDR_PHY_ACBDLR6_A03BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR6_RESERVED_23_22 0x0
# Delay select for the BDL on Address A[2].
# PSU_DDR_PHY_ACBDLR6_A02BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR6_RESERVED_15_14 0x0
# Delay select for the BDL on Address A[1].
# PSU_DDR_PHY_ACBDLR6_A01BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR6_RESERVED_7_6 0x0
# Delay select for the BDL on Address A[0].
# PSU_DDR_PHY_ACBDLR6_A00BD 0x0
# AC Bit Delay Line Register 6
#(OFFSET, MASK, VALUE) (0XFD080558, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080558 0xFFFFFFFF 0x00000000
# Register : ACBDLR7 @ 0XFD08055C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR7_RESERVED_31_30 0x0
# Delay select for the BDL on Address A[7].
# PSU_DDR_PHY_ACBDLR7_A07BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR7_RESERVED_23_22 0x0
# Delay select for the BDL on Address A[6].
# PSU_DDR_PHY_ACBDLR7_A06BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR7_RESERVED_15_14 0x0
# Delay select for the BDL on Address A[5].
# PSU_DDR_PHY_ACBDLR7_A05BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR7_RESERVED_7_6 0x0
# Delay select for the BDL on Address A[4].
# PSU_DDR_PHY_ACBDLR7_A04BD 0x0
# AC Bit Delay Line Register 7
#(OFFSET, MASK, VALUE) (0XFD08055C, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD08055C 0xFFFFFFFF 0x00000000
# Register : ACBDLR8 @ 0XFD080560</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR8_RESERVED_31_30 0x0
# Delay select for the BDL on Address A[11].
# PSU_DDR_PHY_ACBDLR8_A11BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR8_RESERVED_23_22 0x0
# Delay select for the BDL on Address A[10].
# PSU_DDR_PHY_ACBDLR8_A10BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR8_RESERVED_15_14 0x0
# Delay select for the BDL on Address A[9].
# PSU_DDR_PHY_ACBDLR8_A09BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR8_RESERVED_7_6 0x0
# Delay select for the BDL on Address A[8].
# PSU_DDR_PHY_ACBDLR8_A08BD 0x0
# AC Bit Delay Line Register 8
#(OFFSET, MASK, VALUE) (0XFD080560, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080560 0xFFFFFFFF 0x00000000
# Register : ACBDLR9 @ 0XFD080564</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR9_RESERVED_31_30 0x0
# Delay select for the BDL on Address A[15].
# PSU_DDR_PHY_ACBDLR9_A15BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR9_RESERVED_23_22 0x0
# Delay select for the BDL on Address A[14].
# PSU_DDR_PHY_ACBDLR9_A14BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR9_RESERVED_15_14 0x0
# Delay select for the BDL on Address A[13].
# PSU_DDR_PHY_ACBDLR9_A13BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR9_RESERVED_7_6 0x0
# Delay select for the BDL on Address A[12].
# PSU_DDR_PHY_ACBDLR9_A12BD 0x0
# AC Bit Delay Line Register 9
#(OFFSET, MASK, VALUE) (0XFD080564, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080564 0xFFFFFFFF 0x00000000
# Register : ZQCR @ 0XFD080680</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ZQCR_RESERVED_31_26 0x0
# ZQ VREF Range
# PSU_DDR_PHY_ZQCR_ZQREFISELRANGE 0x0
# Programmable Wait for Frequency B
# PSU_DDR_PHY_ZQCR_PGWAIT_FRQB 0x11
# Programmable Wait for Frequency A
# PSU_DDR_PHY_ZQCR_PGWAIT_FRQA 0x11
# ZQ VREF Pad Enable
# PSU_DDR_PHY_ZQCR_ZQREFPEN 0x0
# ZQ Internal VREF Enable
# PSU_DDR_PHY_ZQCR_ZQREFIEN 0x1
# Choice of termination mode
# PSU_DDR_PHY_ZQCR_ODT_MODE 0x1
# Force ZCAL VT update
# PSU_DDR_PHY_ZQCR_FORCE_ZCAL_VT_UPDATE 0x0
# IO VT Drift Limit
# PSU_DDR_PHY_ZQCR_IODLMT 0x2
# Averaging algorithm enable, if set, enables averaging algorithm
# PSU_DDR_PHY_ZQCR_AVGEN 0x1
# Maximum number of averaging rounds to be used by averaging algorithm
# PSU_DDR_PHY_ZQCR_AVGMAX 0x2
# ZQ Calibration Type
# PSU_DDR_PHY_ZQCR_ZCALT 0x0
# ZQ Power Down
# PSU_DDR_PHY_ZQCR_ZQPD 0x0
# ZQ Impedance Control Register
#(OFFSET, MASK, VALUE) (0XFD080680, 0xFFFFFFFFU ,0x008A2A58U) */
mask_write 0XFD080680 0xFFFFFFFF 0x008A2A58
# Register : ZQ0PR0 @ 0XFD080684</p>
# Pull-down drive strength ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ0PR0_PD_DRV_ZDEN 0x0
# Pull-up drive strength ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ0PR0_PU_DRV_ZDEN 0x0
# Pull-down termination ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ0PR0_PD_ODT_ZDEN 0x0
# Pull-up termination ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ0PR0_PU_ODT_ZDEN 0x0
# Calibration segment bypass
# PSU_DDR_PHY_ZQ0PR0_ZSEGBYP 0x0
# VREF latch mode controls the mode in which the ZLE pin of the PVREF cell is driven by the PUB
# PSU_DDR_PHY_ZQ0PR0_ZLE_MODE 0x0
# Termination adjustment
# PSU_DDR_PHY_ZQ0PR0_ODT_ADJUST 0x0
# Pulldown drive strength adjustment
# PSU_DDR_PHY_ZQ0PR0_PD_DRV_ADJUST 0x0
# Pullup drive strength adjustment
# PSU_DDR_PHY_ZQ0PR0_PU_DRV_ADJUST 0x0
# DRAM Impedance Divide Ratio
# PSU_DDR_PHY_ZQ0PR0_ZPROG_DRAM_ODT 0x7
# HOST Impedance Divide Ratio
# PSU_DDR_PHY_ZQ0PR0_ZPROG_HOST_ODT 0x7
# Impedance Divide Ratio (pulldown drive calibration during asymmetric drive strength calibration)
# PSU_DDR_PHY_ZQ0PR0_ZPROG_ASYM_DRV_PD 0xd
# Impedance Divide Ratio (pullup drive calibration during asymmetric drive strength calibration)
# PSU_DDR_PHY_ZQ0PR0_ZPROG_ASYM_DRV_PU 0xd
# ZQ n Impedance Control Program Register 0
#(OFFSET, MASK, VALUE) (0XFD080684, 0xFFFFFFFFU ,0x000077DDU) */
mask_write 0XFD080684 0xFFFFFFFF 0x000077DD
# Register : ZQ0OR0 @ 0XFD080694</p>
# Reserved. Return zeros on reads.
# PSU_DDR_PHY_ZQ0OR0_RESERVED_31_26 0x0
# Override value for the pull-up output impedance
# PSU_DDR_PHY_ZQ0OR0_ZDATA_PU_DRV_OVRD 0x1e1
# Reserved. Return zeros on reads.
# PSU_DDR_PHY_ZQ0OR0_RESERVED_15_10 0x0
# Override value for the pull-down output impedance
# PSU_DDR_PHY_ZQ0OR0_ZDATA_PD_DRV_OVRD 0x210
# ZQ n Impedance Control Override Data Register 0
#(OFFSET, MASK, VALUE) (0XFD080694, 0xFFFFFFFFU ,0x01E10210U) */
mask_write 0XFD080694 0xFFFFFFFF 0x01E10210
# Register : ZQ0OR1 @ 0XFD080698</p>
# Reserved. Return zeros on reads.
# PSU_DDR_PHY_ZQ0OR1_RESERVED_31_26 0x0
# Override value for the pull-up termination
# PSU_DDR_PHY_ZQ0OR1_ZDATA_PU_ODT_OVRD 0x1e1
# Reserved. Return zeros on reads.
# PSU_DDR_PHY_ZQ0OR1_RESERVED_15_10 0x0
# Override value for the pull-down termination
# PSU_DDR_PHY_ZQ0OR1_ZDATA_PD_ODT_OVRD 0x0
# ZQ n Impedance Control Override Data Register 1
#(OFFSET, MASK, VALUE) (0XFD080698, 0xFFFFFFFFU ,0x01E10000U) */
mask_write 0XFD080698 0xFFFFFFFF 0x01E10000
# Register : ZQ1PR0 @ 0XFD0806A4</p>
# Pull-down drive strength ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ1PR0_PD_DRV_ZDEN 0x0
# Pull-up drive strength ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ1PR0_PU_DRV_ZDEN 0x0
# Pull-down termination ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ1PR0_PD_ODT_ZDEN 0x0
# Pull-up termination ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ1PR0_PU_ODT_ZDEN 0x0
# Calibration segment bypass
# PSU_DDR_PHY_ZQ1PR0_ZSEGBYP 0x0
# VREF latch mode controls the mode in which the ZLE pin of the PVREF cell is driven by the PUB
# PSU_DDR_PHY_ZQ1PR0_ZLE_MODE 0x0
# Termination adjustment
# PSU_DDR_PHY_ZQ1PR0_ODT_ADJUST 0x0
# Pulldown drive strength adjustment
# PSU_DDR_PHY_ZQ1PR0_PD_DRV_ADJUST 0x1
# Pullup drive strength adjustment
# PSU_DDR_PHY_ZQ1PR0_PU_DRV_ADJUST 0x0
# DRAM Impedance Divide Ratio
# PSU_DDR_PHY_ZQ1PR0_ZPROG_DRAM_ODT 0x7
# HOST Impedance Divide Ratio
# PSU_DDR_PHY_ZQ1PR0_ZPROG_HOST_ODT 0xb
# Impedance Divide Ratio (pulldown drive calibration during asymmetric drive strength calibration)
# PSU_DDR_PHY_ZQ1PR0_ZPROG_ASYM_DRV_PD 0xd
# Impedance Divide Ratio (pullup drive calibration during asymmetric drive strength calibration)
# PSU_DDR_PHY_ZQ1PR0_ZPROG_ASYM_DRV_PU 0xb
# ZQ n Impedance Control Program Register 0
#(OFFSET, MASK, VALUE) (0XFD0806A4, 0xFFFFFFFFU ,0x00087BDBU) */
mask_write 0XFD0806A4 0xFFFFFFFF 0x00087BDB
# Register : DX0GCR0 @ 0XFD080700</p>
# Calibration Bypass
# PSU_DDR_PHY_DX0GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX0GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX0GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX0GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX0GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX0GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX0GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX0GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX0GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX0GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX0GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX0GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX0GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX0GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX0GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX0GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX0GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080700, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080700 0xFFFFFFFF 0x40800604
# Register : DX0GCR4 @ 0XFD080710</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX0GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX0GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX0GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX0GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX0GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX0GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX0GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX0GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX0GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX0GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080710, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080710 0xFFFFFFFF 0x0E00B03C
# Register : DX0GCR5 @ 0XFD080714</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX0GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX0GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX0GCR5_DXREFISELR1 0x4f
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX0GCR5_DXREFISELR0 0x4f
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080714, 0xFFFFFFFFU ,0x09094F4FU) */
mask_write 0XFD080714 0xFFFFFFFF 0x09094F4F
# Register : DX0GCR6 @ 0XFD080718</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX0GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX0GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX0GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX0GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080718, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080718 0xFFFFFFFF 0x09092B2B
# Register : DX0LCDLR2 @ 0XFD080788</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX0LCDLR2_RESERVED_31_25 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX0LCDLR2_RESERVED_24_16 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX0LCDLR2_RESERVED_15_9 0x0
# Read DQS Gating Delay
# PSU_DDR_PHY_DX0LCDLR2_DQSGD 0x0
# DATX8 n Local Calibrated Delay Line Register 2
#(OFFSET, MASK, VALUE) (0XFD080788, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080788 0xFFFFFFFF 0x00000000
# Register : DX0GTR0 @ 0XFD0807C0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX0GTR0_RESERVED_31_24 0x0
# DQ Write Path Latency Pipeline
# PSU_DDR_PHY_DX0GTR0_WDQSL 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX0GTR0_RESERVED_23_20 0x0
# Write Leveling System Latency
# PSU_DDR_PHY_DX0GTR0_WLSL 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX0GTR0_RESERVED_15_13 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX0GTR0_RESERVED_12_8 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX0GTR0_RESERVED_7_5 0x0
# DQS Gating System Latency
# PSU_DDR_PHY_DX0GTR0_DGSL 0x0
# DATX8 n General Timing Register 0
#(OFFSET, MASK, VALUE) (0XFD0807C0, 0xFFFFFFFFU ,0x00020000U) */
mask_write 0XFD0807C0 0xFFFFFFFF 0x00020000
# Register : DX1GCR0 @ 0XFD080800</p>
# Calibration Bypass
# PSU_DDR_PHY_DX1GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX1GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX1GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX1GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX1GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX1GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX1GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX1GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX1GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX1GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX1GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX1GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX1GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX1GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX1GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX1GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX1GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080800, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080800 0xFFFFFFFF 0x40800604
# Register : DX1GCR4 @ 0XFD080810</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX1GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX1GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX1GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX1GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX1GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX1GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX1GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX1GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX1GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX1GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080810, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080810 0xFFFFFFFF 0x0E00B03C
# Register : DX1GCR5 @ 0XFD080814</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX1GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX1GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX1GCR5_DXREFISELR1 0x4f
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX1GCR5_DXREFISELR0 0x4f
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080814, 0xFFFFFFFFU ,0x09094F4FU) */
mask_write 0XFD080814 0xFFFFFFFF 0x09094F4F
# Register : DX1GCR6 @ 0XFD080818</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX1GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX1GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX1GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX1GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080818, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080818 0xFFFFFFFF 0x09092B2B
# Register : DX1LCDLR2 @ 0XFD080888</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX1LCDLR2_RESERVED_31_25 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX1LCDLR2_RESERVED_24_16 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX1LCDLR2_RESERVED_15_9 0x0
# Read DQS Gating Delay
# PSU_DDR_PHY_DX1LCDLR2_DQSGD 0x0
# DATX8 n Local Calibrated Delay Line Register 2
#(OFFSET, MASK, VALUE) (0XFD080888, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080888 0xFFFFFFFF 0x00000000
# Register : DX1GTR0 @ 0XFD0808C0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX1GTR0_RESERVED_31_24 0x0
# DQ Write Path Latency Pipeline
# PSU_DDR_PHY_DX1GTR0_WDQSL 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX1GTR0_RESERVED_23_20 0x0
# Write Leveling System Latency
# PSU_DDR_PHY_DX1GTR0_WLSL 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX1GTR0_RESERVED_15_13 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX1GTR0_RESERVED_12_8 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX1GTR0_RESERVED_7_5 0x0
# DQS Gating System Latency
# PSU_DDR_PHY_DX1GTR0_DGSL 0x0
# DATX8 n General Timing Register 0
#(OFFSET, MASK, VALUE) (0XFD0808C0, 0xFFFFFFFFU ,0x00020000U) */
mask_write 0XFD0808C0 0xFFFFFFFF 0x00020000
# Register : DX2GCR0 @ 0XFD080900</p>
# Calibration Bypass
# PSU_DDR_PHY_DX2GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX2GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX2GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX2GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX2GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX2GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX2GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX2GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX2GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX2GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX2GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX2GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX2GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX2GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX2GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX2GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX2GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080900, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080900 0xFFFFFFFF 0x40800604
# Register : DX2GCR1 @ 0XFD080904</p>
# Enables the PDR mode for DQ[7:0]
# PSU_DDR_PHY_DX2GCR1_DXPDRMODE 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_DX2GCR1_RESERVED_15 0x0
# Select the delayed or non-delayed read data strobe #
# PSU_DDR_PHY_DX2GCR1_QSNSEL 0x1
# Select the delayed or non-delayed read data strobe
# PSU_DDR_PHY_DX2GCR1_QSSEL 0x1
# Enables Read Data Strobe in a byte lane
# PSU_DDR_PHY_DX2GCR1_OEEN 0x1
# Enables PDR in a byte lane
# PSU_DDR_PHY_DX2GCR1_PDREN 0x1
# Enables ODT/TE in a byte lane
# PSU_DDR_PHY_DX2GCR1_TEEN 0x1
# Enables Write Data strobe in a byte lane
# PSU_DDR_PHY_DX2GCR1_DSEN 0x1
# Enables DM pin in a byte lane
# PSU_DDR_PHY_DX2GCR1_DMEN 0x1
# Enables DQ corresponding to each bit in a byte
# PSU_DDR_PHY_DX2GCR1_DQEN 0xff
# DATX8 n General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080904, 0xFFFFFFFFU ,0x00007FFFU) */
mask_write 0XFD080904 0xFFFFFFFF 0x00007FFF
# Register : DX2GCR4 @ 0XFD080910</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX2GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX2GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX2GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX2GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX2GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX2GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX2GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX2GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX2GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX2GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080910, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080910 0xFFFFFFFF 0x0E00B03C
# Register : DX2GCR5 @ 0XFD080914</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX2GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX2GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX2GCR5_DXREFISELR1 0x4f
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX2GCR5_DXREFISELR0 0x4f
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080914, 0xFFFFFFFFU ,0x09094F4FU) */
mask_write 0XFD080914 0xFFFFFFFF 0x09094F4F
# Register : DX2GCR6 @ 0XFD080918</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX2GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX2GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX2GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX2GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080918, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080918 0xFFFFFFFF 0x09092B2B
# Register : DX2LCDLR2 @ 0XFD080988</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX2LCDLR2_RESERVED_31_25 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX2LCDLR2_RESERVED_24_16 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX2LCDLR2_RESERVED_15_9 0x0
# Read DQS Gating Delay
# PSU_DDR_PHY_DX2LCDLR2_DQSGD 0x0
# DATX8 n Local Calibrated Delay Line Register 2
#(OFFSET, MASK, VALUE) (0XFD080988, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080988 0xFFFFFFFF 0x00000000
# Register : DX2GTR0 @ 0XFD0809C0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX2GTR0_RESERVED_31_24 0x0
# DQ Write Path Latency Pipeline
# PSU_DDR_PHY_DX2GTR0_WDQSL 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX2GTR0_RESERVED_23_20 0x0
# Write Leveling System Latency
# PSU_DDR_PHY_DX2GTR0_WLSL 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX2GTR0_RESERVED_15_13 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX2GTR0_RESERVED_12_8 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX2GTR0_RESERVED_7_5 0x0
# DQS Gating System Latency
# PSU_DDR_PHY_DX2GTR0_DGSL 0x0
# DATX8 n General Timing Register 0
#(OFFSET, MASK, VALUE) (0XFD0809C0, 0xFFFFFFFFU ,0x00020000U) */
mask_write 0XFD0809C0 0xFFFFFFFF 0x00020000
# Register : DX3GCR0 @ 0XFD080A00</p>
# Calibration Bypass
# PSU_DDR_PHY_DX3GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX3GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX3GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX3GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX3GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX3GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX3GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX3GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX3GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX3GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX3GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX3GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX3GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX3GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX3GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX3GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX3GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080A00, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080A00 0xFFFFFFFF 0x40800604
# Register : DX3GCR1 @ 0XFD080A04</p>
# Enables the PDR mode for DQ[7:0]
# PSU_DDR_PHY_DX3GCR1_DXPDRMODE 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_DX3GCR1_RESERVED_15 0x0
# Select the delayed or non-delayed read data strobe #
# PSU_DDR_PHY_DX3GCR1_QSNSEL 0x1
# Select the delayed or non-delayed read data strobe
# PSU_DDR_PHY_DX3GCR1_QSSEL 0x1
# Enables Read Data Strobe in a byte lane
# PSU_DDR_PHY_DX3GCR1_OEEN 0x1
# Enables PDR in a byte lane
# PSU_DDR_PHY_DX3GCR1_PDREN 0x1
# Enables ODT/TE in a byte lane
# PSU_DDR_PHY_DX3GCR1_TEEN 0x1
# Enables Write Data strobe in a byte lane
# PSU_DDR_PHY_DX3GCR1_DSEN 0x1
# Enables DM pin in a byte lane
# PSU_DDR_PHY_DX3GCR1_DMEN 0x1
# Enables DQ corresponding to each bit in a byte
# PSU_DDR_PHY_DX3GCR1_DQEN 0xff
# DATX8 n General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080A04, 0xFFFFFFFFU ,0x00007FFFU) */
mask_write 0XFD080A04 0xFFFFFFFF 0x00007FFF
# Register : DX3GCR4 @ 0XFD080A10</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX3GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX3GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX3GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX3GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX3GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX3GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX3GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX3GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX3GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX3GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080A10, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080A10 0xFFFFFFFF 0x0E00B03C
# Register : DX3GCR5 @ 0XFD080A14</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX3GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX3GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX3GCR5_DXREFISELR1 0x4f
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX3GCR5_DXREFISELR0 0x4f
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080A14, 0xFFFFFFFFU ,0x09094F4FU) */
mask_write 0XFD080A14 0xFFFFFFFF 0x09094F4F
# Register : DX3GCR6 @ 0XFD080A18</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX3GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX3GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX3GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX3GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080A18, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080A18 0xFFFFFFFF 0x09092B2B
# Register : DX3LCDLR2 @ 0XFD080A88</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX3LCDLR2_RESERVED_31_25 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX3LCDLR2_RESERVED_24_16 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX3LCDLR2_RESERVED_15_9 0x0
# Read DQS Gating Delay
# PSU_DDR_PHY_DX3LCDLR2_DQSGD 0x0
# DATX8 n Local Calibrated Delay Line Register 2
#(OFFSET, MASK, VALUE) (0XFD080A88, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080A88 0xFFFFFFFF 0x00000000
# Register : DX3GTR0 @ 0XFD080AC0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX3GTR0_RESERVED_31_24 0x0
# DQ Write Path Latency Pipeline
# PSU_DDR_PHY_DX3GTR0_WDQSL 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX3GTR0_RESERVED_23_20 0x0
# Write Leveling System Latency
# PSU_DDR_PHY_DX3GTR0_WLSL 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX3GTR0_RESERVED_15_13 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX3GTR0_RESERVED_12_8 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX3GTR0_RESERVED_7_5 0x0
# DQS Gating System Latency
# PSU_DDR_PHY_DX3GTR0_DGSL 0x0
# DATX8 n General Timing Register 0
#(OFFSET, MASK, VALUE) (0XFD080AC0, 0xFFFFFFFFU ,0x00020000U) */
mask_write 0XFD080AC0 0xFFFFFFFF 0x00020000
# Register : DX4GCR0 @ 0XFD080B00</p>
# Calibration Bypass
# PSU_DDR_PHY_DX4GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX4GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX4GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX4GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX4GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX4GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX4GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX4GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX4GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX4GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX4GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX4GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX4GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX4GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX4GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX4GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX4GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080B00, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080B00 0xFFFFFFFF 0x40800604
# Register : DX4GCR1 @ 0XFD080B04</p>
# Enables the PDR mode for DQ[7:0]
# PSU_DDR_PHY_DX4GCR1_DXPDRMODE 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_DX4GCR1_RESERVED_15 0x0
# Select the delayed or non-delayed read data strobe #
# PSU_DDR_PHY_DX4GCR1_QSNSEL 0x1
# Select the delayed or non-delayed read data strobe
# PSU_DDR_PHY_DX4GCR1_QSSEL 0x1
# Enables Read Data Strobe in a byte lane
# PSU_DDR_PHY_DX4GCR1_OEEN 0x1
# Enables PDR in a byte lane
# PSU_DDR_PHY_DX4GCR1_PDREN 0x1
# Enables ODT/TE in a byte lane
# PSU_DDR_PHY_DX4GCR1_TEEN 0x1
# Enables Write Data strobe in a byte lane
# PSU_DDR_PHY_DX4GCR1_DSEN 0x1
# Enables DM pin in a byte lane
# PSU_DDR_PHY_DX4GCR1_DMEN 0x1
# Enables DQ corresponding to each bit in a byte
# PSU_DDR_PHY_DX4GCR1_DQEN 0xff
# DATX8 n General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080B04, 0xFFFFFFFFU ,0x00007FFFU) */
mask_write 0XFD080B04 0xFFFFFFFF 0x00007FFF
# Register : DX4GCR4 @ 0XFD080B10</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX4GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX4GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX4GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX4GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX4GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX4GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX4GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX4GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX4GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX4GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080B10, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080B10 0xFFFFFFFF 0x0E00B03C
# Register : DX4GCR5 @ 0XFD080B14</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX4GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX4GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX4GCR5_DXREFISELR1 0x4f
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX4GCR5_DXREFISELR0 0x4f
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080B14, 0xFFFFFFFFU ,0x09094F4FU) */
mask_write 0XFD080B14 0xFFFFFFFF 0x09094F4F
# Register : DX4GCR6 @ 0XFD080B18</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX4GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX4GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX4GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX4GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080B18, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080B18 0xFFFFFFFF 0x09092B2B
# Register : DX4LCDLR2 @ 0XFD080B88</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX4LCDLR2_RESERVED_31_25 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX4LCDLR2_RESERVED_24_16 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX4LCDLR2_RESERVED_15_9 0x0
# Read DQS Gating Delay
# PSU_DDR_PHY_DX4LCDLR2_DQSGD 0x0
# DATX8 n Local Calibrated Delay Line Register 2
#(OFFSET, MASK, VALUE) (0XFD080B88, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080B88 0xFFFFFFFF 0x00000000
# Register : DX4GTR0 @ 0XFD080BC0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX4GTR0_RESERVED_31_24 0x0
# DQ Write Path Latency Pipeline
# PSU_DDR_PHY_DX4GTR0_WDQSL 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX4GTR0_RESERVED_23_20 0x0
# Write Leveling System Latency
# PSU_DDR_PHY_DX4GTR0_WLSL 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX4GTR0_RESERVED_15_13 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX4GTR0_RESERVED_12_8 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX4GTR0_RESERVED_7_5 0x0
# DQS Gating System Latency
# PSU_DDR_PHY_DX4GTR0_DGSL 0x0
# DATX8 n General Timing Register 0
#(OFFSET, MASK, VALUE) (0XFD080BC0, 0xFFFFFFFFU ,0x00020000U) */
mask_write 0XFD080BC0 0xFFFFFFFF 0x00020000
# Register : DX5GCR0 @ 0XFD080C00</p>
# Calibration Bypass
# PSU_DDR_PHY_DX5GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX5GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX5GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX5GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX5GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX5GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX5GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX5GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX5GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX5GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX5GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX5GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX5GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX5GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX5GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX5GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX5GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080C00, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080C00 0xFFFFFFFF 0x40800604
# Register : DX5GCR1 @ 0XFD080C04</p>
# Enables the PDR mode for DQ[7:0]
# PSU_DDR_PHY_DX5GCR1_DXPDRMODE 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_DX5GCR1_RESERVED_15 0x0
# Select the delayed or non-delayed read data strobe #
# PSU_DDR_PHY_DX5GCR1_QSNSEL 0x1
# Select the delayed or non-delayed read data strobe
# PSU_DDR_PHY_DX5GCR1_QSSEL 0x1
# Enables Read Data Strobe in a byte lane
# PSU_DDR_PHY_DX5GCR1_OEEN 0x1
# Enables PDR in a byte lane
# PSU_DDR_PHY_DX5GCR1_PDREN 0x1
# Enables ODT/TE in a byte lane
# PSU_DDR_PHY_DX5GCR1_TEEN 0x1
# Enables Write Data strobe in a byte lane
# PSU_DDR_PHY_DX5GCR1_DSEN 0x1
# Enables DM pin in a byte lane
# PSU_DDR_PHY_DX5GCR1_DMEN 0x1
# Enables DQ corresponding to each bit in a byte
# PSU_DDR_PHY_DX5GCR1_DQEN 0xff
# DATX8 n General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080C04, 0xFFFFFFFFU ,0x00007FFFU) */
mask_write 0XFD080C04 0xFFFFFFFF 0x00007FFF
# Register : DX5GCR4 @ 0XFD080C10</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX5GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX5GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX5GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX5GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX5GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX5GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX5GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX5GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX5GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX5GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080C10, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080C10 0xFFFFFFFF 0x0E00B03C
# Register : DX5GCR5 @ 0XFD080C14</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX5GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX5GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX5GCR5_DXREFISELR1 0x4f
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX5GCR5_DXREFISELR0 0x4f
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080C14, 0xFFFFFFFFU ,0x09094F4FU) */
mask_write 0XFD080C14 0xFFFFFFFF 0x09094F4F
# Register : DX5GCR6 @ 0XFD080C18</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX5GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX5GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX5GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX5GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080C18, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080C18 0xFFFFFFFF 0x09092B2B
# Register : DX5LCDLR2 @ 0XFD080C88</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX5LCDLR2_RESERVED_31_25 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX5LCDLR2_RESERVED_24_16 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX5LCDLR2_RESERVED_15_9 0x0
# Read DQS Gating Delay
# PSU_DDR_PHY_DX5LCDLR2_DQSGD 0x0
# DATX8 n Local Calibrated Delay Line Register 2
#(OFFSET, MASK, VALUE) (0XFD080C88, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080C88 0xFFFFFFFF 0x00000000
# Register : DX5GTR0 @ 0XFD080CC0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX5GTR0_RESERVED_31_24 0x0
# DQ Write Path Latency Pipeline
# PSU_DDR_PHY_DX5GTR0_WDQSL 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX5GTR0_RESERVED_23_20 0x0
# Write Leveling System Latency
# PSU_DDR_PHY_DX5GTR0_WLSL 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX5GTR0_RESERVED_15_13 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX5GTR0_RESERVED_12_8 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX5GTR0_RESERVED_7_5 0x0
# DQS Gating System Latency
# PSU_DDR_PHY_DX5GTR0_DGSL 0x0
# DATX8 n General Timing Register 0
#(OFFSET, MASK, VALUE) (0XFD080CC0, 0xFFFFFFFFU ,0x00020000U) */
mask_write 0XFD080CC0 0xFFFFFFFF 0x00020000
# Register : DX6GCR0 @ 0XFD080D00</p>
# Calibration Bypass
# PSU_DDR_PHY_DX6GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX6GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX6GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX6GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX6GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX6GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX6GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX6GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX6GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX6GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX6GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX6GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX6GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX6GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX6GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX6GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX6GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080D00, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080D00 0xFFFFFFFF 0x40800604
# Register : DX6GCR1 @ 0XFD080D04</p>
# Enables the PDR mode for DQ[7:0]
# PSU_DDR_PHY_DX6GCR1_DXPDRMODE 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_DX6GCR1_RESERVED_15 0x0
# Select the delayed or non-delayed read data strobe #
# PSU_DDR_PHY_DX6GCR1_QSNSEL 0x1
# Select the delayed or non-delayed read data strobe
# PSU_DDR_PHY_DX6GCR1_QSSEL 0x1
# Enables Read Data Strobe in a byte lane
# PSU_DDR_PHY_DX6GCR1_OEEN 0x1
# Enables PDR in a byte lane
# PSU_DDR_PHY_DX6GCR1_PDREN 0x1
# Enables ODT/TE in a byte lane
# PSU_DDR_PHY_DX6GCR1_TEEN 0x1
# Enables Write Data strobe in a byte lane
# PSU_DDR_PHY_DX6GCR1_DSEN 0x1
# Enables DM pin in a byte lane
# PSU_DDR_PHY_DX6GCR1_DMEN 0x1
# Enables DQ corresponding to each bit in a byte
# PSU_DDR_PHY_DX6GCR1_DQEN 0xff
# DATX8 n General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080D04, 0xFFFFFFFFU ,0x00007FFFU) */
mask_write 0XFD080D04 0xFFFFFFFF 0x00007FFF
# Register : DX6GCR4 @ 0XFD080D10</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX6GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX6GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX6GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX6GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX6GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX6GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX6GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX6GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX6GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX6GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080D10, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080D10 0xFFFFFFFF 0x0E00B03C
# Register : DX6GCR5 @ 0XFD080D14</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX6GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX6GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX6GCR5_DXREFISELR1 0x4f
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX6GCR5_DXREFISELR0 0x4f
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080D14, 0xFFFFFFFFU ,0x09094F4FU) */
mask_write 0XFD080D14 0xFFFFFFFF 0x09094F4F
# Register : DX6GCR6 @ 0XFD080D18</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX6GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX6GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX6GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX6GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080D18, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080D18 0xFFFFFFFF 0x09092B2B
# Register : DX6LCDLR2 @ 0XFD080D88</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX6LCDLR2_RESERVED_31_25 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX6LCDLR2_RESERVED_24_16 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX6LCDLR2_RESERVED_15_9 0x0
# Read DQS Gating Delay
# PSU_DDR_PHY_DX6LCDLR2_DQSGD 0x0
# DATX8 n Local Calibrated Delay Line Register 2
#(OFFSET, MASK, VALUE) (0XFD080D88, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080D88 0xFFFFFFFF 0x00000000
# Register : DX6GTR0 @ 0XFD080DC0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX6GTR0_RESERVED_31_24 0x0
# DQ Write Path Latency Pipeline
# PSU_DDR_PHY_DX6GTR0_WDQSL 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX6GTR0_RESERVED_23_20 0x0
# Write Leveling System Latency
# PSU_DDR_PHY_DX6GTR0_WLSL 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX6GTR0_RESERVED_15_13 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX6GTR0_RESERVED_12_8 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX6GTR0_RESERVED_7_5 0x0
# DQS Gating System Latency
# PSU_DDR_PHY_DX6GTR0_DGSL 0x0
# DATX8 n General Timing Register 0
#(OFFSET, MASK, VALUE) (0XFD080DC0, 0xFFFFFFFFU ,0x00020000U) */
mask_write 0XFD080DC0 0xFFFFFFFF 0x00020000
# Register : DX7GCR0 @ 0XFD080E00</p>
# Calibration Bypass
# PSU_DDR_PHY_DX7GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX7GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX7GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX7GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX7GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX7GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX7GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX7GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX7GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX7GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX7GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX7GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX7GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX7GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX7GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX7GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX7GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080E00, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080E00 0xFFFFFFFF 0x40800604
# Register : DX7GCR1 @ 0XFD080E04</p>
# Enables the PDR mode for DQ[7:0]
# PSU_DDR_PHY_DX7GCR1_DXPDRMODE 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_DX7GCR1_RESERVED_15 0x0
# Select the delayed or non-delayed read data strobe #
# PSU_DDR_PHY_DX7GCR1_QSNSEL 0x1
# Select the delayed or non-delayed read data strobe
# PSU_DDR_PHY_DX7GCR1_QSSEL 0x1
# Enables Read Data Strobe in a byte lane
# PSU_DDR_PHY_DX7GCR1_OEEN 0x1
# Enables PDR in a byte lane
# PSU_DDR_PHY_DX7GCR1_PDREN 0x1
# Enables ODT/TE in a byte lane
# PSU_DDR_PHY_DX7GCR1_TEEN 0x1
# Enables Write Data strobe in a byte lane
# PSU_DDR_PHY_DX7GCR1_DSEN 0x1
# Enables DM pin in a byte lane
# PSU_DDR_PHY_DX7GCR1_DMEN 0x1
# Enables DQ corresponding to each bit in a byte
# PSU_DDR_PHY_DX7GCR1_DQEN 0xff
# DATX8 n General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080E04, 0xFFFFFFFFU ,0x00007FFFU) */
mask_write 0XFD080E04 0xFFFFFFFF 0x00007FFF
# Register : DX7GCR4 @ 0XFD080E10</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX7GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX7GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX7GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX7GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX7GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX7GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX7GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX7GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX7GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX7GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080E10, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080E10 0xFFFFFFFF 0x0E00B03C
# Register : DX7GCR5 @ 0XFD080E14</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX7GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX7GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX7GCR5_DXREFISELR1 0x4f
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX7GCR5_DXREFISELR0 0x4f
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080E14, 0xFFFFFFFFU ,0x09094F4FU) */
mask_write 0XFD080E14 0xFFFFFFFF 0x09094F4F
# Register : DX7GCR6 @ 0XFD080E18</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX7GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX7GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX7GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX7GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080E18, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080E18 0xFFFFFFFF 0x09092B2B
# Register : DX7LCDLR2 @ 0XFD080E88</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX7LCDLR2_RESERVED_31_25 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX7LCDLR2_RESERVED_24_16 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX7LCDLR2_RESERVED_15_9 0x0
# Read DQS Gating Delay
# PSU_DDR_PHY_DX7LCDLR2_DQSGD 0xa
# DATX8 n Local Calibrated Delay Line Register 2
#(OFFSET, MASK, VALUE) (0XFD080E88, 0xFFFFFFFFU ,0x0000000AU) */
mask_write 0XFD080E88 0xFFFFFFFF 0x0000000A
# Register : DX7GTR0 @ 0XFD080EC0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX7GTR0_RESERVED_31_24 0x0
# DQ Write Path Latency Pipeline
# PSU_DDR_PHY_DX7GTR0_WDQSL 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX7GTR0_RESERVED_23_20 0x0
# Write Leveling System Latency
# PSU_DDR_PHY_DX7GTR0_WLSL 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX7GTR0_RESERVED_15_13 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX7GTR0_RESERVED_12_8 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX7GTR0_RESERVED_7_5 0x0
# DQS Gating System Latency
# PSU_DDR_PHY_DX7GTR0_DGSL 0x0
# DATX8 n General Timing Register 0
#(OFFSET, MASK, VALUE) (0XFD080EC0, 0xFFFFFFFFU ,0x00020000U) */
mask_write 0XFD080EC0 0xFFFFFFFF 0x00020000
# Register : DX8GCR0 @ 0XFD080F00</p>
# Calibration Bypass
# PSU_DDR_PHY_DX8GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX8GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX8GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX8GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX8GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX8GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX8GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX8GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX8GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX8GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX8GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX8GCR0_DQSGPDR 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX8GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX8GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080F00, 0xFFFFFFFFU ,0x40800624U) */
mask_write 0XFD080F00 0xFFFFFFFF 0x40800624
# Register : DX8GCR1 @ 0XFD080F04</p>
# Enables the PDR mode for DQ[7:0]
# PSU_DDR_PHY_DX8GCR1_DXPDRMODE 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_DX8GCR1_RESERVED_15 0x0
# Select the delayed or non-delayed read data strobe #
# PSU_DDR_PHY_DX8GCR1_QSNSEL 0x1
# Select the delayed or non-delayed read data strobe
# PSU_DDR_PHY_DX8GCR1_QSSEL 0x1
# Enables Read Data Strobe in a byte lane
# PSU_DDR_PHY_DX8GCR1_OEEN 0x1
# Enables PDR in a byte lane
# PSU_DDR_PHY_DX8GCR1_PDREN 0x1
# Enables ODT/TE in a byte lane
# PSU_DDR_PHY_DX8GCR1_TEEN 0x1
# Enables Write Data strobe in a byte lane
# PSU_DDR_PHY_DX8GCR1_DSEN 0x1
# Enables DM pin in a byte lane
# PSU_DDR_PHY_DX8GCR1_DMEN 0x1
# Enables DQ corresponding to each bit in a byte
# PSU_DDR_PHY_DX8GCR1_DQEN 0x0
# DATX8 n General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080F04, 0xFFFFFFFFU ,0x00007F00U) */
mask_write 0XFD080F04 0xFFFFFFFF 0x00007F00
# Register : DX8GCR4 @ 0XFD080F10</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX8GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX8GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX8GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX8GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX8GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX8GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX8GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX8GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX8GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX8GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080F10, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080F10 0xFFFFFFFF 0x0E00B03C
# Register : DX8GCR5 @ 0XFD080F14</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX8GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX8GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX8GCR5_DXREFISELR1 0x4f
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX8GCR5_DXREFISELR0 0x4f
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080F14, 0xFFFFFFFFU ,0x09094F4FU) */
mask_write 0XFD080F14 0xFFFFFFFF 0x09094F4F
# Register : DX8GCR6 @ 0XFD080F18</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX8GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX8GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX8GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX8GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080F18, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080F18 0xFFFFFFFF 0x09092B2B
# Register : DX8LCDLR2 @ 0XFD080F88</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8LCDLR2_RESERVED_31_25 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8LCDLR2_RESERVED_24_16 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8LCDLR2_RESERVED_15_9 0x0
# Read DQS Gating Delay
# PSU_DDR_PHY_DX8LCDLR2_DQSGD 0x0
# DATX8 n Local Calibrated Delay Line Register 2
#(OFFSET, MASK, VALUE) (0XFD080F88, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080F88 0xFFFFFFFF 0x00000000
# Register : DX8GTR0 @ 0XFD080FC0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8GTR0_RESERVED_31_24 0x0
# DQ Write Path Latency Pipeline
# PSU_DDR_PHY_DX8GTR0_WDQSL 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8GTR0_RESERVED_23_20 0x0
# Write Leveling System Latency
# PSU_DDR_PHY_DX8GTR0_WLSL 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8GTR0_RESERVED_15_13 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8GTR0_RESERVED_12_8 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8GTR0_RESERVED_7_5 0x0
# DQS Gating System Latency
# PSU_DDR_PHY_DX8GTR0_DGSL 0x0
# DATX8 n General Timing Register 0
#(OFFSET, MASK, VALUE) (0XFD080FC0, 0xFFFFFFFFU ,0x00020000U) */
mask_write 0XFD080FC0 0xFFFFFFFF 0x00020000
# Register : DX8SL0OSC @ 0XFD081400</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0OSC_RESERVED_31_30 0x0
# Enable Clock Gating for DX ddr_clk
# PSU_DDR_PHY_DX8SL0OSC_GATEDXRDCLK 0x2
# Enable Clock Gating for DX ctl_rd_clk
# PSU_DDR_PHY_DX8SL0OSC_GATEDXDDRCLK 0x2
# Enable Clock Gating for DX ctl_clk
# PSU_DDR_PHY_DX8SL0OSC_GATEDXCTLCLK 0x2
# Selects the level to which clocks will be stalled when clock gating is enabled.
# PSU_DDR_PHY_DX8SL0OSC_CLKLEVEL 0x0
# Loopback Mode
# PSU_DDR_PHY_DX8SL0OSC_LBMODE 0x0
# Load GSDQS LCDL with 2x the calibrated GSDQSPRD value
# PSU_DDR_PHY_DX8SL0OSC_LBGSDQS 0x0
# Loopback DQS Gating
# PSU_DDR_PHY_DX8SL0OSC_LBGDQS 0x0
# Loopback DQS Shift
# PSU_DDR_PHY_DX8SL0OSC_LBDQSS 0x0
# PHY High-Speed Reset
# PSU_DDR_PHY_DX8SL0OSC_PHYHRST 0x1
# PHY FIFO Reset
# PSU_DDR_PHY_DX8SL0OSC_PHYFRST 0x1
# Delay Line Test Start
# PSU_DDR_PHY_DX8SL0OSC_DLTST 0x0
# Delay Line Test Mode
# PSU_DDR_PHY_DX8SL0OSC_DLTMODE 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL0OSC_RESERVED_12_11 0x3
# Oscillator Mode Write-Data Delay Line Select
# PSU_DDR_PHY_DX8SL0OSC_OSCWDDL 0x3
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL0OSC_RESERVED_8_7 0x3
# Oscillator Mode Write-Leveling Delay Line Select
# PSU_DDR_PHY_DX8SL0OSC_OSCWDL 0x3
# Oscillator Mode Division
# PSU_DDR_PHY_DX8SL0OSC_OSCDIV 0xf
# Oscillator Enable
# PSU_DDR_PHY_DX8SL0OSC_OSCEN 0x0
# DATX8 0-1 Oscillator, Delay Line Test, PHY FIFO and High Speed Reset, Loopback, and Gated Clock Control Register
#(OFFSET, MASK, VALUE) (0XFD081400, 0xFFFFFFFFU ,0x2A019FFEU) */
mask_write 0XFD081400 0xFFFFFFFF 0x2A019FFE
# Register : DX8SL0DQSCTL @ 0XFD08141C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DQSCTL_RESERVED_31_25 0x0
# Read Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL0DQSCTL_RRRMODE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DQSCTL_RESERVED_23_22 0x0
# Write Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL0DQSCTL_WRRMODE 0x1
# DQS Gate Extension
# PSU_DDR_PHY_DX8SL0DQSCTL_DQSGX 0x0
# Low Power PLL Power Down
# PSU_DDR_PHY_DX8SL0DQSCTL_LPPLLPD 0x1
# Low Power I/O Power Down
# PSU_DDR_PHY_DX8SL0DQSCTL_LPIOPD 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DQSCTL_RESERVED_16_15 0x0
# QS Counter Enable
# PSU_DDR_PHY_DX8SL0DQSCTL_QSCNTEN 0x1
# Unused DQ I/O Mode
# PSU_DDR_PHY_DX8SL0DQSCTL_UDQIOM 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DQSCTL_RESERVED_12_10 0x0
# Data Slew Rate
# PSU_DDR_PHY_DX8SL0DQSCTL_DXSR 0x3
# DQS_N Resistor
# PSU_DDR_PHY_DX8SL0DQSCTL_DQSNRES 0x0
# DQS Resistor
# PSU_DDR_PHY_DX8SL0DQSCTL_DQSRES 0x0
# DATX8 0-1 DQS Control Register
#(OFFSET, MASK, VALUE) (0XFD08141C, 0xFFFFFFFFU ,0x01264300U) */
mask_write 0XFD08141C 0xFFFFFFFF 0x01264300
# Register : DX8SL0DXCTL2 @ 0XFD08142C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DXCTL2_RESERVED_31_24 0x0
# Configurable Read Data Enable
# PSU_DDR_PHY_DX8SL0DXCTL2_CRDEN 0x0
# OX Extension during Post-amble
# PSU_DDR_PHY_DX8SL0DXCTL2_POSOEX 0x0
# OE Extension during Pre-amble
# PSU_DDR_PHY_DX8SL0DXCTL2_PREOEX 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DXCTL2_RESERVED_17 0x0
# I/O Assisted Gate Select
# PSU_DDR_PHY_DX8SL0DXCTL2_IOAG 0x0
# I/O Loopback Select
# PSU_DDR_PHY_DX8SL0DXCTL2_IOLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DXCTL2_RESERVED_14_13 0x0
# Low Power Wakeup Threshold
# PSU_DDR_PHY_DX8SL0DXCTL2_LPWAKEUP_THRSH 0xc
# Read Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL0DXCTL2_RDBI 0x0
# Write Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL0DXCTL2_WDBI 0x0
# PUB Read FIFO Bypass
# PSU_DDR_PHY_DX8SL0DXCTL2_PRFBYP 0x0
# DATX8 Receive FIFO Read Mode
# PSU_DDR_PHY_DX8SL0DXCTL2_RDMODE 0x0
# Disables the Read FIFO Reset
# PSU_DDR_PHY_DX8SL0DXCTL2_DISRST 0x0
# Read DQS Gate I/O Loopback
# PSU_DDR_PHY_DX8SL0DXCTL2_DQSGLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DXCTL2_RESERVED_0 0x0
# DATX8 0-1 DX Control Register 2
#(OFFSET, MASK, VALUE) (0XFD08142C, 0xFFFFFFFFU ,0x00041800U) */
mask_write 0XFD08142C 0xFFFFFFFF 0x00041800
# Register : DX8SL0IOCR @ 0XFD081430</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0IOCR_RESERVED_31 0x0
# PVREF_DAC REFSEL range select
# PSU_DDR_PHY_DX8SL0IOCR_DXDACRANGE 0x7
# IOM bits for PVREF, PVREF_DAC and PVREFE cells in DX IO ring
# PSU_DDR_PHY_DX8SL0IOCR_DXVREFIOM 0x0
# DX IO Mode
# PSU_DDR_PHY_DX8SL0IOCR_DXIOM 0x2
# DX IO Transmitter Mode
# PSU_DDR_PHY_DX8SL0IOCR_DXTXM 0x0
# DX IO Receiver Mode
# PSU_DDR_PHY_DX8SL0IOCR_DXRXM 0x0
# DATX8 0-1 I/O Configuration Register
#(OFFSET, MASK, VALUE) (0XFD081430, 0xFFFFFFFFU ,0x70800000U) */
mask_write 0XFD081430 0xFFFFFFFF 0x70800000
# Register : DX8SL1OSC @ 0XFD081440</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1OSC_RESERVED_31_30 0x0
# Enable Clock Gating for DX ddr_clk
# PSU_DDR_PHY_DX8SL1OSC_GATEDXRDCLK 0x2
# Enable Clock Gating for DX ctl_rd_clk
# PSU_DDR_PHY_DX8SL1OSC_GATEDXDDRCLK 0x2
# Enable Clock Gating for DX ctl_clk
# PSU_DDR_PHY_DX8SL1OSC_GATEDXCTLCLK 0x2
# Selects the level to which clocks will be stalled when clock gating is enabled.
# PSU_DDR_PHY_DX8SL1OSC_CLKLEVEL 0x0
# Loopback Mode
# PSU_DDR_PHY_DX8SL1OSC_LBMODE 0x0
# Load GSDQS LCDL with 2x the calibrated GSDQSPRD value
# PSU_DDR_PHY_DX8SL1OSC_LBGSDQS 0x0
# Loopback DQS Gating
# PSU_DDR_PHY_DX8SL1OSC_LBGDQS 0x0
# Loopback DQS Shift
# PSU_DDR_PHY_DX8SL1OSC_LBDQSS 0x0
# PHY High-Speed Reset
# PSU_DDR_PHY_DX8SL1OSC_PHYHRST 0x1
# PHY FIFO Reset
# PSU_DDR_PHY_DX8SL1OSC_PHYFRST 0x1
# Delay Line Test Start
# PSU_DDR_PHY_DX8SL1OSC_DLTST 0x0
# Delay Line Test Mode
# PSU_DDR_PHY_DX8SL1OSC_DLTMODE 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL1OSC_RESERVED_12_11 0x3
# Oscillator Mode Write-Data Delay Line Select
# PSU_DDR_PHY_DX8SL1OSC_OSCWDDL 0x3
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL1OSC_RESERVED_8_7 0x3
# Oscillator Mode Write-Leveling Delay Line Select
# PSU_DDR_PHY_DX8SL1OSC_OSCWDL 0x3
# Oscillator Mode Division
# PSU_DDR_PHY_DX8SL1OSC_OSCDIV 0xf
# Oscillator Enable
# PSU_DDR_PHY_DX8SL1OSC_OSCEN 0x0
# DATX8 0-1 Oscillator, Delay Line Test, PHY FIFO and High Speed Reset, Loopback, and Gated Clock Control Register
#(OFFSET, MASK, VALUE) (0XFD081440, 0xFFFFFFFFU ,0x2A019FFEU) */
mask_write 0XFD081440 0xFFFFFFFF 0x2A019FFE
# Register : DX8SL1DQSCTL @ 0XFD08145C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DQSCTL_RESERVED_31_25 0x0
# Read Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL1DQSCTL_RRRMODE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DQSCTL_RESERVED_23_22 0x0
# Write Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL1DQSCTL_WRRMODE 0x1
# DQS Gate Extension
# PSU_DDR_PHY_DX8SL1DQSCTL_DQSGX 0x0
# Low Power PLL Power Down
# PSU_DDR_PHY_DX8SL1DQSCTL_LPPLLPD 0x1
# Low Power I/O Power Down
# PSU_DDR_PHY_DX8SL1DQSCTL_LPIOPD 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DQSCTL_RESERVED_16_15 0x0
# QS Counter Enable
# PSU_DDR_PHY_DX8SL1DQSCTL_QSCNTEN 0x1
# Unused DQ I/O Mode
# PSU_DDR_PHY_DX8SL1DQSCTL_UDQIOM 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DQSCTL_RESERVED_12_10 0x0
# Data Slew Rate
# PSU_DDR_PHY_DX8SL1DQSCTL_DXSR 0x3
# DQS_N Resistor
# PSU_DDR_PHY_DX8SL1DQSCTL_DQSNRES 0x0
# DQS Resistor
# PSU_DDR_PHY_DX8SL1DQSCTL_DQSRES 0x0
# DATX8 0-1 DQS Control Register
#(OFFSET, MASK, VALUE) (0XFD08145C, 0xFFFFFFFFU ,0x01264300U) */
mask_write 0XFD08145C 0xFFFFFFFF 0x01264300
# Register : DX8SL1DXCTL2 @ 0XFD08146C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DXCTL2_RESERVED_31_24 0x0
# Configurable Read Data Enable
# PSU_DDR_PHY_DX8SL1DXCTL2_CRDEN 0x0
# OX Extension during Post-amble
# PSU_DDR_PHY_DX8SL1DXCTL2_POSOEX 0x0
# OE Extension during Pre-amble
# PSU_DDR_PHY_DX8SL1DXCTL2_PREOEX 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DXCTL2_RESERVED_17 0x0
# I/O Assisted Gate Select
# PSU_DDR_PHY_DX8SL1DXCTL2_IOAG 0x0
# I/O Loopback Select
# PSU_DDR_PHY_DX8SL1DXCTL2_IOLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DXCTL2_RESERVED_14_13 0x0
# Low Power Wakeup Threshold
# PSU_DDR_PHY_DX8SL1DXCTL2_LPWAKEUP_THRSH 0xc
# Read Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL1DXCTL2_RDBI 0x0
# Write Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL1DXCTL2_WDBI 0x0
# PUB Read FIFO Bypass
# PSU_DDR_PHY_DX8SL1DXCTL2_PRFBYP 0x0
# DATX8 Receive FIFO Read Mode
# PSU_DDR_PHY_DX8SL1DXCTL2_RDMODE 0x0
# Disables the Read FIFO Reset
# PSU_DDR_PHY_DX8SL1DXCTL2_DISRST 0x0
# Read DQS Gate I/O Loopback
# PSU_DDR_PHY_DX8SL1DXCTL2_DQSGLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DXCTL2_RESERVED_0 0x0
# DATX8 0-1 DX Control Register 2
#(OFFSET, MASK, VALUE) (0XFD08146C, 0xFFFFFFFFU ,0x00041800U) */
mask_write 0XFD08146C 0xFFFFFFFF 0x00041800
# Register : DX8SL1IOCR @ 0XFD081470</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1IOCR_RESERVED_31 0x0
# PVREF_DAC REFSEL range select
# PSU_DDR_PHY_DX8SL1IOCR_DXDACRANGE 0x7
# IOM bits for PVREF, PVREF_DAC and PVREFE cells in DX IO ring
# PSU_DDR_PHY_DX8SL1IOCR_DXVREFIOM 0x0
# DX IO Mode
# PSU_DDR_PHY_DX8SL1IOCR_DXIOM 0x2
# DX IO Transmitter Mode
# PSU_DDR_PHY_DX8SL1IOCR_DXTXM 0x0
# DX IO Receiver Mode
# PSU_DDR_PHY_DX8SL1IOCR_DXRXM 0x0
# DATX8 0-1 I/O Configuration Register
#(OFFSET, MASK, VALUE) (0XFD081470, 0xFFFFFFFFU ,0x70800000U) */
mask_write 0XFD081470 0xFFFFFFFF 0x70800000
# Register : DX8SL2OSC @ 0XFD081480</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2OSC_RESERVED_31_30 0x0
# Enable Clock Gating for DX ddr_clk
# PSU_DDR_PHY_DX8SL2OSC_GATEDXRDCLK 0x2
# Enable Clock Gating for DX ctl_rd_clk
# PSU_DDR_PHY_DX8SL2OSC_GATEDXDDRCLK 0x2
# Enable Clock Gating for DX ctl_clk
# PSU_DDR_PHY_DX8SL2OSC_GATEDXCTLCLK 0x2
# Selects the level to which clocks will be stalled when clock gating is enabled.
# PSU_DDR_PHY_DX8SL2OSC_CLKLEVEL 0x0
# Loopback Mode
# PSU_DDR_PHY_DX8SL2OSC_LBMODE 0x0
# Load GSDQS LCDL with 2x the calibrated GSDQSPRD value
# PSU_DDR_PHY_DX8SL2OSC_LBGSDQS 0x0
# Loopback DQS Gating
# PSU_DDR_PHY_DX8SL2OSC_LBGDQS 0x0
# Loopback DQS Shift
# PSU_DDR_PHY_DX8SL2OSC_LBDQSS 0x0
# PHY High-Speed Reset
# PSU_DDR_PHY_DX8SL2OSC_PHYHRST 0x1
# PHY FIFO Reset
# PSU_DDR_PHY_DX8SL2OSC_PHYFRST 0x1
# Delay Line Test Start
# PSU_DDR_PHY_DX8SL2OSC_DLTST 0x0
# Delay Line Test Mode
# PSU_DDR_PHY_DX8SL2OSC_DLTMODE 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL2OSC_RESERVED_12_11 0x3
# Oscillator Mode Write-Data Delay Line Select
# PSU_DDR_PHY_DX8SL2OSC_OSCWDDL 0x3
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL2OSC_RESERVED_8_7 0x3
# Oscillator Mode Write-Leveling Delay Line Select
# PSU_DDR_PHY_DX8SL2OSC_OSCWDL 0x3
# Oscillator Mode Division
# PSU_DDR_PHY_DX8SL2OSC_OSCDIV 0xf
# Oscillator Enable
# PSU_DDR_PHY_DX8SL2OSC_OSCEN 0x0
# DATX8 0-1 Oscillator, Delay Line Test, PHY FIFO and High Speed Reset, Loopback, and Gated Clock Control Register
#(OFFSET, MASK, VALUE) (0XFD081480, 0xFFFFFFFFU ,0x2A019FFEU) */
mask_write 0XFD081480 0xFFFFFFFF 0x2A019FFE
# Register : DX8SL2DQSCTL @ 0XFD08149C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DQSCTL_RESERVED_31_25 0x0
# Read Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL2DQSCTL_RRRMODE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DQSCTL_RESERVED_23_22 0x0
# Write Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL2DQSCTL_WRRMODE 0x1
# DQS Gate Extension
# PSU_DDR_PHY_DX8SL2DQSCTL_DQSGX 0x0
# Low Power PLL Power Down
# PSU_DDR_PHY_DX8SL2DQSCTL_LPPLLPD 0x1
# Low Power I/O Power Down
# PSU_DDR_PHY_DX8SL2DQSCTL_LPIOPD 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DQSCTL_RESERVED_16_15 0x0
# QS Counter Enable
# PSU_DDR_PHY_DX8SL2DQSCTL_QSCNTEN 0x1
# Unused DQ I/O Mode
# PSU_DDR_PHY_DX8SL2DQSCTL_UDQIOM 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DQSCTL_RESERVED_12_10 0x0
# Data Slew Rate
# PSU_DDR_PHY_DX8SL2DQSCTL_DXSR 0x3
# DQS_N Resistor
# PSU_DDR_PHY_DX8SL2DQSCTL_DQSNRES 0x0
# DQS Resistor
# PSU_DDR_PHY_DX8SL2DQSCTL_DQSRES 0x0
# DATX8 0-1 DQS Control Register
#(OFFSET, MASK, VALUE) (0XFD08149C, 0xFFFFFFFFU ,0x01264300U) */
mask_write 0XFD08149C 0xFFFFFFFF 0x01264300
# Register : DX8SL2DXCTL2 @ 0XFD0814AC</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DXCTL2_RESERVED_31_24 0x0
# Configurable Read Data Enable
# PSU_DDR_PHY_DX8SL2DXCTL2_CRDEN 0x0
# OX Extension during Post-amble
# PSU_DDR_PHY_DX8SL2DXCTL2_POSOEX 0x0
# OE Extension during Pre-amble
# PSU_DDR_PHY_DX8SL2DXCTL2_PREOEX 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DXCTL2_RESERVED_17 0x0
# I/O Assisted Gate Select
# PSU_DDR_PHY_DX8SL2DXCTL2_IOAG 0x0
# I/O Loopback Select
# PSU_DDR_PHY_DX8SL2DXCTL2_IOLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DXCTL2_RESERVED_14_13 0x0
# Low Power Wakeup Threshold
# PSU_DDR_PHY_DX8SL2DXCTL2_LPWAKEUP_THRSH 0xc
# Read Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL2DXCTL2_RDBI 0x0
# Write Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL2DXCTL2_WDBI 0x0
# PUB Read FIFO Bypass
# PSU_DDR_PHY_DX8SL2DXCTL2_PRFBYP 0x0
# DATX8 Receive FIFO Read Mode
# PSU_DDR_PHY_DX8SL2DXCTL2_RDMODE 0x0
# Disables the Read FIFO Reset
# PSU_DDR_PHY_DX8SL2DXCTL2_DISRST 0x0
# Read DQS Gate I/O Loopback
# PSU_DDR_PHY_DX8SL2DXCTL2_DQSGLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DXCTL2_RESERVED_0 0x0
# DATX8 0-1 DX Control Register 2
#(OFFSET, MASK, VALUE) (0XFD0814AC, 0xFFFFFFFFU ,0x00041800U) */
mask_write 0XFD0814AC 0xFFFFFFFF 0x00041800
# Register : DX8SL2IOCR @ 0XFD0814B0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2IOCR_RESERVED_31 0x0
# PVREF_DAC REFSEL range select
# PSU_DDR_PHY_DX8SL2IOCR_DXDACRANGE 0x7
# IOM bits for PVREF, PVREF_DAC and PVREFE cells in DX IO ring
# PSU_DDR_PHY_DX8SL2IOCR_DXVREFIOM 0x0
# DX IO Mode
# PSU_DDR_PHY_DX8SL2IOCR_DXIOM 0x2
# DX IO Transmitter Mode
# PSU_DDR_PHY_DX8SL2IOCR_DXTXM 0x0
# DX IO Receiver Mode
# PSU_DDR_PHY_DX8SL2IOCR_DXRXM 0x0
# DATX8 0-1 I/O Configuration Register
#(OFFSET, MASK, VALUE) (0XFD0814B0, 0xFFFFFFFFU ,0x70800000U) */
mask_write 0XFD0814B0 0xFFFFFFFF 0x70800000
# Register : DX8SL3OSC @ 0XFD0814C0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3OSC_RESERVED_31_30 0x0
# Enable Clock Gating for DX ddr_clk
# PSU_DDR_PHY_DX8SL3OSC_GATEDXRDCLK 0x2
# Enable Clock Gating for DX ctl_rd_clk
# PSU_DDR_PHY_DX8SL3OSC_GATEDXDDRCLK 0x2
# Enable Clock Gating for DX ctl_clk
# PSU_DDR_PHY_DX8SL3OSC_GATEDXCTLCLK 0x2
# Selects the level to which clocks will be stalled when clock gating is enabled.
# PSU_DDR_PHY_DX8SL3OSC_CLKLEVEL 0x0
# Loopback Mode
# PSU_DDR_PHY_DX8SL3OSC_LBMODE 0x0
# Load GSDQS LCDL with 2x the calibrated GSDQSPRD value
# PSU_DDR_PHY_DX8SL3OSC_LBGSDQS 0x0
# Loopback DQS Gating
# PSU_DDR_PHY_DX8SL3OSC_LBGDQS 0x0
# Loopback DQS Shift
# PSU_DDR_PHY_DX8SL3OSC_LBDQSS 0x0
# PHY High-Speed Reset
# PSU_DDR_PHY_DX8SL3OSC_PHYHRST 0x1
# PHY FIFO Reset
# PSU_DDR_PHY_DX8SL3OSC_PHYFRST 0x1
# Delay Line Test Start
# PSU_DDR_PHY_DX8SL3OSC_DLTST 0x0
# Delay Line Test Mode
# PSU_DDR_PHY_DX8SL3OSC_DLTMODE 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL3OSC_RESERVED_12_11 0x3
# Oscillator Mode Write-Data Delay Line Select
# PSU_DDR_PHY_DX8SL3OSC_OSCWDDL 0x3
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL3OSC_RESERVED_8_7 0x3
# Oscillator Mode Write-Leveling Delay Line Select
# PSU_DDR_PHY_DX8SL3OSC_OSCWDL 0x3
# Oscillator Mode Division
# PSU_DDR_PHY_DX8SL3OSC_OSCDIV 0xf
# Oscillator Enable
# PSU_DDR_PHY_DX8SL3OSC_OSCEN 0x0
# DATX8 0-1 Oscillator, Delay Line Test, PHY FIFO and High Speed Reset, Loopback, and Gated Clock Control Register
#(OFFSET, MASK, VALUE) (0XFD0814C0, 0xFFFFFFFFU ,0x2A019FFEU) */
mask_write 0XFD0814C0 0xFFFFFFFF 0x2A019FFE
# Register : DX8SL3DQSCTL @ 0XFD0814DC</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DQSCTL_RESERVED_31_25 0x0
# Read Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL3DQSCTL_RRRMODE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DQSCTL_RESERVED_23_22 0x0
# Write Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL3DQSCTL_WRRMODE 0x1
# DQS Gate Extension
# PSU_DDR_PHY_DX8SL3DQSCTL_DQSGX 0x0
# Low Power PLL Power Down
# PSU_DDR_PHY_DX8SL3DQSCTL_LPPLLPD 0x1
# Low Power I/O Power Down
# PSU_DDR_PHY_DX8SL3DQSCTL_LPIOPD 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DQSCTL_RESERVED_16_15 0x0
# QS Counter Enable
# PSU_DDR_PHY_DX8SL3DQSCTL_QSCNTEN 0x1
# Unused DQ I/O Mode
# PSU_DDR_PHY_DX8SL3DQSCTL_UDQIOM 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DQSCTL_RESERVED_12_10 0x0
# Data Slew Rate
# PSU_DDR_PHY_DX8SL3DQSCTL_DXSR 0x3
# DQS_N Resistor
# PSU_DDR_PHY_DX8SL3DQSCTL_DQSNRES 0x0
# DQS Resistor
# PSU_DDR_PHY_DX8SL3DQSCTL_DQSRES 0x0
# DATX8 0-1 DQS Control Register
#(OFFSET, MASK, VALUE) (0XFD0814DC, 0xFFFFFFFFU ,0x01264300U) */
mask_write 0XFD0814DC 0xFFFFFFFF 0x01264300
# Register : DX8SL3DXCTL2 @ 0XFD0814EC</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DXCTL2_RESERVED_31_24 0x0
# Configurable Read Data Enable
# PSU_DDR_PHY_DX8SL3DXCTL2_CRDEN 0x0
# OX Extension during Post-amble
# PSU_DDR_PHY_DX8SL3DXCTL2_POSOEX 0x0
# OE Extension during Pre-amble
# PSU_DDR_PHY_DX8SL3DXCTL2_PREOEX 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DXCTL2_RESERVED_17 0x0
# I/O Assisted Gate Select
# PSU_DDR_PHY_DX8SL3DXCTL2_IOAG 0x0
# I/O Loopback Select
# PSU_DDR_PHY_DX8SL3DXCTL2_IOLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DXCTL2_RESERVED_14_13 0x0
# Low Power Wakeup Threshold
# PSU_DDR_PHY_DX8SL3DXCTL2_LPWAKEUP_THRSH 0xc
# Read Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL3DXCTL2_RDBI 0x0
# Write Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL3DXCTL2_WDBI 0x0
# PUB Read FIFO Bypass
# PSU_DDR_PHY_DX8SL3DXCTL2_PRFBYP 0x0
# DATX8 Receive FIFO Read Mode
# PSU_DDR_PHY_DX8SL3DXCTL2_RDMODE 0x0
# Disables the Read FIFO Reset
# PSU_DDR_PHY_DX8SL3DXCTL2_DISRST 0x0
# Read DQS Gate I/O Loopback
# PSU_DDR_PHY_DX8SL3DXCTL2_DQSGLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DXCTL2_RESERVED_0 0x0
# DATX8 0-1 DX Control Register 2
#(OFFSET, MASK, VALUE) (0XFD0814EC, 0xFFFFFFFFU ,0x00041800U) */
mask_write 0XFD0814EC 0xFFFFFFFF 0x00041800
# Register : DX8SL3IOCR @ 0XFD0814F0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3IOCR_RESERVED_31 0x0
# PVREF_DAC REFSEL range select
# PSU_DDR_PHY_DX8SL3IOCR_DXDACRANGE 0x7
# IOM bits for PVREF, PVREF_DAC and PVREFE cells in DX IO ring
# PSU_DDR_PHY_DX8SL3IOCR_DXVREFIOM 0x0
# DX IO Mode
# PSU_DDR_PHY_DX8SL3IOCR_DXIOM 0x2
# DX IO Transmitter Mode
# PSU_DDR_PHY_DX8SL3IOCR_DXTXM 0x0
# DX IO Receiver Mode
# PSU_DDR_PHY_DX8SL3IOCR_DXRXM 0x0
# DATX8 0-1 I/O Configuration Register
#(OFFSET, MASK, VALUE) (0XFD0814F0, 0xFFFFFFFFU ,0x70800000U) */
mask_write 0XFD0814F0 0xFFFFFFFF 0x70800000
# Register : DX8SL4OSC @ 0XFD081500</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4OSC_RESERVED_31_30 0x0
# Enable Clock Gating for DX ddr_clk
# PSU_DDR_PHY_DX8SL4OSC_GATEDXRDCLK 0x2
# Enable Clock Gating for DX ctl_rd_clk
# PSU_DDR_PHY_DX8SL4OSC_GATEDXDDRCLK 0x2
# Enable Clock Gating for DX ctl_clk
# PSU_DDR_PHY_DX8SL4OSC_GATEDXCTLCLK 0x2
# Selects the level to which clocks will be stalled when clock gating is enabled.
# PSU_DDR_PHY_DX8SL4OSC_CLKLEVEL 0x0
# Loopback Mode
# PSU_DDR_PHY_DX8SL4OSC_LBMODE 0x0
# Load GSDQS LCDL with 2x the calibrated GSDQSPRD value
# PSU_DDR_PHY_DX8SL4OSC_LBGSDQS 0x0
# Loopback DQS Gating
# PSU_DDR_PHY_DX8SL4OSC_LBGDQS 0x0
# Loopback DQS Shift
# PSU_DDR_PHY_DX8SL4OSC_LBDQSS 0x0
# PHY High-Speed Reset
# PSU_DDR_PHY_DX8SL4OSC_PHYHRST 0x1
# PHY FIFO Reset
# PSU_DDR_PHY_DX8SL4OSC_PHYFRST 0x1
# Delay Line Test Start
# PSU_DDR_PHY_DX8SL4OSC_DLTST 0x0
# Delay Line Test Mode
# PSU_DDR_PHY_DX8SL4OSC_DLTMODE 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL4OSC_RESERVED_12_11 0x3
# Oscillator Mode Write-Data Delay Line Select
# PSU_DDR_PHY_DX8SL4OSC_OSCWDDL 0x3
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL4OSC_RESERVED_8_7 0x3
# Oscillator Mode Write-Leveling Delay Line Select
# PSU_DDR_PHY_DX8SL4OSC_OSCWDL 0x3
# Oscillator Mode Division
# PSU_DDR_PHY_DX8SL4OSC_OSCDIV 0xf
# Oscillator Enable
# PSU_DDR_PHY_DX8SL4OSC_OSCEN 0x0
# DATX8 0-1 Oscillator, Delay Line Test, PHY FIFO and High Speed Reset, Loopback, and Gated Clock Control Register
#(OFFSET, MASK, VALUE) (0XFD081500, 0xFFFFFFFFU ,0x2A019FFEU) */
mask_write 0XFD081500 0xFFFFFFFF 0x2A019FFE
# Register : DX8SL4DQSCTL @ 0XFD08151C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DQSCTL_RESERVED_31_25 0x0
# Read Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL4DQSCTL_RRRMODE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DQSCTL_RESERVED_23_22 0x0
# Write Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL4DQSCTL_WRRMODE 0x1
# DQS Gate Extension
# PSU_DDR_PHY_DX8SL4DQSCTL_DQSGX 0x0
# Low Power PLL Power Down
# PSU_DDR_PHY_DX8SL4DQSCTL_LPPLLPD 0x1
# Low Power I/O Power Down
# PSU_DDR_PHY_DX8SL4DQSCTL_LPIOPD 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DQSCTL_RESERVED_16_15 0x0
# QS Counter Enable
# PSU_DDR_PHY_DX8SL4DQSCTL_QSCNTEN 0x1
# Unused DQ I/O Mode
# PSU_DDR_PHY_DX8SL4DQSCTL_UDQIOM 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DQSCTL_RESERVED_12_10 0x0
# Data Slew Rate
# PSU_DDR_PHY_DX8SL4DQSCTL_DXSR 0x3
# DQS_N Resistor
# PSU_DDR_PHY_DX8SL4DQSCTL_DQSNRES 0x0
# DQS Resistor
# PSU_DDR_PHY_DX8SL4DQSCTL_DQSRES 0x0
# DATX8 0-1 DQS Control Register
#(OFFSET, MASK, VALUE) (0XFD08151C, 0xFFFFFFFFU ,0x01264300U) */
mask_write 0XFD08151C 0xFFFFFFFF 0x01264300
# Register : DX8SL4DXCTL2 @ 0XFD08152C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DXCTL2_RESERVED_31_24 0x0
# Configurable Read Data Enable
# PSU_DDR_PHY_DX8SL4DXCTL2_CRDEN 0x0
# OX Extension during Post-amble
# PSU_DDR_PHY_DX8SL4DXCTL2_POSOEX 0x0
# OE Extension during Pre-amble
# PSU_DDR_PHY_DX8SL4DXCTL2_PREOEX 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DXCTL2_RESERVED_17 0x0
# I/O Assisted Gate Select
# PSU_DDR_PHY_DX8SL4DXCTL2_IOAG 0x0
# I/O Loopback Select
# PSU_DDR_PHY_DX8SL4DXCTL2_IOLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DXCTL2_RESERVED_14_13 0x0
# Low Power Wakeup Threshold
# PSU_DDR_PHY_DX8SL4DXCTL2_LPWAKEUP_THRSH 0xc
# Read Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL4DXCTL2_RDBI 0x0
# Write Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL4DXCTL2_WDBI 0x0
# PUB Read FIFO Bypass
# PSU_DDR_PHY_DX8SL4DXCTL2_PRFBYP 0x0
# DATX8 Receive FIFO Read Mode
# PSU_DDR_PHY_DX8SL4DXCTL2_RDMODE 0x0
# Disables the Read FIFO Reset
# PSU_DDR_PHY_DX8SL4DXCTL2_DISRST 0x0
# Read DQS Gate I/O Loopback
# PSU_DDR_PHY_DX8SL4DXCTL2_DQSGLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DXCTL2_RESERVED_0 0x0
# DATX8 0-1 DX Control Register 2
#(OFFSET, MASK, VALUE) (0XFD08152C, 0xFFFFFFFFU ,0x00041800U) */
mask_write 0XFD08152C 0xFFFFFFFF 0x00041800
# Register : DX8SL4IOCR @ 0XFD081530</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4IOCR_RESERVED_31 0x0
# PVREF_DAC REFSEL range select
# PSU_DDR_PHY_DX8SL4IOCR_DXDACRANGE 0x7
# IOM bits for PVREF, PVREF_DAC and PVREFE cells in DX IO ring
# PSU_DDR_PHY_DX8SL4IOCR_DXVREFIOM 0x0
# DX IO Mode
# PSU_DDR_PHY_DX8SL4IOCR_DXIOM 0x2
# DX IO Transmitter Mode
# PSU_DDR_PHY_DX8SL4IOCR_DXTXM 0x0
# DX IO Receiver Mode
# PSU_DDR_PHY_DX8SL4IOCR_DXRXM 0x0
# DATX8 0-1 I/O Configuration Register
#(OFFSET, MASK, VALUE) (0XFD081530, 0xFFFFFFFFU ,0x70800000U) */
mask_write 0XFD081530 0xFFFFFFFF 0x70800000
# Register : DX8SLbDQSCTL @ 0XFD0817DC</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SLBDQSCTL_RESERVED_31_25 0x0
# Read Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SLBDQSCTL_RRRMODE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SLBDQSCTL_RESERVED_23_22 0x0
# Write Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SLBDQSCTL_WRRMODE 0x1
# DQS Gate Extension
# PSU_DDR_PHY_DX8SLBDQSCTL_DQSGX 0x0
# Low Power PLL Power Down
# PSU_DDR_PHY_DX8SLBDQSCTL_LPPLLPD 0x1
# Low Power I/O Power Down
# PSU_DDR_PHY_DX8SLBDQSCTL_LPIOPD 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SLBDQSCTL_RESERVED_16_15 0x0
# QS Counter Enable
# PSU_DDR_PHY_DX8SLBDQSCTL_QSCNTEN 0x1
# Unused DQ I/O Mode
# PSU_DDR_PHY_DX8SLBDQSCTL_UDQIOM 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SLBDQSCTL_RESERVED_12_10 0x0
# Data Slew Rate
# PSU_DDR_PHY_DX8SLBDQSCTL_DXSR 0x3
# DQS# Resistor
# PSU_DDR_PHY_DX8SLBDQSCTL_DQSNRES 0xc
# DQS Resistor
# PSU_DDR_PHY_DX8SLBDQSCTL_DQSRES 0x4
# DATX8 0-8 DQS Control Register
#(OFFSET, MASK, VALUE) (0XFD0817DC, 0xFFFFFFFFU ,0x012643C4U) */
mask_write 0XFD0817DC 0xFFFFFFFF 0x012643C4
# Register : PIR @ 0XFD080004</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_PIR_RESERVED_31 0x0
# Impedance Calibration Bypass
# PSU_DDR_PHY_PIR_ZCALBYP 0x0
# Digital Delay Line (DDL) Calibration Pause
# PSU_DDR_PHY_PIR_DCALPSE 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_PIR_RESERVED_28_21 0x0
# Write DQS2DQ Training
# PSU_DDR_PHY_PIR_DQS2DQ 0x0
# RDIMM Initialization
# PSU_DDR_PHY_PIR_RDIMMINIT 0x0
# Controller DRAM Initialization
# PSU_DDR_PHY_PIR_CTLDINIT 0x1
# VREF Training
# PSU_DDR_PHY_PIR_VREF 0x0
# Static Read Training
# PSU_DDR_PHY_PIR_SRD 0x0
# Write Data Eye Training
# PSU_DDR_PHY_PIR_WREYE 0x0
# Read Data Eye Training
# PSU_DDR_PHY_PIR_RDEYE 0x0
# Write Data Bit Deskew
# PSU_DDR_PHY_PIR_WRDSKW 0x0
# Read Data Bit Deskew
# PSU_DDR_PHY_PIR_RDDSKW 0x0
# Write Leveling Adjust
# PSU_DDR_PHY_PIR_WLADJ 0x0
# Read DQS Gate Training
# PSU_DDR_PHY_PIR_QSGATE 0x0
# Write Leveling
# PSU_DDR_PHY_PIR_WL 0x0
# DRAM Initialization
# PSU_DDR_PHY_PIR_DRAMINIT 0x0
# DRAM Reset (DDR3/DDR4/LPDDR4 Only)
# PSU_DDR_PHY_PIR_DRAMRST 0x0
# PHY Reset
# PSU_DDR_PHY_PIR_PHYRST 0x1
# Digital Delay Line (DDL) Calibration
# PSU_DDR_PHY_PIR_DCAL 0x1
# PLL Initialiazation
# PSU_DDR_PHY_PIR_PLLINIT 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_PIR_RESERVED_3 0x0
# CA Training
# PSU_DDR_PHY_PIR_CA 0x0
# Impedance Calibration
# PSU_DDR_PHY_PIR_ZCAL 0x1
# Initialization Trigger
# PSU_DDR_PHY_PIR_INIT 0x1
# PHY Initialization Register
#(OFFSET, MASK, VALUE) (0XFD080004, 0xFFFFFFFFU ,0x00040073U) */
mask_write 0XFD080004 0xFFFFFFFF 0x00040073
}
set psu_mio_init_data {
# : MIO PROGRAMMING
# Register : MIO_PIN_0 @ 0XFF180000</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_sclk_out- (QSPI Clock)
# PSU_IOU_SLCR_MIO_PIN_0_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_0_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input, test_scan_in[0]- (Test Scan Port) = test_scan, Outp
# t, test_scan_out[0]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_0_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[0]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[0]- (GPIO bank 0) 1= can
# , Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL signa
# ) 3= pjtag, Input, pjtag_tck- (PJTAG TCK) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, spi0_sclk_out- (SPI Cloc
# ) 5= ttc3, Input, ttc3_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace, Output, trace_
# lk- (Trace Port Clock)
# PSU_IOU_SLCR_MIO_PIN_0_L3_SEL 0
# Configures MIO Pin 0 peripheral interface mapping. S
#(OFFSET, MASK, VALUE) (0XFF180000, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180000 0x000000FE 0x00000002
# Register : MIO_PIN_1 @ 0XFF180004</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi_mi1- (QSPI Databus) 1= qspi, Output, qspi_so_mo1- (QSPI Data
# us)
# PSU_IOU_SLCR_MIO_PIN_1_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_1_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input, test_scan_in[1]- (Test Scan Port) = test_scan, Outp
# t, test_scan_out[1]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_1_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[1]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[1]- (GPIO bank 0) 1= can
# , Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA signal
# 3= pjtag, Input, pjtag_tdi- (PJTAG TDI) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5= ttc3, Output, ttc3_wave_o
# t- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7= trace, Output, trace_ctl- (Trace Port Control
# Signal)
# PSU_IOU_SLCR_MIO_PIN_1_L3_SEL 0
# Configures MIO Pin 1 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180004, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180004 0x000000FE 0x00000002
# Register : MIO_PIN_2 @ 0XFF180008</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi2- (QSPI Databus) 1= qspi, Output, qspi_mo2- (QSPI Databus)
# PSU_IOU_SLCR_MIO_PIN_2_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_2_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input, test_scan_in[2]- (Test Scan Port) = test_scan, Outp
# t, test_scan_out[2]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_2_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[2]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[2]- (GPIO bank 0) 1= can
# , Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL signal
# 3= pjtag, Output, pjtag_tdo- (PJTAG TDO) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= ttc2, Input, ttc2_clk_in
# (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Output, tracedq[0]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_2_L3_SEL 0
# Configures MIO Pin 2 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180008, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180008 0x000000FE 0x00000002
# Register : MIO_PIN_3 @ 0XFF18000C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi3- (QSPI Databus) 1= qspi, Output, qspi_mo3- (QSPI Databus)
# PSU_IOU_SLCR_MIO_PIN_3_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_3_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input, test_scan_in[3]- (Test Scan Port) = test_scan, Outp
# t, test_scan_out[3]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_3_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[3]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[3]- (GPIO bank 0) 1= can
# , Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA signa
# ) 3= pjtag, Input, pjtag_tms- (PJTAG TMS) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi0, Output, spi0_n_ss_out[0
# - (SPI Master Selects) 5= ttc2, Output, ttc2_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial
# output) 7= trace, Output, tracedq[1]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_3_L3_SEL 0
# Configures MIO Pin 3 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18000C, 0x000000FEU ,0x00000002U) */
mask_write 0XFF18000C 0x000000FE 0x00000002
# Register : MIO_PIN_4 @ 0XFF180010</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_mo_mo0- (QSPI Databus) 1= qspi, Input, qspi_si_mi0- (QSPI Data
# us)
# PSU_IOU_SLCR_MIO_PIN_4_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_4_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input, test_scan_in[4]- (Test Scan Port) = test_scan, Outp
# t, test_scan_out[4]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_4_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[4]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[4]- (GPIO bank 0) 1= can
# , Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL signa
# ) 3= swdt1, Input, swdt1_clk_in- (Watch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= spi0, Output, spi0_s
# - (MISO signal) 5= ttc1, Input, ttc1_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace,
# utput, tracedq[2]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_4_L3_SEL 0
# Configures MIO Pin 4 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180010, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180010 0x000000FE 0x00000002
# Register : MIO_PIN_5 @ 0XFF180014</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_n_ss_out- (QSPI Slave Select)
# PSU_IOU_SLCR_MIO_PIN_5_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_5_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input, test_scan_in[5]- (Test Scan Port) = test_scan, Outp
# t, test_scan_out[5]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_5_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[5]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[5]- (GPIO bank 0) 1= can
# , Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA signal
# 3= swdt1, Output, swdt1_rst_out- (Watch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4= spi0, Input, spi0
# si- (MOSI signal) 5= ttc1, Output, ttc1_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7
# trace, Output, tracedq[3]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_5_L3_SEL 0
# Configures MIO Pin 5 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180014, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180014 0x000000FE 0x00000002
# Register : MIO_PIN_6 @ 0XFF180018</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_clk_for_lpbk- (QSPI Clock to be fed-back)
# PSU_IOU_SLCR_MIO_PIN_6_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_6_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input, test_scan_in[6]- (Test Scan Port) = test_scan, Outp
# t, test_scan_out[6]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_6_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[6]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[6]- (GPIO bank 0) 1= can
# , Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL signal
# 3= swdt0, Input, swdt0_clk_in- (Watch Dog Timer Input clock) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4= spi1, Output, spi1
# sclk_out- (SPI Clock) 5= ttc0, Input, ttc0_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace,
# Output, tracedq[4]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_6_L3_SEL 0
# Configures MIO Pin 6 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180018, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180018 0x000000FE 0x00000002
# Register : MIO_PIN_7 @ 0XFF18001C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_n_ss_out_upper- (QSPI Slave Select upper)
# PSU_IOU_SLCR_MIO_PIN_7_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_7_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input, test_scan_in[7]- (Test Scan Port) = test_scan, Outp
# t, test_scan_out[7]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_7_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[7]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[7]- (GPIO bank 0) 1= can
# , Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA signa
# ) 3= swdt0, Output, swdt0_rst_out- (Watch Dog Timer Output clock) 4= spi1, Output, spi1_n_ss_out[2]- (SPI Master Selects) 5=
# tc0, Output, ttc0_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial output) 7= trace, Output,
# racedq[5]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_7_L3_SEL 0
# Configures MIO Pin 7 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18001C, 0x000000FEU ,0x00000002U) */
mask_write 0XFF18001C 0x000000FE 0x00000002
# Register : MIO_PIN_8 @ 0XFF180020</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi_upper[0]- (QSPI Upper Databus) 1= qspi, Output, qspi_mo_uppe
# [0]- (QSPI Upper Databus)
# PSU_IOU_SLCR_MIO_PIN_8_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_8_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input, test_scan_in[8]- (Test Scan Port) = test_scan, Outp
# t, test_scan_out[8]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_8_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[8]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[8]- (GPIO bank 0) 1= can
# , Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL signa
# ) 3= swdt1, Input, swdt1_clk_in- (Watch Dog Timer Input clock) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Master Selects) 5= ttc
# , Input, ttc3_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace, Output, tracedq[6]- (Tr
# ce Port Databus)
# PSU_IOU_SLCR_MIO_PIN_8_L3_SEL 0
# Configures MIO Pin 8 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180020, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180020 0x000000FE 0x00000002
# Register : MIO_PIN_9 @ 0XFF180024</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi_upper[1]- (QSPI Upper Databus) 1= qspi, Output, qspi_mo_uppe
# [1]- (QSPI Upper Databus)
# PSU_IOU_SLCR_MIO_PIN_9_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_ce[1]- (NAND chip enable)
# PSU_IOU_SLCR_MIO_PIN_9_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input, test_scan_in[9]- (Test Scan Port) = test_scan, Outp
# t, test_scan_out[9]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_9_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[9]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[9]- (GPIO bank 0) 1= can
# , Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA signal
# 3= swdt1, Output, swdt1_rst_out- (Watch Dog Timer Output clock) 4= spi1, Input, spi1_n_ss_in- (SPI Master Selects) 4= spi1,
# utput, spi1_n_ss_out[0]- (SPI Master Selects) 5= ttc3, Output, ttc3_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (U
# RT receiver serial input) 7= trace, Output, tracedq[7]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_9_L3_SEL 0
# Configures MIO Pin 9 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180024, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180024 0x000000FE 0x00000002
# Register : MIO_PIN_10 @ 0XFF180028</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi_upper[2]- (QSPI Upper Databus) 1= qspi, Output, qspi_mo_uppe
# [2]- (QSPI Upper Databus)
# PSU_IOU_SLCR_MIO_PIN_10_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_rb_n[0]- (NAND Ready/Busy)
# PSU_IOU_SLCR_MIO_PIN_10_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input, test_scan_in[10]- (Test Scan Port) = test_scan, Out
# ut, test_scan_out[10]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_10_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[10]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[10]- (GPIO bank 0) 1= c
# n0, Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL sign
# l) 3= swdt0, Input, swdt0_clk_in- (Watch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= spi1, Output, spi1_
# o- (MISO signal) 5= ttc2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Outp
# t, tracedq[8]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_10_L3_SEL 0
# Configures MIO Pin 10 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180028, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180028 0x000000FE 0x00000002
# Register : MIO_PIN_11 @ 0XFF18002C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi_upper[3]- (QSPI Upper Databus) 1= qspi, Output, qspi_mo_uppe
# [3]- (QSPI Upper Databus)
# PSU_IOU_SLCR_MIO_PIN_11_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_rb_n[1]- (NAND Ready/Busy)
# PSU_IOU_SLCR_MIO_PIN_11_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input, test_scan_in[11]- (Test Scan Port) = test_scan, Out
# ut, test_scan_out[11]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_11_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[11]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[11]- (GPIO bank 0) 1= c
# n0, Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA sig
# al) 3= swdt0, Output, swdt0_rst_out- (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal) 4= spi1, Input, s
# i1_si- (MOSI signal) 5= ttc2, Output, ttc2_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial o
# tput) 7= trace, Output, tracedq[9]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_11_L3_SEL 0
# Configures MIO Pin 11 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18002C, 0x000000FEU ,0x00000002U) */
mask_write 0XFF18002C 0x000000FE 0x00000002
# Register : MIO_PIN_12 @ 0XFF180030</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_sclk_out_upper- (QSPI Upper Clock)
# PSU_IOU_SLCR_MIO_PIN_12_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dqs_in- (NAND Strobe) 1= nand, Output, nfc_dqs_out- (NAND Strobe
#
# PSU_IOU_SLCR_MIO_PIN_12_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input, test_scan_in[12]- (Test Scan Port) = test_scan, Out
# ut, test_scan_out[12]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_12_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[12]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[12]- (GPIO bank 0) 1= c
# n1, Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL sig
# al) 3= pjtag, Input, pjtag_tck- (PJTAG TCK) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, spi0_sclk_out- (SPI Cl
# ck) 5= ttc1, Input, ttc1_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace, Output, trac
# dq[10]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_12_L3_SEL 0
# Configures MIO Pin 12 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180030, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180030 0x000000FE 0x00000002
# Register : MIO_PIN_13 @ 0XFF180034</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_13_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_ce[0]- (NAND chip enable)
# PSU_IOU_SLCR_MIO_PIN_13_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[0]- (8-bit Data bus) = sd0, Output, sdio0_data_out[0]- (8
# bit Data bus) 2= test_scan, Input, test_scan_in[13]- (Test Scan Port) = test_scan, Output, test_scan_out[13]- (Test Scan Port
# 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_13_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[13]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[13]- (GPIO bank 0) 1= c
# n1, Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA sign
# l) 3= pjtag, Input, pjtag_tdi- (PJTAG TDI) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5= ttc1, Output, ttc1_wave
# out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7= trace, Output, tracedq[11]- (Trace Port Dat
# bus)
# PSU_IOU_SLCR_MIO_PIN_13_L3_SEL 0
# Configures MIO Pin 13 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180034, 0x000000FEU ,0x00000000U) */
mask_write 0XFF180034 0x000000FE 0x00000000
# Register : MIO_PIN_14 @ 0XFF180038</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_14_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_cle- (NAND Command Latch Enable)
# PSU_IOU_SLCR_MIO_PIN_14_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[1]- (8-bit Data bus) = sd0, Output, sdio0_data_out[1]- (8
# bit Data bus) 2= test_scan, Input, test_scan_in[14]- (Test Scan Port) = test_scan, Output, test_scan_out[14]- (Test Scan Port
# 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_14_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[14]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[14]- (GPIO bank 0) 1= c
# n0, Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL sign
# l) 3= pjtag, Output, pjtag_tdo- (PJTAG TDO) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= ttc0, Input, ttc0_clk_
# n- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Output, tracedq[12]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_14_L3_SEL 2
# Configures MIO Pin 14 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180038, 0x000000FEU ,0x00000040U) */
mask_write 0XFF180038 0x000000FE 0x00000040
# Register : MIO_PIN_15 @ 0XFF18003C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_15_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_ale- (NAND Address Latch Enable)
# PSU_IOU_SLCR_MIO_PIN_15_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[2]- (8-bit Data bus) = sd0, Output, sdio0_data_out[2]- (8
# bit Data bus) 2= test_scan, Input, test_scan_in[15]- (Test Scan Port) = test_scan, Output, test_scan_out[15]- (Test Scan Port
# 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_15_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[15]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[15]- (GPIO bank 0) 1= c
# n0, Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA sig
# al) 3= pjtag, Input, pjtag_tms- (PJTAG TMS) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi0, Output, spi0_n_ss_out
# 0]- (SPI Master Selects) 5= ttc0, Output, ttc0_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter seri
# l output) 7= trace, Output, tracedq[13]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_15_L3_SEL 2
# Configures MIO Pin 15 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18003C, 0x000000FEU ,0x00000040U) */
mask_write 0XFF18003C 0x000000FE 0x00000040
# Register : MIO_PIN_16 @ 0XFF180040</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_16_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[0]- (NAND Data Bus) 1= nand, Output, nfc_dq_out[0]- (NAND
# ata Bus)
# PSU_IOU_SLCR_MIO_PIN_16_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[3]- (8-bit Data bus) = sd0, Output, sdio0_data_out[3]- (8
# bit Data bus) 2= test_scan, Input, test_scan_in[16]- (Test Scan Port) = test_scan, Output, test_scan_out[16]- (Test Scan Port
# 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_16_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[16]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[16]- (GPIO bank 0) 1= c
# n1, Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL sig
# al) 3= swdt1, Input, swdt1_clk_in- (Watch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= spi0, Output, spi0
# so- (MISO signal) 5= ttc3, Input, ttc3_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace
# Output, tracedq[14]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_16_L3_SEL 2
# Configures MIO Pin 16 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180040, 0x000000FEU ,0x00000040U) */
mask_write 0XFF180040 0x000000FE 0x00000040
# Register : MIO_PIN_17 @ 0XFF180044</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_17_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[1]- (NAND Data Bus) 1= nand, Output, nfc_dq_out[1]- (NAND
# ata Bus)
# PSU_IOU_SLCR_MIO_PIN_17_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[4]- (8-bit Data bus) = sd0, Output, sdio0_data_out[4]- (8
# bit Data bus) 2= test_scan, Input, test_scan_in[17]- (Test Scan Port) = test_scan, Output, test_scan_out[17]- (Test Scan Port
# 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_17_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[17]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[17]- (GPIO bank 0) 1= c
# n1, Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA sign
# l) 3= swdt1, Output, swdt1_rst_out- (Watch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4= spi0, Input, sp
# 0_si- (MOSI signal) 5= ttc3, Output, ttc3_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input)
# 7= trace, Output, tracedq[15]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_17_L3_SEL 2
# Configures MIO Pin 17 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180044, 0x000000FEU ,0x00000040U) */
mask_write 0XFF180044 0x000000FE 0x00000040
# Register : MIO_PIN_18 @ 0XFF180048</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_18_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[2]- (NAND Data Bus) 1= nand, Output, nfc_dq_out[2]- (NAND
# ata Bus)
# PSU_IOU_SLCR_MIO_PIN_18_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[5]- (8-bit Data bus) = sd0, Output, sdio0_data_out[5]- (8
# bit Data bus) 2= test_scan, Input, test_scan_in[18]- (Test Scan Port) = test_scan, Output, test_scan_out[18]- (Test Scan Port
# 3= csu, Input, csu_ext_tamper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_18_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[18]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[18]- (GPIO bank 0) 1= c
# n0, Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL sign
# l) 3= swdt0, Input, swdt0_clk_in- (Watch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= spi1, Output, spi1_
# o- (MISO signal) 5= ttc2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_18_L3_SEL 6
# Configures MIO Pin 18 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180048, 0x000000FEU ,0x000000C0U) */
mask_write 0XFF180048 0x000000FE 0x000000C0
# Register : MIO_PIN_19 @ 0XFF18004C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_19_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[3]- (NAND Data Bus) 1= nand, Output, nfc_dq_out[3]- (NAND
# ata Bus)
# PSU_IOU_SLCR_MIO_PIN_19_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[6]- (8-bit Data bus) = sd0, Output, sdio0_data_out[6]- (8
# bit Data bus) 2= test_scan, Input, test_scan_in[19]- (Test Scan Port) = test_scan, Output, test_scan_out[19]- (Test Scan Port
# 3= csu, Input, csu_ext_tamper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_19_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[19]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[19]- (GPIO bank 0) 1= c
# n0, Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA sig
# al) 3= swdt0, Output, swdt0_rst_out- (Watch Dog Timer Output clock) 4= spi1, Output, spi1_n_ss_out[2]- (SPI Master Selects) 5
# ttc2, Output, ttc2_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial output) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_19_L3_SEL 6
# Configures MIO Pin 19 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18004C, 0x000000FEU ,0x000000C0U) */
mask_write 0XFF18004C 0x000000FE 0x000000C0
# Register : MIO_PIN_20 @ 0XFF180050</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_20_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[4]- (NAND Data Bus) 1= nand, Output, nfc_dq_out[4]- (NAND
# ata Bus)
# PSU_IOU_SLCR_MIO_PIN_20_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[7]- (8-bit Data bus) = sd0, Output, sdio0_data_out[7]- (8
# bit Data bus) 2= test_scan, Input, test_scan_in[20]- (Test Scan Port) = test_scan, Output, test_scan_out[20]- (Test Scan Port
# 3= csu, Input, csu_ext_tamper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_20_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[20]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[20]- (GPIO bank 0) 1= c
# n1, Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL sig
# al) 3= swdt1, Input, swdt1_clk_in- (Watch Dog Timer Input clock) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Master Selects) 5= t
# c1, Input, ttc1_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_20_L3_SEL 6
# Configures MIO Pin 20 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180050, 0x000000FEU ,0x000000C0U) */
mask_write 0XFF180050 0x000000FE 0x000000C0
# Register : MIO_PIN_21 @ 0XFF180054</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_21_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[5]- (NAND Data Bus) 1= nand, Output, nfc_dq_out[5]- (NAND
# ata Bus)
# PSU_IOU_SLCR_MIO_PIN_21_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_cmd_in- (Command Indicator) = sd0, Output, sdio0_cmd_out- (Comman
# Indicator) 2= test_scan, Input, test_scan_in[21]- (Test Scan Port) = test_scan, Output, test_scan_out[21]- (Test Scan Port)
# = csu, Input, csu_ext_tamper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_21_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[21]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[21]- (GPIO bank 0) 1= c
# n1, Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA sign
# l) 3= swdt1, Output, swdt1_rst_out- (Watch Dog Timer Output clock) 4= spi1, Input, spi1_n_ss_in- (SPI Master Selects) 4= spi1
# Output, spi1_n_ss_out[0]- (SPI Master Selects) 5= ttc1, Output, ttc1_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd-
# UART receiver serial input) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_21_L3_SEL 6
# Configures MIO Pin 21 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180054, 0x000000FEU ,0x000000C0U) */
mask_write 0XFF180054 0x000000FE 0x000000C0
# Register : MIO_PIN_22 @ 0XFF180058</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_22_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_we_b- (NAND Write Enable)
# PSU_IOU_SLCR_MIO_PIN_22_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_clk_out- (SDSDIO clock) 2= test_scan, Input, test_scan_in[22]-
# (Test Scan Port) = test_scan, Output, test_scan_out[22]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_22_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[22]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[22]- (GPIO bank 0) 1= c
# n0, Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL sign
# l) 3= swdt0, Input, swdt0_clk_in- (Watch Dog Timer Input clock) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4= spi1, Output, sp
# 1_sclk_out- (SPI Clock) 5= ttc0, Input, ttc0_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= Not
# sed
# PSU_IOU_SLCR_MIO_PIN_22_L3_SEL 0
# Configures MIO Pin 22 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180058, 0x000000FEU ,0x00000000U) */
mask_write 0XFF180058 0x000000FE 0x00000000
# Register : MIO_PIN_23 @ 0XFF18005C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_23_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[6]- (NAND Data Bus) 1= nand, Output, nfc_dq_out[6]- (NAND
# ata Bus)
# PSU_IOU_SLCR_MIO_PIN_23_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_bus_pow- (SD card bus power) 2= test_scan, Input, test_scan_in
# 23]- (Test Scan Port) = test_scan, Output, test_scan_out[23]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (CSU Ext Tamper
#
# PSU_IOU_SLCR_MIO_PIN_23_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[23]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[23]- (GPIO bank 0) 1= c
# n0, Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA sig
# al) 3= swdt0, Output, swdt0_rst_out- (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal) 4= spi1, Input, s
# i1_si- (MOSI signal) 5= ttc0, Output, ttc0_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial o
# tput) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_23_L3_SEL 0
# Configures MIO Pin 23 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18005C, 0x000000FEU ,0x00000000U) */
mask_write 0XFF18005C 0x000000FE 0x00000000
# Register : MIO_PIN_24 @ 0XFF180060</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_24_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[7]- (NAND Data Bus) 1= nand, Output, nfc_dq_out[7]- (NAND
# ata Bus)
# PSU_IOU_SLCR_MIO_PIN_24_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_cd_n- (SD card detect from connector) 2= test_scan, Input, test
# scan_in[24]- (Test Scan Port) = test_scan, Output, test_scan_out[24]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (CSU Ex
# Tamper)
# PSU_IOU_SLCR_MIO_PIN_24_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[24]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[24]- (GPIO bank 0) 1= c
# n1, Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL sig
# al) 3= swdt1, Input, swdt1_clk_in- (Watch Dog Timer Input clock) 4= Not Used 5= ttc3, Input, ttc3_clk_in- (TTC Clock) 6= ua1,
# Output, ua1_txd- (UART transmitter serial output) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_24_L3_SEL 1
# Configures MIO Pin 24 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180060, 0x000000FEU ,0x00000020U) */
mask_write 0XFF180060 0x000000FE 0x00000020
# Register : MIO_PIN_25 @ 0XFF180064</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_25_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_re_n- (NAND Read Enable)
# PSU_IOU_SLCR_MIO_PIN_25_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_wp- (SD card write protect from connector) 2= test_scan, Input,
# test_scan_in[25]- (Test Scan Port) = test_scan, Output, test_scan_out[25]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (C
# U Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_25_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[25]- (GPIO bank 0) 0= gpio0, Output, gpio_0_pin_out[25]- (GPIO bank 0) 1= c
# n1, Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA sign
# l) 3= swdt1, Output, swdt1_rst_out- (Watch Dog Timer Output clock) 4= Not Used 5= ttc3, Output, ttc3_wave_out- (TTC Waveform
# lock) 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_25_L3_SEL 1
# Configures MIO Pin 25 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180064, 0x000000FEU ,0x00000020U) */
mask_write 0XFF180064 0x000000FE 0x00000020
# Register : MIO_PIN_26 @ 0XFF180068</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_tx_clk- (TX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_26_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_ce[1]- (NAND chip enable)
# PSU_IOU_SLCR_MIO_PIN_26_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[0]- (PMU GPI) 2= test_scan, Input, test_scan_in[26]- (Test Sc
# n Port) = test_scan, Output, test_scan_out[26]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_26_L2_SEL 0
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[0]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[0]- (GPIO bank 1) 1= can
# , Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL signal
# 3= pjtag, Input, pjtag_tck- (PJTAG TCK) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, spi0_sclk_out- (SPI Clock
# 5= ttc2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Output, tracedq[4]-
# Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_26_L3_SEL 0
# Configures MIO Pin 26 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180068, 0x000000FEU ,0x00000000U) */
mask_write 0XFF180068 0x000000FE 0x00000000
# Register : MIO_PIN_27 @ 0XFF18006C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_txd[0]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_27_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_rb_n[0]- (NAND Ready/Busy)
# PSU_IOU_SLCR_MIO_PIN_27_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[1]- (PMU GPI) 2= test_scan, Input, test_scan_in[27]- (Test Sc
# n Port) = test_scan, Output, test_scan_out[27]- (Test Scan Port) 3= dpaux, Input, dp_aux_data_in- (Dp Aux Data) = dpaux, Outp
# t, dp_aux_data_out- (Dp Aux Data)
# PSU_IOU_SLCR_MIO_PIN_27_L2_SEL 3
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[1]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[1]- (GPIO bank 1) 1= can
# , Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA signa
# ) 3= pjtag, Input, pjtag_tdi- (PJTAG TDI) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5= ttc2, Output, ttc2_wave_
# ut- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial output) 7= trace, Output, tracedq[5]- (Trace Port
# atabus)
# PSU_IOU_SLCR_MIO_PIN_27_L3_SEL 0
# Configures MIO Pin 27 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18006C, 0x000000FEU ,0x00000018U) */
mask_write 0XFF18006C 0x000000FE 0x00000018
# Register : MIO_PIN_28 @ 0XFF180070</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_txd[1]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_28_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_rb_n[1]- (NAND Ready/Busy)
# PSU_IOU_SLCR_MIO_PIN_28_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[2]- (PMU GPI) 2= test_scan, Input, test_scan_in[28]- (Test Sc
# n Port) = test_scan, Output, test_scan_out[28]- (Test Scan Port) 3= dpaux, Input, dp_hot_plug_detect- (Dp Aux Hot Plug)
# PSU_IOU_SLCR_MIO_PIN_28_L2_SEL 3
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[2]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[2]- (GPIO bank 1) 1= can
# , Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL signa
# ) 3= pjtag, Output, pjtag_tdo- (PJTAG TDO) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= ttc1, Input, ttc1_clk_i
# - (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace, Output, tracedq[6]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_28_L3_SEL 0
# Configures MIO Pin 28 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180070, 0x000000FEU ,0x00000018U) */
mask_write 0XFF180070 0x000000FE 0x00000018
# Register : MIO_PIN_29 @ 0XFF180074</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_txd[2]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_29_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_29_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[3]- (PMU GPI) 2= test_scan, Input, test_scan_in[29]- (Test Sc
# n Port) = test_scan, Output, test_scan_out[29]- (Test Scan Port) 3= dpaux, Input, dp_aux_data_in- (Dp Aux Data) = dpaux, Outp
# t, dp_aux_data_out- (Dp Aux Data)
# PSU_IOU_SLCR_MIO_PIN_29_L2_SEL 3
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[3]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[3]- (GPIO bank 1) 1= can
# , Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA signal
# 3= pjtag, Input, pjtag_tms- (PJTAG TMS) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi0, Output, spi0_n_ss_out[0]
# (SPI Master Selects) 5= ttc1, Output, ttc1_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial inpu
# ) 7= trace, Output, tracedq[7]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_29_L3_SEL 0
# Configures MIO Pin 29 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180074, 0x000000FEU ,0x00000018U) */
mask_write 0XFF180074 0x000000FE 0x00000018
# Register : MIO_PIN_30 @ 0XFF180078</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_txd[3]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_30_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_30_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[4]- (PMU GPI) 2= test_scan, Input, test_scan_in[30]- (Test Sc
# n Port) = test_scan, Output, test_scan_out[30]- (Test Scan Port) 3= dpaux, Input, dp_hot_plug_detect- (Dp Aux Hot Plug)
# PSU_IOU_SLCR_MIO_PIN_30_L2_SEL 3
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[4]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[4]- (GPIO bank 1) 1= can
# , Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL signal
# 3= swdt0, Input, swdt0_clk_in- (Watch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= spi0, Output, spi0_so
# (MISO signal) 5= ttc0, Input, ttc0_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Output
# tracedq[8]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_30_L3_SEL 0
# Configures MIO Pin 30 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180078, 0x000000FEU ,0x00000018U) */
mask_write 0XFF180078 0x000000FE 0x00000018
# Register : MIO_PIN_31 @ 0XFF18007C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_tx_ctl- (TX RGMII control)
# PSU_IOU_SLCR_MIO_PIN_31_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_31_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[5]- (PMU GPI) 2= test_scan, Input, test_scan_in[31]- (Test Sc
# n Port) = test_scan, Output, test_scan_out[31]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_31_L2_SEL 0
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[5]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[5]- (GPIO bank 1) 1= can
# , Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA signa
# ) 3= swdt0, Output, swdt0_rst_out- (Watch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4= spi0, Input, spi
# _si- (MOSI signal) 5= ttc0, Output, ttc0_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial out
# ut) 7= trace, Output, tracedq[9]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_31_L3_SEL 0
# Configures MIO Pin 31 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18007C, 0x000000FEU ,0x00000000U) */
mask_write 0XFF18007C 0x000000FE 0x00000000
# Register : MIO_PIN_32 @ 0XFF180080</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rx_clk- (RX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_32_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dqs_in- (NAND Strobe) 1= nand, Output, nfc_dqs_out- (NAND Strobe
#
# PSU_IOU_SLCR_MIO_PIN_32_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[0]- (PMU GPI) 2= test_scan, Input, test_scan_in[32]- (Test S
# an Port) = test_scan, Output, test_scan_out[32]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_32_L2_SEL 1
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[6]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[6]- (GPIO bank 1) 1= can
# , Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL signa
# ) 3= swdt1, Input, swdt1_clk_in- (Watch Dog Timer Input clock) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4= spi1, Output, spi
# _sclk_out- (SPI Clock) 5= ttc3, Input, ttc3_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7=
# race, Output, tracedq[10]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_32_L3_SEL 0
# Configures MIO Pin 32 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180080, 0x000000FEU ,0x00000008U) */
mask_write 0XFF180080 0x000000FE 0x00000008
# Register : MIO_PIN_33 @ 0XFF180084</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rxd[0]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_33_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_33_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[1]- (PMU GPI) 2= test_scan, Input, test_scan_in[33]- (Test S
# an Port) = test_scan, Output, test_scan_out[33]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_33_L2_SEL 1
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[7]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[7]- (GPIO bank 1) 1= can
# , Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA signal
# 3= swdt1, Output, swdt1_rst_out- (Watch Dog Timer Output clock) 4= spi1, Output, spi1_n_ss_out[2]- (SPI Master Selects) 5= t
# c3, Output, ttc3_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7= trace, Output, traced
# [11]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_33_L3_SEL 0
# Configures MIO Pin 33 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180084, 0x000000FEU ,0x00000008U) */
mask_write 0XFF180084 0x000000FE 0x00000008
# Register : MIO_PIN_34 @ 0XFF180088</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rxd[1]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_34_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_34_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[2]- (PMU GPI) 2= test_scan, Input, test_scan_in[34]- (Test S
# an Port) = test_scan, Output, test_scan_out[34]- (Test Scan Port) 3= dpaux, Input, dp_aux_data_in- (Dp Aux Data) = dpaux, Out
# ut, dp_aux_data_out- (Dp Aux Data)
# PSU_IOU_SLCR_MIO_PIN_34_L2_SEL 1
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[8]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[8]- (GPIO bank 1) 1= can
# , Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL signal
# 3= swdt0, Input, swdt0_clk_in- (Watch Dog Timer Input clock) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Master Selects) 5= ttc2
# Input, ttc2_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Output, tracedq[12]- (Trace P
# rt Databus)
# PSU_IOU_SLCR_MIO_PIN_34_L3_SEL 0
# Configures MIO Pin 34 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180088, 0x000000FEU ,0x00000008U) */
mask_write 0XFF180088 0x000000FE 0x00000008
# Register : MIO_PIN_35 @ 0XFF18008C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rxd[2]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_35_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_35_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[3]- (PMU GPI) 2= test_scan, Input, test_scan_in[35]- (Test S
# an Port) = test_scan, Output, test_scan_out[35]- (Test Scan Port) 3= dpaux, Input, dp_hot_plug_detect- (Dp Aux Hot Plug)
# PSU_IOU_SLCR_MIO_PIN_35_L2_SEL 1
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[9]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[9]- (GPIO bank 1) 1= can
# , Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA signa
# ) 3= swdt0, Output, swdt0_rst_out- (Watch Dog Timer Output clock) 4= spi1, Input, spi1_n_ss_in- (SPI Master Selects) 4= spi1,
# Output, spi1_n_ss_out[0]- (SPI Master Selects) 5= ttc2, Output, ttc2_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd-
# UART transmitter serial output) 7= trace, Output, tracedq[13]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_35_L3_SEL 0
# Configures MIO Pin 35 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18008C, 0x000000FEU ,0x00000008U) */
mask_write 0XFF18008C 0x000000FE 0x00000008
# Register : MIO_PIN_36 @ 0XFF180090</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rxd[3]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_36_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_36_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[4]- (PMU GPI) 2= test_scan, Input, test_scan_in[36]- (Test S
# an Port) = test_scan, Output, test_scan_out[36]- (Test Scan Port) 3= dpaux, Input, dp_aux_data_in- (Dp Aux Data) = dpaux, Out
# ut, dp_aux_data_out- (Dp Aux Data)
# PSU_IOU_SLCR_MIO_PIN_36_L2_SEL 1
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[10]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[10]- (GPIO bank 1) 1= c
# n1, Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL sig
# al) 3= swdt1, Input, swdt1_clk_in- (Watch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= spi1, Output, spi1
# so- (MISO signal) 5= ttc1, Input, ttc1_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace
# Output, tracedq[14]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_36_L3_SEL 0
# Configures MIO Pin 36 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180090, 0x000000FEU ,0x00000008U) */
mask_write 0XFF180090 0x000000FE 0x00000008
# Register : MIO_PIN_37 @ 0XFF180094</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rx_ctl- (RX RGMII control )
# PSU_IOU_SLCR_MIO_PIN_37_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_37_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[5]- (PMU GPI) 2= test_scan, Input, test_scan_in[37]- (Test S
# an Port) = test_scan, Output, test_scan_out[37]- (Test Scan Port) 3= dpaux, Input, dp_hot_plug_detect- (Dp Aux Hot Plug)
# PSU_IOU_SLCR_MIO_PIN_37_L2_SEL 1
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[11]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[11]- (GPIO bank 1) 1= c
# n1, Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA sign
# l) 3= swdt1, Output, swdt1_rst_out- (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal) 4= spi1, Input, sp
# 1_si- (MOSI signal) 5= ttc1, Output, ttc1_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input)
# 7= trace, Output, tracedq[15]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_37_L3_SEL 0
# Configures MIO Pin 37 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180094, 0x000000FEU ,0x00000008U) */
mask_write 0XFF180094 0x000000FE 0x00000008
# Register : MIO_PIN_38 @ 0XFF180098</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_tx_clk- (TX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_38_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_38_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_clk_out- (SDSDIO clock) 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_38_L2_SEL 0
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[12]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[12]- (GPIO bank 1) 1= c
# n0, Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL sign
# l) 3= pjtag, Input, pjtag_tck- (PJTAG TCK) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, spi0_sclk_out- (SPI Clo
# k) 5= ttc0, Input, ttc0_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Output, trace_clk-
# (Trace Port Clock)
# PSU_IOU_SLCR_MIO_PIN_38_L3_SEL 0
# Configures MIO Pin 38 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180098, 0x000000FEU ,0x00000000U) */
mask_write 0XFF180098 0x000000FE 0x00000000
# Register : MIO_PIN_39 @ 0XFF18009C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_txd[0]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_39_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_39_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_cd_n- (SD card detect from connector) 2= sd1, Input, sd1_data_i
# [4]- (8-bit Data bus) = sd1, Output, sdio1_data_out[4]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_39_L2_SEL 0
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[13]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[13]- (GPIO bank 1) 1= c
# n0, Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA sig
# al) 3= pjtag, Input, pjtag_tdi- (PJTAG TDI) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5= ttc0, Output, ttc0_wav
# _out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial output) 7= trace, Output, trace_ctl- (Trace Port
# Control Signal)
# PSU_IOU_SLCR_MIO_PIN_39_L3_SEL 0
# Configures MIO Pin 39 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18009C, 0x000000FEU ,0x00000000U) */
mask_write 0XFF18009C 0x000000FE 0x00000000
# Register : MIO_PIN_40 @ 0XFF1800A0</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_txd[1]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_40_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_40_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_cmd_in- (Command Indicator) = sd0, Output, sdio0_cmd_out- (Comman
# Indicator) 2= sd1, Input, sd1_data_in[5]- (8-bit Data bus) = sd1, Output, sdio1_data_out[5]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_40_L2_SEL 0
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[14]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[14]- (GPIO bank 1) 1= c
# n1, Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL sig
# al) 3= pjtag, Output, pjtag_tdo- (PJTAG TDO) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= ttc3, Input, ttc3_clk
# in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace, Output, tracedq[0]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_40_L3_SEL 0
# Configures MIO Pin 40 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800A0, 0x000000FEU ,0x00000000U) */
mask_write 0XFF1800A0 0x000000FE 0x00000000
# Register : MIO_PIN_41 @ 0XFF1800A4</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_txd[2]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_41_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_41_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[0]- (8-bit Data bus) = sd0, Output, sdio0_data_out[0]- (8
# bit Data bus) 2= sd1, Input, sd1_data_in[6]- (8-bit Data bus) = sd1, Output, sdio1_data_out[6]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_41_L2_SEL 0
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[15]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[15]- (GPIO bank 1) 1= c
# n1, Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA sign
# l) 3= pjtag, Input, pjtag_tms- (PJTAG TMS) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi0, Output, spi0_n_ss_out[
# ]- (SPI Master Selects) 5= ttc3, Output, ttc3_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial in
# ut) 7= trace, Output, tracedq[1]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_41_L3_SEL 0
# Configures MIO Pin 41 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800A4, 0x000000FEU ,0x00000000U) */
mask_write 0XFF1800A4 0x000000FE 0x00000000
# Register : MIO_PIN_42 @ 0XFF1800A8</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_txd[3]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_42_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_42_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[1]- (8-bit Data bus) = sd0, Output, sdio0_data_out[1]- (8
# bit Data bus) 2= sd1, Input, sd1_data_in[7]- (8-bit Data bus) = sd1, Output, sdio1_data_out[7]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_42_L2_SEL 0
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[16]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[16]- (GPIO bank 1) 1= c
# n0, Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL sign
# l) 3= swdt0, Input, swdt0_clk_in- (Watch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= spi0, Output, spi0_
# o- (MISO signal) 5= ttc2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Outp
# t, tracedq[2]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_42_L3_SEL 0
# Configures MIO Pin 42 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800A8, 0x000000FEU ,0x00000000U) */
mask_write 0XFF1800A8 0x000000FE 0x00000000
# Register : MIO_PIN_43 @ 0XFF1800AC</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_tx_ctl- (TX RGMII control)
# PSU_IOU_SLCR_MIO_PIN_43_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_43_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[2]- (8-bit Data bus) = sd0, Output, sdio0_data_out[2]- (8
# bit Data bus) 2= sd1, Output, sdio1_bus_pow- (SD card bus power) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_43_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[17]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[17]- (GPIO bank 1) 1= c
# n0, Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA sig
# al) 3= swdt0, Output, swdt0_rst_out- (Watch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4= spi0, Input, s
# i0_si- (MOSI signal) 5= ttc2, Output, ttc2_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial o
# tput) 7= trace, Output, tracedq[3]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_43_L3_SEL 0
# Configures MIO Pin 43 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800AC, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800AC 0x000000FE 0x00000010
# Register : MIO_PIN_44 @ 0XFF1800B0</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rx_clk- (RX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_44_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_44_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[3]- (8-bit Data bus) = sd0, Output, sdio0_data_out[3]- (8
# bit Data bus) 2= sd1, Input, sdio1_wp- (SD card write protect from connector) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_44_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[18]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[18]- (GPIO bank 1) 1= c
# n1, Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL sig
# al) 3= swdt1, Input, swdt1_clk_in- (Watch Dog Timer Input clock) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4= spi1, Output, s
# i1_sclk_out- (SPI Clock) 5= ttc1, Input, ttc1_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7
# Not Used
# PSU_IOU_SLCR_MIO_PIN_44_L3_SEL 0
# Configures MIO Pin 44 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800B0, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800B0 0x000000FE 0x00000010
# Register : MIO_PIN_45 @ 0XFF1800B4</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rxd[0]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_45_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_45_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[4]- (8-bit Data bus) = sd0, Output, sdio0_data_out[4]- (8
# bit Data bus) 2= sd1, Input, sdio1_cd_n- (SD card detect from connector) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_45_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[19]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[19]- (GPIO bank 1) 1= c
# n1, Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA sign
# l) 3= swdt1, Output, swdt1_rst_out- (Watch Dog Timer Output clock) 4= spi1, Output, spi1_n_ss_out[2]- (SPI Master Selects) 5=
# ttc1, Output, ttc1_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_45_L3_SEL 0
# Configures MIO Pin 45 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800B4, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800B4 0x000000FE 0x00000010
# Register : MIO_PIN_46 @ 0XFF1800B8</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rxd[1]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_46_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_46_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[5]- (8-bit Data bus) = sd0, Output, sdio0_data_out[5]- (8
# bit Data bus) 2= sd1, Input, sd1_data_in[0]- (8-bit Data bus) = sd1, Output, sdio1_data_out[0]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_46_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[20]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[20]- (GPIO bank 1) 1= c
# n0, Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL sign
# l) 3= swdt0, Input, swdt0_clk_in- (Watch Dog Timer Input clock) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Master Selects) 5= tt
# 0, Input, ttc0_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_46_L3_SEL 0
# Configures MIO Pin 46 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800B8, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800B8 0x000000FE 0x00000010
# Register : MIO_PIN_47 @ 0XFF1800BC</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rxd[2]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_47_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_47_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[6]- (8-bit Data bus) = sd0, Output, sdio0_data_out[6]- (8
# bit Data bus) 2= sd1, Input, sd1_data_in[1]- (8-bit Data bus) = sd1, Output, sdio1_data_out[1]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_47_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[21]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[21]- (GPIO bank 1) 1= c
# n0, Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA sig
# al) 3= swdt0, Output, swdt0_rst_out- (Watch Dog Timer Output clock) 4= spi1, Input, spi1_n_ss_in- (SPI Master Selects) 4= spi
# , Output, spi1_n_ss_out[0]- (SPI Master Selects) 5= ttc0, Output, ttc0_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd
# (UART transmitter serial output) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_47_L3_SEL 0
# Configures MIO Pin 47 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800BC, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800BC 0x000000FE 0x00000010
# Register : MIO_PIN_48 @ 0XFF1800C0</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rxd[3]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_48_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_48_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[7]- (8-bit Data bus) = sd0, Output, sdio0_data_out[7]- (8
# bit Data bus) 2= sd1, Input, sd1_data_in[2]- (8-bit Data bus) = sd1, Output, sdio1_data_out[2]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_48_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[22]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[22]- (GPIO bank 1) 1= c
# n1, Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL sig
# al) 3= swdt1, Input, swdt1_clk_in- (Watch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= spi1, Output, spi1
# so- (MISO signal) 5= ttc3, Input, ttc3_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= Not U
# ed
# PSU_IOU_SLCR_MIO_PIN_48_L3_SEL 0
# Configures MIO Pin 48 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800C0, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800C0 0x000000FE 0x00000010
# Register : MIO_PIN_49 @ 0XFF1800C4</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rx_ctl- (RX RGMII control )
# PSU_IOU_SLCR_MIO_PIN_49_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_49_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_bus_pow- (SD card bus power) 2= sd1, Input, sd1_data_in[3]- (8
# bit Data bus) = sd1, Output, sdio1_data_out[3]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_49_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[23]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[23]- (GPIO bank 1) 1= c
# n1, Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA sign
# l) 3= swdt1, Output, swdt1_rst_out- (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal) 4= spi1, Input, sp
# 1_si- (MOSI signal) 5= ttc3, Output, ttc3_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input)
# 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_49_L3_SEL 0
# Configures MIO Pin 49 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800C4, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800C4 0x000000FE 0x00000010
# Register : MIO_PIN_50 @ 0XFF1800C8</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem_tsu, Input, gem_tsu_clk- (TSU clock)
# PSU_IOU_SLCR_MIO_PIN_50_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_50_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_wp- (SD card write protect from connector) 2= sd1, Input, sd1_c
# d_in- (Command Indicator) = sd1, Output, sdio1_cmd_out- (Command Indicator) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_50_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[24]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[24]- (GPIO bank 1) 1= c
# n0, Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL sign
# l) 3= swdt0, Input, swdt0_clk_in- (Watch Dog Timer Input clock) 4= mdio1, Output, gem1_mdc- (MDIO Clock) 5= ttc2, Input, ttc2
# clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_50_L3_SEL 0
# Configures MIO Pin 50 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800C8, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800C8 0x000000FE 0x00000010
# Register : MIO_PIN_51 @ 0XFF1800CC</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem_tsu, Input, gem_tsu_clk- (TSU clock)
# PSU_IOU_SLCR_MIO_PIN_51_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_51_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= sd1, Output, sdio1_clk_out- (SDSDIO clock) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_51_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[25]- (GPIO bank 1) 0= gpio1, Output, gpio_1_pin_out[25]- (GPIO bank 1) 1= c
# n0, Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA sig
# al) 3= swdt0, Output, swdt0_rst_out- (Watch Dog Timer Output clock) 4= mdio1, Input, gem1_mdio_in- (MDIO Data) 4= mdio1, Outp
# t, gem1_mdio_out- (MDIO Data) 5= ttc2, Output, ttc2_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter
# serial output) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_51_L3_SEL 0
# Configures MIO Pin 51 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800CC, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800CC 0x000000FE 0x00000010
# Register : MIO_PIN_52 @ 0XFF1800D0</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_tx_clk- (TX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_52_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_clk_in- (ULPI Clock)
# PSU_IOU_SLCR_MIO_PIN_52_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_52_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[0]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[0]- (GPIO bank 2) 1= can
# , Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL signa
# ) 3= pjtag, Input, pjtag_tck- (PJTAG TCK) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, spi0_sclk_out- (SPI Cloc
# ) 5= ttc1, Input, ttc1_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace, Output, trace_
# lk- (Trace Port Clock)
# PSU_IOU_SLCR_MIO_PIN_52_L3_SEL 0
# Configures MIO Pin 52 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800D0, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800D0 0x000000FE 0x00000004
# Register : MIO_PIN_53 @ 0XFF1800D4</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_txd[0]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_53_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_dir- (Data bus direction control)
# PSU_IOU_SLCR_MIO_PIN_53_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_53_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[1]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[1]- (GPIO bank 2) 1= can
# , Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA signal
# 3= pjtag, Input, pjtag_tdi- (PJTAG TDI) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5= ttc1, Output, ttc1_wave_o
# t- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7= trace, Output, trace_ctl- (Trace Port Control
# Signal)
# PSU_IOU_SLCR_MIO_PIN_53_L3_SEL 0
# Configures MIO Pin 53 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800D4, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800D4 0x000000FE 0x00000004
# Register : MIO_PIN_54 @ 0XFF1800D8</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_txd[1]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_54_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_data[2]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_
# ata[2]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_54_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_54_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[2]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[2]- (GPIO bank 2) 1= can
# , Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL signal
# 3= pjtag, Output, pjtag_tdo- (PJTAG TDO) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= ttc0, Input, ttc0_clk_in
# (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Output, tracedq[0]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_54_L3_SEL 0
# Configures MIO Pin 54 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800D8, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800D8 0x000000FE 0x00000004
# Register : MIO_PIN_55 @ 0XFF1800DC</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_txd[2]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_55_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_nxt- (Data flow control signal from the PHY)
# PSU_IOU_SLCR_MIO_PIN_55_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_55_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[3]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[3]- (GPIO bank 2) 1= can
# , Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA signa
# ) 3= pjtag, Input, pjtag_tms- (PJTAG TMS) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi0, Output, spi0_n_ss_out[0
# - (SPI Master Selects) 5= ttc0, Output, ttc0_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial
# output) 7= trace, Output, tracedq[1]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_55_L3_SEL 0
# Configures MIO Pin 55 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800DC, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800DC 0x000000FE 0x00000004
# Register : MIO_PIN_56 @ 0XFF1800E0</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_txd[3]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_56_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_data[0]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_
# ata[0]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_56_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_56_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[4]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[4]- (GPIO bank 2) 1= can
# , Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL signa
# ) 3= swdt1, Input, swdt1_clk_in- (Watch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= spi0, Output, spi0_s
# - (MISO signal) 5= ttc3, Input, ttc3_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace,
# utput, tracedq[2]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_56_L3_SEL 0
# Configures MIO Pin 56 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800E0, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800E0 0x000000FE 0x00000004
# Register : MIO_PIN_57 @ 0XFF1800E4</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_tx_ctl- (TX RGMII control)
# PSU_IOU_SLCR_MIO_PIN_57_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_data[1]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_
# ata[1]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_57_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_57_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[5]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[5]- (GPIO bank 2) 1= can
# , Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA signal
# 3= swdt1, Output, swdt1_rst_out- (Watch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4= spi0, Input, spi0
# si- (MOSI signal) 5= ttc3, Output, ttc3_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7
# trace, Output, tracedq[3]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_57_L3_SEL 0
# Configures MIO Pin 57 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800E4, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800E4 0x000000FE 0x00000004
# Register : MIO_PIN_58 @ 0XFF1800E8</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rx_clk- (RX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_58_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Output, usb0_ulpi_stp- (Asserted to end or interrupt transfers)
# PSU_IOU_SLCR_MIO_PIN_58_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_58_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[6]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[6]- (GPIO bank 2) 1= can
# , Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL signal
# 3= pjtag, Input, pjtag_tck- (PJTAG TCK) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4= spi1, Output, spi1_sclk_out- (SPI Clock
# 5= ttc2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Output, tracedq[4]-
# Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_58_L3_SEL 0
# Configures MIO Pin 58 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800E8, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800E8 0x000000FE 0x00000004
# Register : MIO_PIN_59 @ 0XFF1800EC</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rxd[0]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_59_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_data[3]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_
# ata[3]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_59_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_59_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[7]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[7]- (GPIO bank 2) 1= can
# , Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA signa
# ) 3= pjtag, Input, pjtag_tdi- (PJTAG TDI) 4= spi1, Output, spi1_n_ss_out[2]- (SPI Master Selects) 5= ttc2, Output, ttc2_wave_
# ut- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial output) 7= trace, Output, tracedq[5]- (Trace Port
# atabus)
# PSU_IOU_SLCR_MIO_PIN_59_L3_SEL 0
# Configures MIO Pin 59 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800EC, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800EC 0x000000FE 0x00000004
# Register : MIO_PIN_60 @ 0XFF1800F0</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rxd[1]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_60_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_data[4]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_
# ata[4]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_60_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_60_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[8]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[8]- (GPIO bank 2) 1= can
# , Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL signa
# ) 3= pjtag, Output, pjtag_tdo- (PJTAG TDO) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Master Selects) 5= ttc1, Input, ttc1_clk_i
# - (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace, Output, tracedq[6]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_60_L3_SEL 0
# Configures MIO Pin 60 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800F0, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800F0 0x000000FE 0x00000004
# Register : MIO_PIN_61 @ 0XFF1800F4</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rxd[2]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_61_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_data[5]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_
# ata[5]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_61_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_61_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[9]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[9]- (GPIO bank 2) 1= can
# , Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA signal
# 3= pjtag, Input, pjtag_tms- (PJTAG TMS) 4= spi1, Input, spi1_n_ss_in- (SPI Master Selects) 4= spi1, Output, spi1_n_ss_out[0]
# (SPI Master Selects) 5= ttc1, Output, ttc1_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial inpu
# ) 7= trace, Output, tracedq[7]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_61_L3_SEL 0
# Configures MIO Pin 61 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800F4, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800F4 0x000000FE 0x00000004
# Register : MIO_PIN_62 @ 0XFF1800F8</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rxd[3]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_62_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_data[6]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_
# ata[6]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_62_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_62_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[10]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[10]- (GPIO bank 2) 1= c
# n0, Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL sign
# l) 3= swdt0, Input, swdt0_clk_in- (Watch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= spi1, Output, spi1_
# o- (MISO signal) 5= ttc0, Input, ttc0_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Outp
# t, tracedq[8]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_62_L3_SEL 0
# Configures MIO Pin 62 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800F8, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800F8 0x000000FE 0x00000004
# Register : MIO_PIN_63 @ 0XFF1800FC</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rx_ctl- (RX RGMII control )
# PSU_IOU_SLCR_MIO_PIN_63_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_data[7]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_
# ata[7]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_63_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_63_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[11]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[11]- (GPIO bank 2) 1= c
# n0, Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA sig
# al) 3= swdt0, Output, swdt0_rst_out- (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal) 4= spi1, Input, s
# i1_si- (MOSI signal) 5= ttc0, Output, ttc0_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial o
# tput) 7= trace, Output, tracedq[9]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_63_L3_SEL 0
# Configures MIO Pin 63 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800FC, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800FC 0x000000FE 0x00000004
# Register : MIO_PIN_64 @ 0XFF180100</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_tx_clk- (TX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_64_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_clk_in- (ULPI Clock)
# PSU_IOU_SLCR_MIO_PIN_64_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_clk_out- (SDSDIO clock) 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_64_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[12]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[12]- (GPIO bank 2) 1= c
# n1, Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL sig
# al) 3= swdt1, Input, swdt1_clk_in- (Watch Dog Timer Input clock) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, s
# i0_sclk_out- (SPI Clock) 5= ttc3, Input, ttc3_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7
# trace, Output, tracedq[10]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_64_L3_SEL 0
# Configures MIO Pin 64 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180100, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180100 0x000000FE 0x00000002
# Register : MIO_PIN_65 @ 0XFF180104</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_txd[0]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_65_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_dir- (Data bus direction control)
# PSU_IOU_SLCR_MIO_PIN_65_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_cd_n- (SD card detect from connector) 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_65_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[13]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[13]- (GPIO bank 2) 1= c
# n1, Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA sign
# l) 3= swdt1, Output, swdt1_rst_out- (Watch Dog Timer Output clock) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5=
# ttc3, Output, ttc3_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7= trace, Output, trac
# dq[11]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_65_L3_SEL 0
# Configures MIO Pin 65 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180104, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180104 0x000000FE 0x00000002
# Register : MIO_PIN_66 @ 0XFF180108</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_txd[1]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_66_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_data[2]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_
# ata[2]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_66_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_cmd_in- (Command Indicator) = sd0, Output, sdio0_cmd_out- (Comman
# Indicator) 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_66_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[14]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[14]- (GPIO bank 2) 1= c
# n0, Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL sign
# l) 3= swdt0, Input, swdt0_clk_in- (Watch Dog Timer Input clock) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= tt
# 2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Output, tracedq[12]- (Trace
# Port Databus)
# PSU_IOU_SLCR_MIO_PIN_66_L3_SEL 0
# Configures MIO Pin 66 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180108, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180108 0x000000FE 0x00000002
# Register : MIO_PIN_67 @ 0XFF18010C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_txd[2]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_67_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_nxt- (Data flow control signal from the PHY)
# PSU_IOU_SLCR_MIO_PIN_67_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[0]- (8-bit Data bus) = sd0, Output, sdio0_data_out[0]- (8
# bit Data bus) 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_67_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[15]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[15]- (GPIO bank 2) 1= c
# n0, Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA sig
# al) 3= swdt0, Output, swdt0_rst_out- (Watch Dog Timer Output clock) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi
# , Output, spi0_n_ss_out[0]- (SPI Master Selects) 5= ttc2, Output, ttc2_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd
# (UART transmitter serial output) 7= trace, Output, tracedq[13]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_67_L3_SEL 0
# Configures MIO Pin 67 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18010C, 0x000000FEU ,0x00000002U) */
mask_write 0XFF18010C 0x000000FE 0x00000002
# Register : MIO_PIN_68 @ 0XFF180110</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_txd[3]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_68_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_data[0]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_
# ata[0]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_68_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[1]- (8-bit Data bus) = sd0, Output, sdio0_data_out[1]- (8
# bit Data bus) 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_68_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[16]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[16]- (GPIO bank 2) 1= c
# n1, Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL sig
# al) 3= swdt1, Input, swdt1_clk_in- (Watch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= spi0, Output, spi0
# so- (MISO signal) 5= ttc1, Input, ttc1_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace
# Output, tracedq[14]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_68_L3_SEL 0
# Configures MIO Pin 68 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180110, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180110 0x000000FE 0x00000002
# Register : MIO_PIN_69 @ 0XFF180114</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_tx_ctl- (TX RGMII control)
# PSU_IOU_SLCR_MIO_PIN_69_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_data[1]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_
# ata[1]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_69_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[2]- (8-bit Data bus) = sd0, Output, sdio0_data_out[2]- (8
# bit Data bus) 2= sd1, Input, sdio1_wp- (SD card write protect from connector) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_69_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[17]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[17]- (GPIO bank 2) 1= c
# n1, Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA sign
# l) 3= swdt1, Output, swdt1_rst_out- (Watch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4= spi0, Input, sp
# 0_si- (MOSI signal) 5= ttc1, Output, ttc1_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input)
# 7= trace, Output, tracedq[15]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_69_L3_SEL 0
# Configures MIO Pin 69 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180114, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180114 0x000000FE 0x00000002
# Register : MIO_PIN_70 @ 0XFF180118</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rx_clk- (RX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_70_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Output, usb1_ulpi_stp- (Asserted to end or interrupt transfers)
# PSU_IOU_SLCR_MIO_PIN_70_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[3]- (8-bit Data bus) = sd0, Output, sdio0_data_out[3]- (8
# bit Data bus) 2= sd1, Output, sdio1_bus_pow- (SD card bus power) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_70_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[18]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[18]- (GPIO bank 2) 1= c
# n0, Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL sign
# l) 3= swdt0, Input, swdt0_clk_in- (Watch Dog Timer Input clock) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4= spi1, Output, sp
# 1_sclk_out- (SPI Clock) 5= ttc0, Input, ttc0_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= Not
# sed
# PSU_IOU_SLCR_MIO_PIN_70_L3_SEL 0
# Configures MIO Pin 70 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180118, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180118 0x000000FE 0x00000002
# Register : MIO_PIN_71 @ 0XFF18011C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rxd[0]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_71_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_data[3]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_
# ata[3]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_71_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[4]- (8-bit Data bus) = sd0, Output, sdio0_data_out[4]- (8
# bit Data bus) 2= sd1, Input, sd1_data_in[0]- (8-bit Data bus) = sd1, Output, sdio1_data_out[0]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_71_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[19]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[19]- (GPIO bank 2) 1= c
# n0, Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA sig
# al) 3= swdt0, Output, swdt0_rst_out- (Watch Dog Timer Output clock) 4= spi1, Output, spi1_n_ss_out[2]- (SPI Master Selects) 5
# ttc0, Output, ttc0_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial output) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_71_L3_SEL 0
# Configures MIO Pin 71 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18011C, 0x000000FEU ,0x00000002U) */
mask_write 0XFF18011C 0x000000FE 0x00000002
# Register : MIO_PIN_72 @ 0XFF180120</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rxd[1]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_72_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_data[4]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_
# ata[4]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_72_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[5]- (8-bit Data bus) = sd0, Output, sdio0_data_out[5]- (8
# bit Data bus) 2= sd1, Input, sd1_data_in[1]- (8-bit Data bus) = sd1, Output, sdio1_data_out[1]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_72_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[20]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[20]- (GPIO bank 2) 1= c
# n1, Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL sig
# al) 3= swdt1, Input, swdt1_clk_in- (Watch Dog Timer Input clock) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Master Selects) 5= N
# t Used 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_72_L3_SEL 0
# Configures MIO Pin 72 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180120, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180120 0x000000FE 0x00000002
# Register : MIO_PIN_73 @ 0XFF180124</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rxd[2]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_73_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_data[5]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_
# ata[5]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_73_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[6]- (8-bit Data bus) = sd0, Output, sdio0_data_out[6]- (8
# bit Data bus) 2= sd1, Input, sd1_data_in[2]- (8-bit Data bus) = sd1, Output, sdio1_data_out[2]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_73_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[21]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[21]- (GPIO bank 2) 1= c
# n1, Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA sign
# l) 3= swdt1, Output, swdt1_rst_out- (Watch Dog Timer Output clock) 4= spi1, Input, spi1_n_ss_in- (SPI Master Selects) 4= spi1
# Output, spi1_n_ss_out[0]- (SPI Master Selects) 5= Not Used 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_73_L3_SEL 0
# Configures MIO Pin 73 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180124, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180124 0x000000FE 0x00000002
# Register : MIO_PIN_74 @ 0XFF180128</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rxd[3]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_74_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_data[6]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_
# ata[6]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_74_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[7]- (8-bit Data bus) = sd0, Output, sdio0_data_out[7]- (8
# bit Data bus) 2= sd1, Input, sd1_data_in[3]- (8-bit Data bus) = sd1, Output, sdio1_data_out[3]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_74_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[22]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[22]- (GPIO bank 2) 1= c
# n0, Input, can0_phy_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0, Output, i2c0_scl_out- (SCL sign
# l) 3= swdt0, Input, swdt0_clk_in- (Watch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= spi1, Output, spi1_
# o- (MISO signal) 5= Not Used 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_74_L3_SEL 0
# Configures MIO Pin 74 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180128, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180128 0x000000FE 0x00000002
# Register : MIO_PIN_75 @ 0XFF18012C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rx_ctl- (RX RGMII control )
# PSU_IOU_SLCR_MIO_PIN_75_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_data[7]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_
# ata[7]- (ULPI data bus)
# PSU_IOU_SLCR_MIO_PIN_75_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_bus_pow- (SD card bus power) 2= sd1, Input, sd1_cmd_in- (Comma
# d Indicator) = sd1, Output, sdio1_cmd_out- (Command Indicator) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_75_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[23]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[23]- (GPIO bank 2) 1= c
# n0, Output, can0_phy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c0, Output, i2c0_sda_out- (SDA sig
# al) 3= swdt0, Output, swdt0_rst_out- (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal) 4= spi1, Input, s
# i1_si- (MOSI signal) 5= Not Used 6= ua0, Output, ua0_txd- (UART transmitter serial output) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_75_L3_SEL 0
# Configures MIO Pin 75 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18012C, 0x000000FEU ,0x00000002U) */
mask_write 0XFF18012C 0x000000FE 0x00000002
# Register : MIO_PIN_76 @ 0XFF180130</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_76_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_76_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_wp- (SD card write protect from connector) 2= sd1, Output, sdio
# _clk_out- (SDSDIO clock) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_76_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[24]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[24]- (GPIO bank 2) 1= c
# n1, Output, can1_phy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c1, Output, i2c1_scl_out- (SCL sig
# al) 3= mdio0, Output, gem0_mdc- (MDIO Clock) 4= mdio1, Output, gem1_mdc- (MDIO Clock) 5= mdio2, Output, gem2_mdc- (MDIO Clock
# 6= mdio3, Output, gem3_mdc- (MDIO Clock) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_76_L3_SEL 6
# Configures MIO Pin 76 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180130, 0x000000FEU ,0x000000C0U) */
mask_write 0XFF180130 0x000000FE 0x000000C0
# Register : MIO_PIN_77 @ 0XFF180134</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_77_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_77_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= sd1, Input, sdio1_cd_n- (SD card detect from connector) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_77_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[25]- (GPIO bank 2) 0= gpio2, Output, gpio_2_pin_out[25]- (GPIO bank 2) 1= c
# n1, Input, can1_phy_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1, Output, i2c1_sda_out- (SDA sign
# l) 3= mdio0, Input, gem0_mdio_in- (MDIO Data) 3= mdio0, Output, gem0_mdio_out- (MDIO Data) 4= mdio1, Input, gem1_mdio_in- (MD
# O Data) 4= mdio1, Output, gem1_mdio_out- (MDIO Data) 5= mdio2, Input, gem2_mdio_in- (MDIO Data) 5= mdio2, Output, gem2_mdio_o
# t- (MDIO Data) 6= mdio3, Input, gem3_mdio_in- (MDIO Data) 6= mdio3, Output, gem3_mdio_out- (MDIO Data) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_77_L3_SEL 6
# Configures MIO Pin 77 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180134, 0x000000FEU ,0x000000C0U) */
mask_write 0XFF180134 0x000000FE 0x000000C0
# Register : MIO_MST_TRI0 @ 0XFF180204</p>
# Master Tri-state Enable for pin 0, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_00_TRI 0
# Master Tri-state Enable for pin 1, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_01_TRI 0
# Master Tri-state Enable for pin 2, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_02_TRI 0
# Master Tri-state Enable for pin 3, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_03_TRI 0
# Master Tri-state Enable for pin 4, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_04_TRI 0
# Master Tri-state Enable for pin 5, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_05_TRI 0
# Master Tri-state Enable for pin 6, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_06_TRI 0
# Master Tri-state Enable for pin 7, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_07_TRI 0
# Master Tri-state Enable for pin 8, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_08_TRI 0
# Master Tri-state Enable for pin 9, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_09_TRI 0
# Master Tri-state Enable for pin 10, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_10_TRI 0
# Master Tri-state Enable for pin 11, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_11_TRI 0
# Master Tri-state Enable for pin 12, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_12_TRI 0
# Master Tri-state Enable for pin 13, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_13_TRI 0
# Master Tri-state Enable for pin 14, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_14_TRI 0
# Master Tri-state Enable for pin 15, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_15_TRI 0
# Master Tri-state Enable for pin 16, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_16_TRI 0
# Master Tri-state Enable for pin 17, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_17_TRI 0
# Master Tri-state Enable for pin 18, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_18_TRI 1
# Master Tri-state Enable for pin 19, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_19_TRI 0
# Master Tri-state Enable for pin 20, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_20_TRI 0
# Master Tri-state Enable for pin 21, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_21_TRI 1
# Master Tri-state Enable for pin 22, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_22_TRI 0
# Master Tri-state Enable for pin 23, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_23_TRI 0
# Master Tri-state Enable for pin 24, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_24_TRI 0
# Master Tri-state Enable for pin 25, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_25_TRI 1
# Master Tri-state Enable for pin 26, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_26_TRI 0
# Master Tri-state Enable for pin 27, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_27_TRI 0
# Master Tri-state Enable for pin 28, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_28_TRI 1
# Master Tri-state Enable for pin 29, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_29_TRI 0
# Master Tri-state Enable for pin 30, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_30_TRI 1
# Master Tri-state Enable for pin 31, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_31_TRI 0
# MIO pin Tri-state Enables, 31:0
#(OFFSET, MASK, VALUE) (0XFF180204, 0xFFFFFFFFU ,0x52240000U) */
mask_write 0XFF180204 0xFFFFFFFF 0x52240000
# Register : MIO_MST_TRI1 @ 0XFF180208</p>
# Master Tri-state Enable for pin 32, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_32_TRI 0
# Master Tri-state Enable for pin 33, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_33_TRI 0
# Master Tri-state Enable for pin 34, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_34_TRI 0
# Master Tri-state Enable for pin 35, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_35_TRI 0
# Master Tri-state Enable for pin 36, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_36_TRI 0
# Master Tri-state Enable for pin 37, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_37_TRI 0
# Master Tri-state Enable for pin 38, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_38_TRI 0
# Master Tri-state Enable for pin 39, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_39_TRI 0
# Master Tri-state Enable for pin 40, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_40_TRI 0
# Master Tri-state Enable for pin 41, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_41_TRI 0
# Master Tri-state Enable for pin 42, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_42_TRI 0
# Master Tri-state Enable for pin 43, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_43_TRI 0
# Master Tri-state Enable for pin 44, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_44_TRI 1
# Master Tri-state Enable for pin 45, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_45_TRI 1
# Master Tri-state Enable for pin 46, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_46_TRI 0
# Master Tri-state Enable for pin 47, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_47_TRI 0
# Master Tri-state Enable for pin 48, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_48_TRI 0
# Master Tri-state Enable for pin 49, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_49_TRI 0
# Master Tri-state Enable for pin 50, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_50_TRI 0
# Master Tri-state Enable for pin 51, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_51_TRI 0
# Master Tri-state Enable for pin 52, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_52_TRI 1
# Master Tri-state Enable for pin 53, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_53_TRI 1
# Master Tri-state Enable for pin 54, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_54_TRI 0
# Master Tri-state Enable for pin 55, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_55_TRI 1
# Master Tri-state Enable for pin 56, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_56_TRI 0
# Master Tri-state Enable for pin 57, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_57_TRI 0
# Master Tri-state Enable for pin 58, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_58_TRI 0
# Master Tri-state Enable for pin 59, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_59_TRI 0
# Master Tri-state Enable for pin 60, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_60_TRI 0
# Master Tri-state Enable for pin 61, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_61_TRI 0
# Master Tri-state Enable for pin 62, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_62_TRI 0
# Master Tri-state Enable for pin 63, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_63_TRI 0
# MIO pin Tri-state Enables, 63:32
#(OFFSET, MASK, VALUE) (0XFF180208, 0xFFFFFFFFU ,0x00B03000U) */
mask_write 0XFF180208 0xFFFFFFFF 0x00B03000
# Register : MIO_MST_TRI2 @ 0XFF18020C</p>
# Master Tri-state Enable for pin 64, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_64_TRI 0
# Master Tri-state Enable for pin 65, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_65_TRI 0
# Master Tri-state Enable for pin 66, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_66_TRI 0
# Master Tri-state Enable for pin 67, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_67_TRI 0
# Master Tri-state Enable for pin 68, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_68_TRI 0
# Master Tri-state Enable for pin 69, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_69_TRI 0
# Master Tri-state Enable for pin 70, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_70_TRI 1
# Master Tri-state Enable for pin 71, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_71_TRI 1
# Master Tri-state Enable for pin 72, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_72_TRI 1
# Master Tri-state Enable for pin 73, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_73_TRI 1
# Master Tri-state Enable for pin 74, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_74_TRI 1
# Master Tri-state Enable for pin 75, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_75_TRI 1
# Master Tri-state Enable for pin 76, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_76_TRI 0
# Master Tri-state Enable for pin 77, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_77_TRI 0
# MIO pin Tri-state Enables, 77:64
#(OFFSET, MASK, VALUE) (0XFF18020C, 0x00003FFFU ,0x00000FC0U) */
mask_write 0XFF18020C 0x00003FFF 0x00000FC0
# Register : bank0_ctrl0 @ 0XFF180138</p>
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_25 1
# Drive0 control to MIO Bank 0 - control MIO[25:0]
#(OFFSET, MASK, VALUE) (0XFF180138, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180138 0x03FFFFFF 0x03FFFFFF
# Register : bank0_ctrl1 @ 0XFF18013C</p>
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_25 1
# Drive1 control to MIO Bank 0 - control MIO[25:0]
#(OFFSET, MASK, VALUE) (0XFF18013C, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF18013C 0x03FFFFFF 0x03FFFFFF
# Register : bank0_ctrl3 @ 0XFF180140</p>
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_0 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_1 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_2 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_3 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_4 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_5 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_6 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_7 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_8 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_9 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_10 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_11 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_12 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_13 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_14 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_15 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_16 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_17 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_18 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_19 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_20 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_21 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_22 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_23 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_24 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_25 0
# Selects either Schmitt or CMOS input for MIO Bank 0 - control MIO[25:0]
#(OFFSET, MASK, VALUE) (0XFF180140, 0x03FFFFFFU ,0x00000000U) */
mask_write 0XFF180140 0x03FFFFFF 0x00000000
# Register : bank0_ctrl4 @ 0XFF180144</p>
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_25 1
# When mio_bank0_pull_enable is set, this selects pull up or pull down for MIO Bank 0 - control MIO[25:0]
#(OFFSET, MASK, VALUE) (0XFF180144, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180144 0x03FFFFFF 0x03FFFFFF
# Register : bank0_ctrl5 @ 0XFF180148</p>
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_25 1
# When set, this enables mio_bank0_pullupdown to selects pull up or pull down for MIO Bank 0 - control MIO[25:0]
#(OFFSET, MASK, VALUE) (0XFF180148, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180148 0x03FFFFFF 0x03FFFFFF
# Register : bank0_ctrl6 @ 0XFF18014C</p>
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_0 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_1 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_2 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_3 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_4 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_5 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_6 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_7 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_8 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_9 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_10 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_11 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_12 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_13 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_14 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_15 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_16 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_17 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_18 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_19 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_20 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_21 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_22 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_23 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_24 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_25 0
# Slew rate control to MIO Bank 0 - control MIO[25:0]
#(OFFSET, MASK, VALUE) (0XFF18014C, 0x03FFFFFFU ,0x00000000U) */
mask_write 0XFF18014C 0x03FFFFFF 0x00000000
# Register : bank1_ctrl0 @ 0XFF180154</p>
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_25 1
# Drive0 control to MIO Bank 1 - control MIO[51:26]
#(OFFSET, MASK, VALUE) (0XFF180154, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180154 0x03FFFFFF 0x03FFFFFF
# Register : bank1_ctrl1 @ 0XFF180158</p>
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_25 1
# Drive1 control to MIO Bank 1 - control MIO[51:26]
#(OFFSET, MASK, VALUE) (0XFF180158, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180158 0x03FFFFFF 0x03FFFFFF
# Register : bank1_ctrl3 @ 0XFF18015C</p>
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_0 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_1 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_2 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_3 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_4 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_5 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_6 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_7 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_8 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_9 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_10 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_11 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_12 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_13 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_14 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_15 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_16 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_17 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_18 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_19 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_20 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_21 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_22 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_23 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_24 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_25 0
# Selects either Schmitt or CMOS input for MIO Bank 1 - control MIO[51:26]
#(OFFSET, MASK, VALUE) (0XFF18015C, 0x03FFFFFFU ,0x00000000U) */
mask_write 0XFF18015C 0x03FFFFFF 0x00000000
# Register : bank1_ctrl4 @ 0XFF180160</p>
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_25 1
# When mio_bank1_pull_enable is set, this selects pull up or pull down for MIO Bank 1 - control MIO[51:26]
#(OFFSET, MASK, VALUE) (0XFF180160, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180160 0x03FFFFFF 0x03FFFFFF
# Register : bank1_ctrl5 @ 0XFF180164</p>
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_25 1
# When set, this enables mio_bank1_pullupdown to selects pull up or pull down for MIO Bank 1 - control MIO[51:26]
#(OFFSET, MASK, VALUE) (0XFF180164, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180164 0x03FFFFFF 0x03FFFFFF
# Register : bank1_ctrl6 @ 0XFF180168</p>
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_0 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_1 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_2 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_3 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_4 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_5 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_6 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_7 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_8 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_9 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_10 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_11 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_12 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_13 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_14 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_15 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_16 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_17 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_18 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_19 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_20 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_21 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_22 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_23 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_24 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_25 0
# Slew rate control to MIO Bank 1 - control MIO[51:26]
#(OFFSET, MASK, VALUE) (0XFF180168, 0x03FFFFFFU ,0x00000000U) */
mask_write 0XFF180168 0x03FFFFFF 0x00000000
# Register : bank2_ctrl0 @ 0XFF180170</p>
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_25 1
# Drive0 control to MIO Bank 2 - control MIO[77:52]
#(OFFSET, MASK, VALUE) (0XFF180170, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180170 0x03FFFFFF 0x03FFFFFF
# Register : bank2_ctrl1 @ 0XFF180174</p>
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_25 1
# Drive1 control to MIO Bank 2 - control MIO[77:52]
#(OFFSET, MASK, VALUE) (0XFF180174, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180174 0x03FFFFFF 0x03FFFFFF
# Register : bank2_ctrl3 @ 0XFF180178</p>
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_0 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_1 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_2 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_3 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_4 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_5 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_6 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_7 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_8 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_9 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_10 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_11 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_12 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_13 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_14 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_15 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_16 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_17 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_18 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_19 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_20 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_21 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_22 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_23 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_24 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_25 0
# Selects either Schmitt or CMOS input for MIO Bank 2 - control MIO[77:52]
#(OFFSET, MASK, VALUE) (0XFF180178, 0x03FFFFFFU ,0x00000000U) */
mask_write 0XFF180178 0x03FFFFFF 0x00000000
# Register : bank2_ctrl4 @ 0XFF18017C</p>
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_25 1
# When mio_bank2_pull_enable is set, this selects pull up or pull down for MIO Bank 2 - control MIO[77:52]
#(OFFSET, MASK, VALUE) (0XFF18017C, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF18017C 0x03FFFFFF 0x03FFFFFF
# Register : bank2_ctrl5 @ 0XFF180180</p>
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_25 1
# When set, this enables mio_bank2_pullupdown to selects pull up or pull down for MIO Bank 2 - control MIO[77:52]
#(OFFSET, MASK, VALUE) (0XFF180180, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180180 0x03FFFFFF 0x03FFFFFF
# Register : bank2_ctrl6 @ 0XFF180184</p>
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_0 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_1 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_2 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_3 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_4 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_5 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_6 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_7 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_8 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_9 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_10 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_11 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_12 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_13 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_14 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_15 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_16 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_17 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_18 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_19 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_20 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_21 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_22 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_23 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_24 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_25 0
# Slew rate control to MIO Bank 2 - control MIO[77:52]
#(OFFSET, MASK, VALUE) (0XFF180184, 0x03FFFFFFU ,0x00000000U) */
mask_write 0XFF180184 0x03FFFFFF 0x00000000
# : LOOPBACK
# Register : MIO_LOOPBACK @ 0XFF180200</p>
# I2C Loopback Control. 0 = Connect I2C inputs according to MIO mapping. 1 = Loop I2C 0 outputs to I2C 1 inputs, and I2C 1 outp
# ts to I2C 0 inputs.
# PSU_IOU_SLCR_MIO_LOOPBACK_I2C0_LOOP_I2C1 0
# CAN Loopback Control. 0 = Connect CAN inputs according to MIO mapping. 1 = Loop CAN 0 Tx to CAN 1 Rx, and CAN 1 Tx to CAN 0 R
# .
# PSU_IOU_SLCR_MIO_LOOPBACK_CAN0_LOOP_CAN1 0
# UART Loopback Control. 0 = Connect UART inputs according to MIO mapping. 1 = Loop UART 0 outputs to UART 1 inputs, and UART 1
# outputs to UART 0 inputs. RXD/TXD cross-connected. RTS/CTS cross-connected. DSR, DTR, DCD and RI not used.
# PSU_IOU_SLCR_MIO_LOOPBACK_UA0_LOOP_UA1 0
# SPI Loopback Control. 0 = Connect SPI inputs according to MIO mapping. 1 = Loop SPI 0 outputs to SPI 1 inputs, and SPI 1 outp
# ts to SPI 0 inputs. The other SPI core will appear on the LS Slave Select.
# PSU_IOU_SLCR_MIO_LOOPBACK_SPI0_LOOP_SPI1 0
# Loopback function within MIO
#(OFFSET, MASK, VALUE) (0XFF180200, 0x0000000FU ,0x00000000U) */
mask_write 0XFF180200 0x0000000F 0x00000000
}
set psu_peripherals_init_data {
# : RESET BLOCKS
# : TIMESTAMP
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_TIMESTAMP_RESET 0
# Software control register for the IOU block. Each bit will cause a singlerperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00100000U ,0x00000000U) */
mask_write 0XFF5E0238 0x00100000 0x00000000
# : ENET
# Register : RST_LPD_IOU0 @ 0XFF5E0230</p>
# GEM 3 reset
# PSU_CRL_APB_RST_LPD_IOU0_GEM3_RESET 0
# Software controlled reset for the GEMs
#(OFFSET, MASK, VALUE) (0XFF5E0230, 0x00000008U ,0x00000000U) */
mask_write 0XFF5E0230 0x00000008 0x00000000
# : QSPI
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_QSPI_RESET 0
# Software control register for the IOU block. Each bit will cause a singlerperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00000001U ,0x00000000U) */
mask_write 0XFF5E0238 0x00000001 0x00000000
# : QSPI TAP DELAY
# Register : IOU_TAPDLY_BYPASS @ 0XFF180390</p>
# 0: Do not by pass the tap delays on the Rx clock signal of LQSPI 1: Bypass the Tap delay on the Rx clock signal of LQSPI
# PSU_IOU_SLCR_IOU_TAPDLY_BYPASS_LQSPI_RX 1
# IOU tap delay bypass for the LQSPI and NAND controllers
#(OFFSET, MASK, VALUE) (0XFF180390, 0x00000004U ,0x00000004U) */
mask_write 0XFF180390 0x00000004 0x00000004
# : NAND
# : USB
# Register : RST_LPD_TOP @ 0XFF5E023C</p>
# USB 0 reset for control registers
# PSU_CRL_APB_RST_LPD_TOP_USB0_APB_RESET 0
# USB 0 sleep circuit reset
# PSU_CRL_APB_RST_LPD_TOP_USB0_HIBERRESET 0
# USB 0 reset
# PSU_CRL_APB_RST_LPD_TOP_USB0_CORERESET 0
# Software control register for the LPD block.
#(OFFSET, MASK, VALUE) (0XFF5E023C, 0x00000540U ,0x00000000U) */
mask_write 0XFF5E023C 0x00000540 0x00000000
# : FPD RESET
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# PCIE config reset
# PSU_CRF_APB_RST_FPD_TOP_PCIE_CFG_RESET 0
# PCIE control block level reset
# PSU_CRF_APB_RST_FPD_TOP_PCIE_CTRL_RESET 0
# PCIE bridge block level reset (AXI interface)
# PSU_CRF_APB_RST_FPD_TOP_PCIE_BRIDGE_RESET 0
# Display Port block level reset (includes DPDMA)
# PSU_CRF_APB_RST_FPD_TOP_DP_RESET 0
# FPD WDT reset
# PSU_CRF_APB_RST_FPD_TOP_SWDT_RESET 0
# GDMA block level reset
# PSU_CRF_APB_RST_FPD_TOP_GDMA_RESET 0
# Pixel Processor (submodule of GPU) block level reset
# PSU_CRF_APB_RST_FPD_TOP_GPU_PP0_RESET 0
# Pixel Processor (submodule of GPU) block level reset
# PSU_CRF_APB_RST_FPD_TOP_GPU_PP1_RESET 0
# GPU block level reset
# PSU_CRF_APB_RST_FPD_TOP_GPU_RESET 0
# GT block level reset
# PSU_CRF_APB_RST_FPD_TOP_GT_RESET 0
# Sata block level reset
# PSU_CRF_APB_RST_FPD_TOP_SATA_RESET 0
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x000F807EU ,0x00000000U) */
mask_write 0XFD1A0100 0x000F807E 0x00000000
# : SD
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_SDIO1_RESET 0
# Software control register for the IOU block. Each bit will cause a singlerperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00000040U ,0x00000000U) */
mask_write 0XFF5E0238 0x00000040 0x00000000
# Register : CTRL_REG_SD @ 0XFF180310</p>
# SD or eMMC selection on SDIO1 0: SD enabled 1: eMMC enabled
# PSU_IOU_SLCR_CTRL_REG_SD_SD1_EMMC_SEL 0
# SD eMMC selection
#(OFFSET, MASK, VALUE) (0XFF180310, 0x00008000U ,0x00000000U) */
mask_write 0XFF180310 0x00008000 0x00000000
# Register : SD_CONFIG_REG2 @ 0XFF180320</p>
# Should be set based on the final product usage 00 - Removable SCard Slot 01 - Embedded Slot for One Device 10 - Shared Bus Sl
# t 11 - Reserved
# PSU_IOU_SLCR_SD_CONFIG_REG2_SD1_SLOTTYPE 0
# 1.8V Support 1: 1.8V supported 0: 1.8V not supported support
# PSU_IOU_SLCR_SD_CONFIG_REG2_SD1_1P8V 0
# 3.0V Support 1: 3.0V supported 0: 3.0V not supported support
# PSU_IOU_SLCR_SD_CONFIG_REG2_SD1_3P0V 0
# 3.3V Support 1: 3.3V supported 0: 3.3V not supported support
# PSU_IOU_SLCR_SD_CONFIG_REG2_SD1_3P3V 1
# SD Config Register 2
#(OFFSET, MASK, VALUE) (0XFF180320, 0x33800000U ,0x00800000U) */
mask_write 0XFF180320 0x33800000 0x00800000
# : SD1 BASE CLOCK
# Register : SD_CONFIG_REG1 @ 0XFF18031C</p>
# Base Clock Frequency for SD Clock. This is the frequency of the xin_clk.
# PSU_IOU_SLCR_SD_CONFIG_REG1_SD1_BASECLK 0xc7
# SD Config Register 1
#(OFFSET, MASK, VALUE) (0XFF18031C, 0x7F800000U ,0x63800000U) */
mask_write 0XFF18031C 0x7F800000 0x63800000
# : SD1 RETUNER
# Register : SD_CONFIG_REG3 @ 0XFF180324</p>
# This is the Timer Count for Re-Tuning Timer for Re-Tuning Mode 1 to 3. Setting to 4'b0 disables Re-Tuning Timer. 0h - Get inf
# rmation via other source 1h = 1 seconds 2h = 2 seconds 3h = 4 seconds 4h = 8 seconds -- n = 2(n-1) seconds -- Bh = 1024 secon
# s Fh - Ch = Reserved
# PSU_IOU_SLCR_SD_CONFIG_REG3_SD1_RETUNETMR 0X0
# SD Config Register 3
#(OFFSET, MASK, VALUE) (0XFF180324, 0x03C00000U ,0x00000000U) */
mask_write 0XFF180324 0x03C00000 0x00000000
# : CAN
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_CAN1_RESET 0
# Software control register for the IOU block. Each bit will cause a singlerperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00000100U ,0x00000000U) */
mask_write 0XFF5E0238 0x00000100 0x00000000
# : I2C
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_I2C0_RESET 0
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_I2C1_RESET 0
# Software control register for the IOU block. Each bit will cause a singlerperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00000600U ,0x00000000U) */
mask_write 0XFF5E0238 0x00000600 0x00000000
# : SWDT
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_SWDT_RESET 0
# Software control register for the IOU block. Each bit will cause a singlerperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00008000U ,0x00000000U) */
mask_write 0XFF5E0238 0x00008000 0x00000000
# : SPI
# : TTC
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_TTC0_RESET 0
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_TTC1_RESET 0
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_TTC2_RESET 0
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_TTC3_RESET 0
# Software control register for the IOU block. Each bit will cause a singlerperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00007800U ,0x00000000U) */
mask_write 0XFF5E0238 0x00007800 0x00000000
# : UART
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_UART0_RESET 0
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_UART1_RESET 0
# Software control register for the IOU block. Each bit will cause a singlerperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00000006U ,0x00000000U) */
mask_write 0XFF5E0238 0x00000006 0x00000000
# : UART BAUD RATE
# Register : Baud_rate_divider_reg0 @ 0XFF000034</p>
# Baud rate divider value: 0 - 3: ignored 4 - 255: Baud rate
# PSU_UART0_BAUD_RATE_DIVIDER_REG0_BDIV 0x5
# Baud Rate Divider Register
#(OFFSET, MASK, VALUE) (0XFF000034, 0x000000FFU ,0x00000005U) */
mask_write 0XFF000034 0x000000FF 0x00000005
# Register : Baud_rate_gen_reg0 @ 0XFF000018</p>
# Baud Rate Clock Divisor Value: 0: Disables baud_sample 1: Clock divisor bypass (baud_sample = sel_clk) 2 - 65535: baud_sample
# PSU_UART0_BAUD_RATE_GEN_REG0_CD 0x8f
# Baud Rate Generator Register.
#(OFFSET, MASK, VALUE) (0XFF000018, 0x0000FFFFU ,0x0000008FU) */
mask_write 0XFF000018 0x0000FFFF 0x0000008F
# Register : Control_reg0 @ 0XFF000000</p>
# Stop transmitter break: 0: no affect 1: stop transmission of the break after a minimum of one character length and transmit a
# high level during 12 bit periods. It can be set regardless of the value of STTBRK.
# PSU_UART0_CONTROL_REG0_STPBRK 0x0
# Start transmitter break: 0: no affect 1: start to transmit a break after the characters currently present in the FIFO and the
# transmit shift register have been transmitted. It can only be set if STPBRK (Stop transmitter break) is not high.
# PSU_UART0_CONTROL_REG0_STTBRK 0x0
# Restart receiver timeout counter: 1: receiver timeout counter is restarted. This bit is self clearing once the restart has co
# pleted.
# PSU_UART0_CONTROL_REG0_RSTTO 0x0
# Transmit disable: 0: enable transmitter 1: disable transmitter
# PSU_UART0_CONTROL_REG0_TXDIS 0x0
# Transmit enable: 0: disable transmitter 1: enable transmitter, provided the TXDIS field is set to 0.
# PSU_UART0_CONTROL_REG0_TXEN 0x1
# Receive disable: 0: enable 1: disable, regardless of the value of RXEN
# PSU_UART0_CONTROL_REG0_RXDIS 0x0
# Receive enable: 0: disable 1: enable When set to one, the receiver logic is enabled, provided the RXDIS field is set to zero.
# PSU_UART0_CONTROL_REG0_RXEN 0x1
# Software reset for Tx data path: 0: no affect 1: transmitter logic is reset and all pending transmitter data is discarded Thi
# bit is self clearing once the reset has completed.
# PSU_UART0_CONTROL_REG0_TXRES 0x1
# Software reset for Rx data path: 0: no affect 1: receiver logic is reset and all pending receiver data is discarded. This bit
# is self clearing once the reset has completed.
# PSU_UART0_CONTROL_REG0_RXRES 0x1
# UART Control Register
#(OFFSET, MASK, VALUE) (0XFF000000, 0x000001FFU ,0x00000017U) */
mask_write 0XFF000000 0x000001FF 0x00000017
# Register : mode_reg0 @ 0XFF000004</p>
# Channel mode: Defines the mode of operation of the UART. 00: normal 01: automatic echo 10: local loopback 11: remote loopback
# PSU_UART0_MODE_REG0_CHMODE 0x0
# Number of stop bits: Defines the number of stop bits to detect on receive and to generate on transmit. 00: 1 stop bit 01: 1.5
# stop bits 10: 2 stop bits 11: reserved
# PSU_UART0_MODE_REG0_NBSTOP 0x0
# Parity type select: Defines the expected parity to check on receive and the parity to generate on transmit. 000: even parity
# 01: odd parity 010: forced to 0 parity (space) 011: forced to 1 parity (mark) 1xx: no parity
# PSU_UART0_MODE_REG0_PAR 0x4
# Character length select: Defines the number of bits in each character. 11: 6 bits 10: 7 bits 0x: 8 bits
# PSU_UART0_MODE_REG0_CHRL 0x0
# Clock source select: This field defines whether a pre-scalar of 8 is applied to the baud rate generator input clock. 0: clock
# source is uart_ref_clk 1: clock source is uart_ref_clk/8
# PSU_UART0_MODE_REG0_CLKS 0x0
# UART Mode Register
#(OFFSET, MASK, VALUE) (0XFF000004, 0x000003FFU ,0x00000020U) */
mask_write 0XFF000004 0x000003FF 0x00000020
# Register : Baud_rate_divider_reg0 @ 0XFF010034</p>
# Baud rate divider value: 0 - 3: ignored 4 - 255: Baud rate
# PSU_UART1_BAUD_RATE_DIVIDER_REG0_BDIV 0x5
# Baud Rate Divider Register
#(OFFSET, MASK, VALUE) (0XFF010034, 0x000000FFU ,0x00000005U) */
mask_write 0XFF010034 0x000000FF 0x00000005
# Register : Baud_rate_gen_reg0 @ 0XFF010018</p>
# Baud Rate Clock Divisor Value: 0: Disables baud_sample 1: Clock divisor bypass (baud_sample = sel_clk) 2 - 65535: baud_sample
# PSU_UART1_BAUD_RATE_GEN_REG0_CD 0x8f
# Baud Rate Generator Register.
#(OFFSET, MASK, VALUE) (0XFF010018, 0x0000FFFFU ,0x0000008FU) */
mask_write 0XFF010018 0x0000FFFF 0x0000008F
# Register : Control_reg0 @ 0XFF010000</p>
# Stop transmitter break: 0: no affect 1: stop transmission of the break after a minimum of one character length and transmit a
# high level during 12 bit periods. It can be set regardless of the value of STTBRK.
# PSU_UART1_CONTROL_REG0_STPBRK 0x0
# Start transmitter break: 0: no affect 1: start to transmit a break after the characters currently present in the FIFO and the
# transmit shift register have been transmitted. It can only be set if STPBRK (Stop transmitter break) is not high.
# PSU_UART1_CONTROL_REG0_STTBRK 0x0
# Restart receiver timeout counter: 1: receiver timeout counter is restarted. This bit is self clearing once the restart has co
# pleted.
# PSU_UART1_CONTROL_REG0_RSTTO 0x0
# Transmit disable: 0: enable transmitter 1: disable transmitter
# PSU_UART1_CONTROL_REG0_TXDIS 0x0
# Transmit enable: 0: disable transmitter 1: enable transmitter, provided the TXDIS field is set to 0.
# PSU_UART1_CONTROL_REG0_TXEN 0x1
# Receive disable: 0: enable 1: disable, regardless of the value of RXEN
# PSU_UART1_CONTROL_REG0_RXDIS 0x0
# Receive enable: 0: disable 1: enable When set to one, the receiver logic is enabled, provided the RXDIS field is set to zero.
# PSU_UART1_CONTROL_REG0_RXEN 0x1
# Software reset for Tx data path: 0: no affect 1: transmitter logic is reset and all pending transmitter data is discarded Thi
# bit is self clearing once the reset has completed.
# PSU_UART1_CONTROL_REG0_TXRES 0x1
# Software reset for Rx data path: 0: no affect 1: receiver logic is reset and all pending receiver data is discarded. This bit
# is self clearing once the reset has completed.
# PSU_UART1_CONTROL_REG0_RXRES 0x1
# UART Control Register
#(OFFSET, MASK, VALUE) (0XFF010000, 0x000001FFU ,0x00000017U) */
mask_write 0XFF010000 0x000001FF 0x00000017
# Register : mode_reg0 @ 0XFF010004</p>
# Channel mode: Defines the mode of operation of the UART. 00: normal 01: automatic echo 10: local loopback 11: remote loopback
# PSU_UART1_MODE_REG0_CHMODE 0x0
# Number of stop bits: Defines the number of stop bits to detect on receive and to generate on transmit. 00: 1 stop bit 01: 1.5
# stop bits 10: 2 stop bits 11: reserved
# PSU_UART1_MODE_REG0_NBSTOP 0x0
# Parity type select: Defines the expected parity to check on receive and the parity to generate on transmit. 000: even parity
# 01: odd parity 010: forced to 0 parity (space) 011: forced to 1 parity (mark) 1xx: no parity
# PSU_UART1_MODE_REG0_PAR 0x4
# Character length select: Defines the number of bits in each character. 11: 6 bits 10: 7 bits 0x: 8 bits
# PSU_UART1_MODE_REG0_CHRL 0x0
# Clock source select: This field defines whether a pre-scalar of 8 is applied to the baud rate generator input clock. 0: clock
# source is uart_ref_clk 1: clock source is uart_ref_clk/8
# PSU_UART1_MODE_REG0_CLKS 0x0
# UART Mode Register
#(OFFSET, MASK, VALUE) (0XFF010004, 0x000003FFU ,0x00000020U) */
mask_write 0XFF010004 0x000003FF 0x00000020
# : GPIO
# : ADMA TZ
# Register : slcr_adma @ 0XFF4B0024</p>
# TrustZone Classification for ADMA
# PSU_LPD_SLCR_SECURE_SLCR_ADMA_TZ 0XFF
# RPU TrustZone settings
#(OFFSET, MASK, VALUE) (0XFF4B0024, 0x000000FFU ,0x000000FFU) */
mask_write 0XFF4B0024 0x000000FF 0x000000FF
# : CSU TAMPERING
# : CSU TAMPER STATUS
# Register : tamper_status @ 0XFFCA5000</p>
# CSU regsiter
# PSU_CSU_TAMPER_STATUS_TAMPER_0 0
# External MIO
# PSU_CSU_TAMPER_STATUS_TAMPER_1 0
# JTAG toggle detect
# PSU_CSU_TAMPER_STATUS_TAMPER_2 0
# PL SEU error
# PSU_CSU_TAMPER_STATUS_TAMPER_3 0
# AMS over temperature alarm for LPD
# PSU_CSU_TAMPER_STATUS_TAMPER_4 0
# AMS over temperature alarm for APU
# PSU_CSU_TAMPER_STATUS_TAMPER_5 0
# AMS voltage alarm for VCCPINT_FPD
# PSU_CSU_TAMPER_STATUS_TAMPER_6 0
# AMS voltage alarm for VCCPINT_LPD
# PSU_CSU_TAMPER_STATUS_TAMPER_7 0
# AMS voltage alarm for VCCPAUX
# PSU_CSU_TAMPER_STATUS_TAMPER_8 0
# AMS voltage alarm for DDRPHY
# PSU_CSU_TAMPER_STATUS_TAMPER_9 0
# AMS voltage alarm for PSIO bank 0/1/2
# PSU_CSU_TAMPER_STATUS_TAMPER_10 0
# AMS voltage alarm for PSIO bank 3 (dedicated pins)
# PSU_CSU_TAMPER_STATUS_TAMPER_11 0
# AMS voltaage alarm for GT
# PSU_CSU_TAMPER_STATUS_TAMPER_12 0
# Tamper Response Status
#(OFFSET, MASK, VALUE) (0XFFCA5000, 0x00001FFFU ,0x00000000U) */
mask_write 0XFFCA5000 0x00001FFF 0x00000000
# : CSU TAMPER RESPONSE
# : AFIFM INTERFACE WIDTH
# : CPU QOS DEFAULT
# Register : ACE_CTRL @ 0XFD5C0060</p>
# Set ACE outgoing AWQOS value
# PSU_APU_ACE_CTRL_AWQOS 0X0
# Set ACE outgoing ARQOS value
# PSU_APU_ACE_CTRL_ARQOS 0X0
# ACE Control Register
#(OFFSET, MASK, VALUE) (0XFD5C0060, 0x000F000FU ,0x00000000U) */
mask_write 0XFD5C0060 0x000F000F 0x00000000
# : ENABLES RTC SWITCH TO BATTERY WHEN VCC_PSAUX IS NOT AVAILABLE
# Register : CONTROL @ 0XFFA60040</p>
# Enables the RTC. By writing a 0 to this bit, RTC will be powered off and the only module that potentially draws current from
# he battery will be BBRAM. The value read through this bit does not necessarily reflect whether RTC is enabled or not. It is e
# pected that RTC is enabled every time it is being configured. If RTC is not used in the design, FSBL will disable it by writi
# g a 0 to this bit.
# PSU_RTC_CONTROL_BATTERY_DISABLE 0X1
# This register controls various functionalities within the RTC
#(OFFSET, MASK, VALUE) (0XFFA60040, 0x80000000U ,0x80000000U) */
mask_write 0XFFA60040 0x80000000 0x80000000
# : TIMESTAMP COUNTER
# Register : base_frequency_ID_register @ 0XFF260020</p>
# Frequency in number of ticks per second. Valid range from 10 MHz to 100 MHz.
# PSU_IOU_SCNTRS_BASE_FREQUENCY_ID_REGISTER_FREQ 0x5f5e100
# Program this register to match the clock frequency of the timestamp generator, in ticks per second. For example, for a 50 MHz
# clock, program 0x02FAF080. This register is not accessible to the read-only programming interface.
#(OFFSET, MASK, VALUE) (0XFF260020, 0xFFFFFFFFU ,0x05F5E100U) */
mask_write 0XFF260020 0xFFFFFFFF 0x05F5E100
# Register : counter_control_register @ 0XFF260000</p>
# Enable 0: The counter is disabled and not incrementing. 1: The counter is enabled and is incrementing.
# PSU_IOU_SCNTRS_COUNTER_CONTROL_REGISTER_EN 0x1
# Controls the counter increments. This register is not accessible to the read-only programming interface.
#(OFFSET, MASK, VALUE) (0XFF260000, 0x00000001U ,0x00000001U) */
mask_write 0XFF260000 0x00000001 0x00000001
# : TTC SRC SELECT
}
set psu_post_config_data {
# : POST_CONFIG
}
set psu_peripherals_powerdwn_data {
# : POWER DOWN REQUEST INTERRUPT ENABLE
# : POWER DOWN TRIGGER
}
set psu_lpd_xppu_data {
# : XPPU INTERRUPT ENABLE
# Register : IEN @ 0XFF980018</p>
# See Interuppt Status Register for details
# PSU_LPD_XPPU_CFG_IEN_APER_PARITY 0X1
# See Interuppt Status Register for details
# PSU_LPD_XPPU_CFG_IEN_APER_TZ 0X1
# See Interuppt Status Register for details
# PSU_LPD_XPPU_CFG_IEN_APER_PERM 0X1
# See Interuppt Status Register for details
# PSU_LPD_XPPU_CFG_IEN_MID_PARITY 0X1
# See Interuppt Status Register for details
# PSU_LPD_XPPU_CFG_IEN_MID_RO 0X1
# See Interuppt Status Register for details
# PSU_LPD_XPPU_CFG_IEN_MID_MISS 0X1
# See Interuppt Status Register for details
# PSU_LPD_XPPU_CFG_IEN_INV_APB 0X1
# Interrupt Enable Register
#(OFFSET, MASK, VALUE) (0XFF980018, 0x000000EFU ,0x000000EFU) */
mask_write 0XFF980018 0x000000EF 0x000000EF
}
set psu_ddr_xmpu0_data {
}
set psu_ddr_xmpu1_data {
}
set psu_ddr_xmpu2_data {
}
set psu_ddr_xmpu3_data {
}
set psu_ddr_xmpu4_data {
}
set psu_ddr_xmpu5_data {
}
set psu_ocm_xmpu_data {
}
set psu_fpd_xmpu_data {
}
set psu_protection_lock_data {
}
set psu_apply_master_tz {
# : RPU
# : DP TZ
# : SATA TZ
# : PCIE TZ
# : USB TZ
# : SD TZ
# : GEM TZ
# : QSPI TZ
# : NAND TZ
}
set psu_serdes_init_data {
# : SERDES INITIALIZATION
# : GT REFERENCE CLOCK SOURCE SELECTION
# Register : PLL_REF_SEL0 @ 0XFD410000</p>
# PLL0 Reference Selection. 0x0 - 5MHz, 0x1 - 9.6MHz, 0x2 - 10MHz, 0x3 - 12MHz, 0x4 - 13MHz, 0x5 - 19.2MHz, 0x6 - 20MHz, 0x7 -
# 4MHz, 0x8 - 26MHz, 0x9 - 27MHz, 0xA - 38.4MHz, 0xB - 40MHz, 0xC - 52MHz, 0xD - 100MHz, 0xE - 108MHz, 0xF - 125MHz, 0x10 - 135
# Hz, 0x11 - 150 MHz. 0x12 to 0x1F - Reserved
# PSU_SERDES_PLL_REF_SEL0_PLLREFSEL0 0xD
# PLL0 Reference Selection Register
#(OFFSET, MASK, VALUE) (0XFD410000, 0x0000001FU ,0x0000000DU) */
mask_write 0XFD410000 0x0000001F 0x0000000D
# Register : PLL_REF_SEL1 @ 0XFD410004</p>
# PLL1 Reference Selection. 0x0 - 5MHz, 0x1 - 9.6MHz, 0x2 - 10MHz, 0x3 - 12MHz, 0x4 - 13MHz, 0x5 - 19.2MHz, 0x6 - 20MHz, 0x7 -
# 4MHz, 0x8 - 26MHz, 0x9 - 27MHz, 0xA - 38.4MHz, 0xB - 40MHz, 0xC - 52MHz, 0xD - 100MHz, 0xE - 108MHz, 0xF - 125MHz, 0x10 - 135
# Hz, 0x11 - 150 MHz. 0x12 to 0x1F - Reserved
# PSU_SERDES_PLL_REF_SEL1_PLLREFSEL1 0x9
# PLL1 Reference Selection Register
#(OFFSET, MASK, VALUE) (0XFD410004, 0x0000001FU ,0x00000009U) */
mask_write 0XFD410004 0x0000001F 0x00000009
# Register : PLL_REF_SEL2 @ 0XFD410008</p>
# PLL2 Reference Selection. 0x0 - 5MHz, 0x1 - 9.6MHz, 0x2 - 10MHz, 0x3 - 12MHz, 0x4 - 13MHz, 0x5 - 19.2MHz, 0x6 - 20MHz, 0x7 -
# 4MHz, 0x8 - 26MHz, 0x9 - 27MHz, 0xA - 38.4MHz, 0xB - 40MHz, 0xC - 52MHz, 0xD - 100MHz, 0xE - 108MHz, 0xF - 125MHz, 0x10 - 135
# Hz, 0x11 - 150 MHz. 0x12 to 0x1F - Reserved
# PSU_SERDES_PLL_REF_SEL2_PLLREFSEL2 0x8
# PLL2 Reference Selection Register
#(OFFSET, MASK, VALUE) (0XFD410008, 0x0000001FU ,0x00000008U) */
mask_write 0XFD410008 0x0000001F 0x00000008
# Register : PLL_REF_SEL3 @ 0XFD41000C</p>
# PLL3 Reference Selection. 0x0 - 5MHz, 0x1 - 9.6MHz, 0x2 - 10MHz, 0x3 - 12MHz, 0x4 - 13MHz, 0x5 - 19.2MHz, 0x6 - 20MHz, 0x7 -
# 4MHz, 0x8 - 26MHz, 0x9 - 27MHz, 0xA - 38.4MHz, 0xB - 40MHz, 0xC - 52MHz, 0xD - 100MHz, 0xE - 108MHz, 0xF - 125MHz, 0x10 - 135
# Hz, 0x11 - 150 MHz. 0x12 to 0x1F - Reserved
# PSU_SERDES_PLL_REF_SEL3_PLLREFSEL3 0xF
# PLL3 Reference Selection Register
#(OFFSET, MASK, VALUE) (0XFD41000C, 0x0000001FU ,0x0000000FU) */
mask_write 0XFD41000C 0x0000001F 0x0000000F
# : GT REFERENCE CLOCK FREQUENCY SELECTION
# Register : L0_L0_REF_CLK_SEL @ 0XFD402860</p>
# Sel of lane 0 ref clock local mux. Set to 1 to select lane 0 slicer output. Set to 0 to select lane0 ref clock mux output.
# PSU_SERDES_L0_L0_REF_CLK_SEL_L0_REF_CLK_LCL_SEL 0x1
# Lane0 Ref Clock Selection Register
#(OFFSET, MASK, VALUE) (0XFD402860, 0x00000080U ,0x00000080U) */
mask_write 0XFD402860 0x00000080 0x00000080
# Register : L0_L1_REF_CLK_SEL @ 0XFD402864</p>
# Sel of lane 1 ref clock local mux. Set to 1 to select lane 1 slicer output. Set to 0 to select lane1 ref clock mux output.
# PSU_SERDES_L0_L1_REF_CLK_SEL_L1_REF_CLK_LCL_SEL 0x0
# Bit 3 of lane 1 ref clock mux one hot sel. Set to 1 to select lane 3 slicer output from ref clock network
# PSU_SERDES_L0_L1_REF_CLK_SEL_L1_REF_CLK_SEL_3 0x1
# Lane1 Ref Clock Selection Register
#(OFFSET, MASK, VALUE) (0XFD402864, 0x00000088U ,0x00000008U) */
mask_write 0XFD402864 0x00000088 0x00000008
# Register : L0_L2_REF_CLK_SEL @ 0XFD402868</p>
# Sel of lane 2 ref clock local mux. Set to 1 to select lane 1 slicer output. Set to 0 to select lane2 ref clock mux output.
# PSU_SERDES_L0_L2_REF_CLK_SEL_L2_REF_CLK_LCL_SEL 0x1
# Lane2 Ref Clock Selection Register
#(OFFSET, MASK, VALUE) (0XFD402868, 0x00000080U ,0x00000080U) */
mask_write 0XFD402868 0x00000080 0x00000080
# Register : L0_L3_REF_CLK_SEL @ 0XFD40286C</p>
# Sel of lane 3 ref clock local mux. Set to 1 to select lane 3 slicer output. Set to 0 to select lane3 ref clock mux output.
# PSU_SERDES_L0_L3_REF_CLK_SEL_L3_REF_CLK_LCL_SEL 0x0
# Bit 1 of lane 3 ref clock mux one hot sel. Set to 1 to select lane 1 slicer output from ref clock network
# PSU_SERDES_L0_L3_REF_CLK_SEL_L3_REF_CLK_SEL_1 0x1
# Lane3 Ref Clock Selection Register
#(OFFSET, MASK, VALUE) (0XFD40286C, 0x00000082U ,0x00000002U) */
mask_write 0XFD40286C 0x00000082 0x00000002
# : ENABLE SPREAD SPECTRUM
# Register : L2_TM_PLL_DIG_37 @ 0XFD40A094</p>
# Enable/Disable coarse code satureation limiting logic
# PSU_SERDES_L2_TM_PLL_DIG_37_TM_ENABLE_COARSE_SATURATION 0x1
# Test mode register 37
#(OFFSET, MASK, VALUE) (0XFD40A094, 0x00000010U ,0x00000010U) */
mask_write 0XFD40A094 0x00000010 0x00000010
# Register : L2_PLL_SS_STEPS_0_LSB @ 0XFD40A368</p>
# Spread Spectrum No of Steps [7:0]
# PSU_SERDES_L2_PLL_SS_STEPS_0_LSB_SS_NUM_OF_STEPS_0_LSB 0x38
# Spread Spectrum No of Steps bits 7:0
#(OFFSET, MASK, VALUE) (0XFD40A368, 0x000000FFU ,0x00000038U) */
mask_write 0XFD40A368 0x000000FF 0x00000038
# Register : L2_PLL_SS_STEPS_1_MSB @ 0XFD40A36C</p>
# Spread Spectrum No of Steps [10:8]
# PSU_SERDES_L2_PLL_SS_STEPS_1_MSB_SS_NUM_OF_STEPS_1_MSB 0x03
# Spread Spectrum No of Steps bits 10:8
#(OFFSET, MASK, VALUE) (0XFD40A36C, 0x00000007U ,0x00000003U) */
mask_write 0XFD40A36C 0x00000007 0x00000003
# Register : L3_PLL_SS_STEPS_0_LSB @ 0XFD40E368</p>
# Spread Spectrum No of Steps [7:0]
# PSU_SERDES_L3_PLL_SS_STEPS_0_LSB_SS_NUM_OF_STEPS_0_LSB 0xE0
# Spread Spectrum No of Steps bits 7:0
#(OFFSET, MASK, VALUE) (0XFD40E368, 0x000000FFU ,0x000000E0U) */
mask_write 0XFD40E368 0x000000FF 0x000000E0
# Register : L3_PLL_SS_STEPS_1_MSB @ 0XFD40E36C</p>
# Spread Spectrum No of Steps [10:8]
# PSU_SERDES_L3_PLL_SS_STEPS_1_MSB_SS_NUM_OF_STEPS_1_MSB 0x3
# Spread Spectrum No of Steps bits 10:8
#(OFFSET, MASK, VALUE) (0XFD40E36C, 0x00000007U ,0x00000003U) */
mask_write 0XFD40E36C 0x00000007 0x00000003
# Register : L1_PLL_SS_STEPS_0_LSB @ 0XFD406368</p>
# Spread Spectrum No of Steps [7:0]
# PSU_SERDES_L1_PLL_SS_STEPS_0_LSB_SS_NUM_OF_STEPS_0_LSB 0x58
# Spread Spectrum No of Steps bits 7:0
#(OFFSET, MASK, VALUE) (0XFD406368, 0x000000FFU ,0x00000058U) */
mask_write 0XFD406368 0x000000FF 0x00000058
# Register : L1_PLL_SS_STEPS_1_MSB @ 0XFD40636C</p>
# Spread Spectrum No of Steps [10:8]
# PSU_SERDES_L1_PLL_SS_STEPS_1_MSB_SS_NUM_OF_STEPS_1_MSB 0x3
# Spread Spectrum No of Steps bits 10:8
#(OFFSET, MASK, VALUE) (0XFD40636C, 0x00000007U ,0x00000003U) */
mask_write 0XFD40636C 0x00000007 0x00000003
# Register : L1_PLL_SS_STEP_SIZE_0_LSB @ 0XFD406370</p>
# Step Size for Spread Spectrum [7:0]
# PSU_SERDES_L1_PLL_SS_STEP_SIZE_0_LSB_SS_STEP_SIZE_0_LSB 0x7C
# Step Size for Spread Spectrum LSB
#(OFFSET, MASK, VALUE) (0XFD406370, 0x000000FFU ,0x0000007CU) */
mask_write 0XFD406370 0x000000FF 0x0000007C
# Register : L1_PLL_SS_STEP_SIZE_1 @ 0XFD406374</p>
# Step Size for Spread Spectrum [15:8]
# PSU_SERDES_L1_PLL_SS_STEP_SIZE_1_SS_STEP_SIZE_1 0x33
# Step Size for Spread Spectrum 1
#(OFFSET, MASK, VALUE) (0XFD406374, 0x000000FFU ,0x00000033U) */
mask_write 0XFD406374 0x000000FF 0x00000033
# Register : L1_PLL_SS_STEP_SIZE_2 @ 0XFD406378</p>
# Step Size for Spread Spectrum [23:16]
# PSU_SERDES_L1_PLL_SS_STEP_SIZE_2_SS_STEP_SIZE_2 0x2
# Step Size for Spread Spectrum 2
#(OFFSET, MASK, VALUE) (0XFD406378, 0x000000FFU ,0x00000002U) */
mask_write 0XFD406378 0x000000FF 0x00000002
# Register : L1_PLL_SS_STEP_SIZE_3_MSB @ 0XFD40637C</p>
# Step Size for Spread Spectrum [25:24]
# PSU_SERDES_L1_PLL_SS_STEP_SIZE_3_MSB_SS_STEP_SIZE_3_MSB 0x0
# Enable/Disable test mode force on SS step size
# PSU_SERDES_L1_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_STEP_SIZE 0x1
# Enable/Disable test mode force on SS no of steps
# PSU_SERDES_L1_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_NUM_OF_STEPS 0x1
# Enable force on enable Spread Spectrum
#(OFFSET, MASK, VALUE) (0XFD40637C, 0x00000033U ,0x00000030U) */
mask_write 0XFD40637C 0x00000033 0x00000030
# Register : L2_PLL_SS_STEP_SIZE_0_LSB @ 0XFD40A370</p>
# Step Size for Spread Spectrum [7:0]
# PSU_SERDES_L2_PLL_SS_STEP_SIZE_0_LSB_SS_STEP_SIZE_0_LSB 0xF4
# Step Size for Spread Spectrum LSB
#(OFFSET, MASK, VALUE) (0XFD40A370, 0x000000FFU ,0x000000F4U) */
mask_write 0XFD40A370 0x000000FF 0x000000F4
# Register : L2_PLL_SS_STEP_SIZE_1 @ 0XFD40A374</p>
# Step Size for Spread Spectrum [15:8]
# PSU_SERDES_L2_PLL_SS_STEP_SIZE_1_SS_STEP_SIZE_1 0x31
# Step Size for Spread Spectrum 1
#(OFFSET, MASK, VALUE) (0XFD40A374, 0x000000FFU ,0x00000031U) */
mask_write 0XFD40A374 0x000000FF 0x00000031
# Register : L2_PLL_SS_STEP_SIZE_2 @ 0XFD40A378</p>
# Step Size for Spread Spectrum [23:16]
# PSU_SERDES_L2_PLL_SS_STEP_SIZE_2_SS_STEP_SIZE_2 0x2
# Step Size for Spread Spectrum 2
#(OFFSET, MASK, VALUE) (0XFD40A378, 0x000000FFU ,0x00000002U) */
mask_write 0XFD40A378 0x000000FF 0x00000002
# Register : L2_PLL_SS_STEP_SIZE_3_MSB @ 0XFD40A37C</p>
# Step Size for Spread Spectrum [25:24]
# PSU_SERDES_L2_PLL_SS_STEP_SIZE_3_MSB_SS_STEP_SIZE_3_MSB 0x0
# Enable/Disable test mode force on SS step size
# PSU_SERDES_L2_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_STEP_SIZE 0x1
# Enable/Disable test mode force on SS no of steps
# PSU_SERDES_L2_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_NUM_OF_STEPS 0x1
# Enable force on enable Spread Spectrum
#(OFFSET, MASK, VALUE) (0XFD40A37C, 0x00000033U ,0x00000030U) */
mask_write 0XFD40A37C 0x00000033 0x00000030
# Register : L3_PLL_SS_STEP_SIZE_0_LSB @ 0XFD40E370</p>
# Step Size for Spread Spectrum [7:0]
# PSU_SERDES_L3_PLL_SS_STEP_SIZE_0_LSB_SS_STEP_SIZE_0_LSB 0xC9
# Step Size for Spread Spectrum LSB
#(OFFSET, MASK, VALUE) (0XFD40E370, 0x000000FFU ,0x000000C9U) */
mask_write 0XFD40E370 0x000000FF 0x000000C9
# Register : L3_PLL_SS_STEP_SIZE_1 @ 0XFD40E374</p>
# Step Size for Spread Spectrum [15:8]
# PSU_SERDES_L3_PLL_SS_STEP_SIZE_1_SS_STEP_SIZE_1 0xD2
# Step Size for Spread Spectrum 1
#(OFFSET, MASK, VALUE) (0XFD40E374, 0x000000FFU ,0x000000D2U) */
mask_write 0XFD40E374 0x000000FF 0x000000D2
# Register : L3_PLL_SS_STEP_SIZE_2 @ 0XFD40E378</p>
# Step Size for Spread Spectrum [23:16]
# PSU_SERDES_L3_PLL_SS_STEP_SIZE_2_SS_STEP_SIZE_2 0x1
# Step Size for Spread Spectrum 2
#(OFFSET, MASK, VALUE) (0XFD40E378, 0x000000FFU ,0x00000001U) */
mask_write 0XFD40E378 0x000000FF 0x00000001
# Register : L3_PLL_SS_STEP_SIZE_3_MSB @ 0XFD40E37C</p>
# Step Size for Spread Spectrum [25:24]
# PSU_SERDES_L3_PLL_SS_STEP_SIZE_3_MSB_SS_STEP_SIZE_3_MSB 0x0
# Enable/Disable test mode force on SS step size
# PSU_SERDES_L3_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_STEP_SIZE 0x1
# Enable/Disable test mode force on SS no of steps
# PSU_SERDES_L3_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_NUM_OF_STEPS 0x1
# Enable test mode forcing on enable Spread Spectrum
# PSU_SERDES_L3_PLL_SS_STEP_SIZE_3_MSB_TM_FORCE_EN_SS 0x1
# Enable force on enable Spread Spectrum
#(OFFSET, MASK, VALUE) (0XFD40E37C, 0x000000B3U ,0x000000B0U) */
mask_write 0XFD40E37C 0x000000B3 0x000000B0
# Register : L2_TM_DIG_6 @ 0XFD40906C</p>
# Bypass Descrambler
# PSU_SERDES_L2_TM_DIG_6_BYPASS_DESCRAM 0x1
# Enable Bypass for <1> TM_DIG_CTRL_6
# PSU_SERDES_L2_TM_DIG_6_FORCE_BYPASS_DESCRAM 0x1
# Data path test modes in decoder and descram
#(OFFSET, MASK, VALUE) (0XFD40906C, 0x00000003U ,0x00000003U) */
mask_write 0XFD40906C 0x00000003 0x00000003
# Register : L2_TX_DIG_TM_61 @ 0XFD4080F4</p>
# Bypass scrambler signal
# PSU_SERDES_L2_TX_DIG_TM_61_BYPASS_SCRAM 0x1
# Enable/disable scrambler bypass signal
# PSU_SERDES_L2_TX_DIG_TM_61_FORCE_BYPASS_SCRAM 0x1
# MPHY PLL Gear and bypass scrambler
#(OFFSET, MASK, VALUE) (0XFD4080F4, 0x00000003U ,0x00000003U) */
mask_write 0XFD4080F4 0x00000003 0x00000003
# Register : L3_PLL_FBDIV_FRAC_3_MSB @ 0XFD40E360</p>
# Enable test mode force on fractional mode enable
# PSU_SERDES_L3_PLL_FBDIV_FRAC_3_MSB_TM_FORCE_EN_FRAC 0x1
# Fractional feedback division control and fractional value for feedback division bits 26:24
#(OFFSET, MASK, VALUE) (0XFD40E360, 0x00000040U ,0x00000040U) */
mask_write 0XFD40E360 0x00000040 0x00000040
# Register : L3_TM_DIG_6 @ 0XFD40D06C</p>
# Bypass 8b10b decoder
# PSU_SERDES_L3_TM_DIG_6_BYPASS_DECODER 0x1
# Enable Bypass for <3> TM_DIG_CTRL_6
# PSU_SERDES_L3_TM_DIG_6_FORCE_BYPASS_DEC 0x1
# Bypass Descrambler
# PSU_SERDES_L3_TM_DIG_6_BYPASS_DESCRAM 0x1
# Enable Bypass for <1> TM_DIG_CTRL_6
# PSU_SERDES_L3_TM_DIG_6_FORCE_BYPASS_DESCRAM 0x1
# Data path test modes in decoder and descram
#(OFFSET, MASK, VALUE) (0XFD40D06C, 0x0000000FU ,0x0000000FU) */
mask_write 0XFD40D06C 0x0000000F 0x0000000F
# Register : L3_TX_DIG_TM_61 @ 0XFD40C0F4</p>
# Enable/disable encoder bypass signal
# PSU_SERDES_L3_TX_DIG_TM_61_BYPASS_ENC 0x1
# Bypass scrambler signal
# PSU_SERDES_L3_TX_DIG_TM_61_BYPASS_SCRAM 0x1
# Enable/disable scrambler bypass signal
# PSU_SERDES_L3_TX_DIG_TM_61_FORCE_BYPASS_SCRAM 0x1
# MPHY PLL Gear and bypass scrambler
#(OFFSET, MASK, VALUE) (0XFD40C0F4, 0x0000000BU ,0x0000000BU) */
mask_write 0XFD40C0F4 0x0000000B 0x0000000B
# Register : L3_TXPMA_ST_0 @ 0XFD40CB00</p>
# PHY Mode: 4'b000 - PCIe, 4'b001 - USB3, 4'b0010 - SATA, 4'b0100 - SGMII, 4'b0101 - DP, 4'b1000 - MPHY
# PSU_SERDES_L3_TXPMA_ST_0_TX_PHY_MODE 0x21
# Opmode Info
#(OFFSET, MASK, VALUE) (0XFD40CB00, 0x000000F0U ,0x000000F0U) */
mask_write 0XFD40CB00 0x000000F0 0x000000F0
# : ENABLE CHICKEN BIT FOR PCIE AND USB
# Register : L0_TM_AUX_0 @ 0XFD4010CC</p>
# Spare- not used
# PSU_SERDES_L0_TM_AUX_0_BIT_2 1
# Spare registers
#(OFFSET, MASK, VALUE) (0XFD4010CC, 0x00000020U ,0x00000020U) */
mask_write 0XFD4010CC 0x00000020 0x00000020
# Register : L2_TM_AUX_0 @ 0XFD4090CC</p>
# Spare- not used
# PSU_SERDES_L2_TM_AUX_0_BIT_2 1
# Spare registers
#(OFFSET, MASK, VALUE) (0XFD4090CC, 0x00000020U ,0x00000020U) */
mask_write 0XFD4090CC 0x00000020 0x00000020
# : ENABLING EYE SURF
# Register : L0_TM_DIG_8 @ 0XFD401074</p>
# Enable Eye Surf
# PSU_SERDES_L0_TM_DIG_8_EYESURF_ENABLE 0x1
# Test modes for Elastic buffer and enabling Eye Surf
#(OFFSET, MASK, VALUE) (0XFD401074, 0x00000010U ,0x00000010U) */
mask_write 0XFD401074 0x00000010 0x00000010
# Register : L1_TM_DIG_8 @ 0XFD405074</p>
# Enable Eye Surf
# PSU_SERDES_L1_TM_DIG_8_EYESURF_ENABLE 0x1
# Test modes for Elastic buffer and enabling Eye Surf
#(OFFSET, MASK, VALUE) (0XFD405074, 0x00000010U ,0x00000010U) */
mask_write 0XFD405074 0x00000010 0x00000010
# Register : L2_TM_DIG_8 @ 0XFD409074</p>
# Enable Eye Surf
# PSU_SERDES_L2_TM_DIG_8_EYESURF_ENABLE 0x1
# Test modes for Elastic buffer and enabling Eye Surf
#(OFFSET, MASK, VALUE) (0XFD409074, 0x00000010U ,0x00000010U) */
mask_write 0XFD409074 0x00000010 0x00000010
# Register : L3_TM_DIG_8 @ 0XFD40D074</p>
# Enable Eye Surf
# PSU_SERDES_L3_TM_DIG_8_EYESURF_ENABLE 0x1
# Test modes for Elastic buffer and enabling Eye Surf
#(OFFSET, MASK, VALUE) (0XFD40D074, 0x00000010U ,0x00000010U) */
mask_write 0XFD40D074 0x00000010 0x00000010
# : ILL SETTINGS FOR GAIN AND LOCK SETTINGS
# Register : L0_TM_MISC2 @ 0XFD40189C</p>
# ILL calib counts BYPASSED with calcode bits
# PSU_SERDES_L0_TM_MISC2_ILL_CAL_BYPASS_COUNTS 0x1
# sampler cal
#(OFFSET, MASK, VALUE) (0XFD40189C, 0x00000080U ,0x00000080U) */
mask_write 0XFD40189C 0x00000080 0x00000080
# Register : L0_TM_IQ_ILL1 @ 0XFD4018F8</p>
# IQ ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 , USB3 : SS
# PSU_SERDES_L0_TM_IQ_ILL1_ILL_BYPASS_IQ_CALCODE_F0 0x64
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD4018F8, 0x000000FFU ,0x00000064U) */
mask_write 0XFD4018F8 0x000000FF 0x00000064
# Register : L0_TM_IQ_ILL2 @ 0XFD4018FC</p>
# IQ ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
# PSU_SERDES_L0_TM_IQ_ILL2_ILL_BYPASS_IQ_CALCODE_F1 0x64
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD4018FC, 0x000000FFU ,0x00000064U) */
mask_write 0XFD4018FC 0x000000FF 0x00000064
# Register : L0_TM_ILL12 @ 0XFD401990</p>
# G1A pll ctr bypass value
# PSU_SERDES_L0_TM_ILL12_G1A_PLL_CTR_BYP_VAL 0x11
# ill pll counter values
#(OFFSET, MASK, VALUE) (0XFD401990, 0x000000FFU ,0x00000011U) */
mask_write 0XFD401990 0x000000FF 0x00000011
# Register : L0_TM_E_ILL1 @ 0XFD401924</p>
# E ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 , USB3 : SS
# PSU_SERDES_L0_TM_E_ILL1_ILL_BYPASS_E_CALCODE_F0 0x4
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD401924, 0x000000FFU ,0x00000004U) */
mask_write 0XFD401924 0x000000FF 0x00000004
# Register : L0_TM_E_ILL2 @ 0XFD401928</p>
# E ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
# PSU_SERDES_L0_TM_E_ILL2_ILL_BYPASS_E_CALCODE_F1 0xFE
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD401928, 0x000000FFU ,0x000000FEU) */
mask_write 0XFD401928 0x000000FF 0x000000FE
# Register : L0_TM_IQ_ILL3 @ 0XFD401900</p>
# IQ ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
# PSU_SERDES_L0_TM_IQ_ILL3_ILL_BYPASS_IQ_CALCODE_F2 0x64
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD401900, 0x000000FFU ,0x00000064U) */
mask_write 0XFD401900 0x000000FF 0x00000064
# Register : L0_TM_E_ILL3 @ 0XFD40192C</p>
# E ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
# PSU_SERDES_L0_TM_E_ILL3_ILL_BYPASS_E_CALCODE_F2 0x0
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD40192C, 0x000000FFU ,0x00000000U) */
mask_write 0XFD40192C 0x000000FF 0x00000000
# Register : L0_TM_ILL8 @ 0XFD401980</p>
# ILL calibration code change wait time
# PSU_SERDES_L0_TM_ILL8_ILL_CAL_ITER_WAIT 0xFF
# ILL cal routine control
#(OFFSET, MASK, VALUE) (0XFD401980, 0x000000FFU ,0x000000FFU) */
mask_write 0XFD401980 0x000000FF 0x000000FF
# Register : L0_TM_IQ_ILL8 @ 0XFD401914</p>
# IQ ILL polytrim bypass value
# PSU_SERDES_L0_TM_IQ_ILL8_ILL_BYPASS_IQ_POLYTRIM_VAL 0xF7
# iqpi polytrim
#(OFFSET, MASK, VALUE) (0XFD401914, 0x000000FFU ,0x000000F7U) */
mask_write 0XFD401914 0x000000FF 0x000000F7
# Register : L0_TM_IQ_ILL9 @ 0XFD401918</p>
# bypass IQ polytrim
# PSU_SERDES_L0_TM_IQ_ILL9_ILL_BYPASS_IQ_POLYTIM 0x1
# enables for lf,constant gm trim and polytirm
#(OFFSET, MASK, VALUE) (0XFD401918, 0x00000001U ,0x00000001U) */
mask_write 0XFD401918 0x00000001 0x00000001
# Register : L0_TM_E_ILL8 @ 0XFD401940</p>
# E ILL polytrim bypass value
# PSU_SERDES_L0_TM_E_ILL8_ILL_BYPASS_E_POLYTRIM_VAL 0xF7
# epi polytrim
#(OFFSET, MASK, VALUE) (0XFD401940, 0x000000FFU ,0x000000F7U) */
mask_write 0XFD401940 0x000000FF 0x000000F7
# Register : L0_TM_E_ILL9 @ 0XFD401944</p>
# bypass E polytrim
# PSU_SERDES_L0_TM_E_ILL9_ILL_BYPASS_E_POLYTIM 0x1
# enables for lf,constant gm trim and polytirm
#(OFFSET, MASK, VALUE) (0XFD401944, 0x00000001U ,0x00000001U) */
mask_write 0XFD401944 0x00000001 0x00000001
# Register : L2_TM_MISC2 @ 0XFD40989C</p>
# ILL calib counts BYPASSED with calcode bits
# PSU_SERDES_L2_TM_MISC2_ILL_CAL_BYPASS_COUNTS 0x1
# sampler cal
#(OFFSET, MASK, VALUE) (0XFD40989C, 0x00000080U ,0x00000080U) */
mask_write 0XFD40989C 0x00000080 0x00000080
# Register : L2_TM_IQ_ILL1 @ 0XFD4098F8</p>
# IQ ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 , USB3 : SS
# PSU_SERDES_L2_TM_IQ_ILL1_ILL_BYPASS_IQ_CALCODE_F0 0x1A
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD4098F8, 0x000000FFU ,0x0000001AU) */
mask_write 0XFD4098F8 0x000000FF 0x0000001A
# Register : L2_TM_IQ_ILL2 @ 0XFD4098FC</p>
# IQ ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
# PSU_SERDES_L2_TM_IQ_ILL2_ILL_BYPASS_IQ_CALCODE_F1 0x1A
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD4098FC, 0x000000FFU ,0x0000001AU) */
mask_write 0XFD4098FC 0x000000FF 0x0000001A
# Register : L2_TM_ILL12 @ 0XFD409990</p>
# G1A pll ctr bypass value
# PSU_SERDES_L2_TM_ILL12_G1A_PLL_CTR_BYP_VAL 0x10
# ill pll counter values
#(OFFSET, MASK, VALUE) (0XFD409990, 0x000000FFU ,0x00000010U) */
mask_write 0XFD409990 0x000000FF 0x00000010
# Register : L2_TM_E_ILL1 @ 0XFD409924</p>
# E ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 , USB3 : SS
# PSU_SERDES_L2_TM_E_ILL1_ILL_BYPASS_E_CALCODE_F0 0xFE
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD409924, 0x000000FFU ,0x000000FEU) */
mask_write 0XFD409924 0x000000FF 0x000000FE
# Register : L2_TM_E_ILL2 @ 0XFD409928</p>
# E ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
# PSU_SERDES_L2_TM_E_ILL2_ILL_BYPASS_E_CALCODE_F1 0x0
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD409928, 0x000000FFU ,0x00000000U) */
mask_write 0XFD409928 0x000000FF 0x00000000
# Register : L2_TM_IQ_ILL3 @ 0XFD409900</p>
# IQ ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
# PSU_SERDES_L2_TM_IQ_ILL3_ILL_BYPASS_IQ_CALCODE_F2 0x1A
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD409900, 0x000000FFU ,0x0000001AU) */
mask_write 0XFD409900 0x000000FF 0x0000001A
# Register : L2_TM_E_ILL3 @ 0XFD40992C</p>
# E ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
# PSU_SERDES_L2_TM_E_ILL3_ILL_BYPASS_E_CALCODE_F2 0x0
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD40992C, 0x000000FFU ,0x00000000U) */
mask_write 0XFD40992C 0x000000FF 0x00000000
# Register : L2_TM_ILL8 @ 0XFD409980</p>
# ILL calibration code change wait time
# PSU_SERDES_L2_TM_ILL8_ILL_CAL_ITER_WAIT 0xFF
# ILL cal routine control
#(OFFSET, MASK, VALUE) (0XFD409980, 0x000000FFU ,0x000000FFU) */
mask_write 0XFD409980 0x000000FF 0x000000FF
# Register : L2_TM_IQ_ILL8 @ 0XFD409914</p>
# IQ ILL polytrim bypass value
# PSU_SERDES_L2_TM_IQ_ILL8_ILL_BYPASS_IQ_POLYTRIM_VAL 0xF7
# iqpi polytrim
#(OFFSET, MASK, VALUE) (0XFD409914, 0x000000FFU ,0x000000F7U) */
mask_write 0XFD409914 0x000000FF 0x000000F7
# Register : L2_TM_IQ_ILL9 @ 0XFD409918</p>
# bypass IQ polytrim
# PSU_SERDES_L2_TM_IQ_ILL9_ILL_BYPASS_IQ_POLYTIM 0x1
# enables for lf,constant gm trim and polytirm
#(OFFSET, MASK, VALUE) (0XFD409918, 0x00000001U ,0x00000001U) */
mask_write 0XFD409918 0x00000001 0x00000001
# Register : L2_TM_E_ILL8 @ 0XFD409940</p>
# E ILL polytrim bypass value
# PSU_SERDES_L2_TM_E_ILL8_ILL_BYPASS_E_POLYTRIM_VAL 0xF7
# epi polytrim
#(OFFSET, MASK, VALUE) (0XFD409940, 0x000000FFU ,0x000000F7U) */
mask_write 0XFD409940 0x000000FF 0x000000F7
# Register : L2_TM_E_ILL9 @ 0XFD409944</p>
# bypass E polytrim
# PSU_SERDES_L2_TM_E_ILL9_ILL_BYPASS_E_POLYTIM 0x1
# enables for lf,constant gm trim and polytirm
#(OFFSET, MASK, VALUE) (0XFD409944, 0x00000001U ,0x00000001U) */
mask_write 0XFD409944 0x00000001 0x00000001
# Register : L3_TM_MISC2 @ 0XFD40D89C</p>
# ILL calib counts BYPASSED with calcode bits
# PSU_SERDES_L3_TM_MISC2_ILL_CAL_BYPASS_COUNTS 0x1
# sampler cal
#(OFFSET, MASK, VALUE) (0XFD40D89C, 0x00000080U ,0x00000080U) */
mask_write 0XFD40D89C 0x00000080 0x00000080
# Register : L3_TM_IQ_ILL1 @ 0XFD40D8F8</p>
# IQ ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 , USB3 : SS
# PSU_SERDES_L3_TM_IQ_ILL1_ILL_BYPASS_IQ_CALCODE_F0 0x7D
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD40D8F8, 0x000000FFU ,0x0000007DU) */
mask_write 0XFD40D8F8 0x000000FF 0x0000007D
# Register : L3_TM_IQ_ILL2 @ 0XFD40D8FC</p>
# IQ ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
# PSU_SERDES_L3_TM_IQ_ILL2_ILL_BYPASS_IQ_CALCODE_F1 0x7D
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD40D8FC, 0x000000FFU ,0x0000007DU) */
mask_write 0XFD40D8FC 0x000000FF 0x0000007D
# Register : L3_TM_ILL12 @ 0XFD40D990</p>
# G1A pll ctr bypass value
# PSU_SERDES_L3_TM_ILL12_G1A_PLL_CTR_BYP_VAL 0x1
# ill pll counter values
#(OFFSET, MASK, VALUE) (0XFD40D990, 0x000000FFU ,0x00000001U) */
mask_write 0XFD40D990 0x000000FF 0x00000001
# Register : L3_TM_E_ILL1 @ 0XFD40D924</p>
# E ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 , USB3 : SS
# PSU_SERDES_L3_TM_E_ILL1_ILL_BYPASS_E_CALCODE_F0 0x9C
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD40D924, 0x000000FFU ,0x0000009CU) */
mask_write 0XFD40D924 0x000000FF 0x0000009C
# Register : L3_TM_E_ILL2 @ 0XFD40D928</p>
# E ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
# PSU_SERDES_L3_TM_E_ILL2_ILL_BYPASS_E_CALCODE_F1 0x39
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD40D928, 0x000000FFU ,0x00000039U) */
mask_write 0XFD40D928 0x000000FF 0x00000039
# Register : L3_TM_ILL11 @ 0XFD40D98C</p>
# G2A_PCIe1 PLL ctr bypass value
# PSU_SERDES_L3_TM_ILL11_G2A_PCIEG1_PLL_CTR_11_8_BYP_VAL 0x2
# ill pll counter values
#(OFFSET, MASK, VALUE) (0XFD40D98C, 0x000000F0U ,0x00000020U) */
mask_write 0XFD40D98C 0x000000F0 0x00000020
# Register : L3_TM_IQ_ILL3 @ 0XFD40D900</p>
# IQ ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
# PSU_SERDES_L3_TM_IQ_ILL3_ILL_BYPASS_IQ_CALCODE_F2 0x7D
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD40D900, 0x000000FFU ,0x0000007DU) */
mask_write 0XFD40D900 0x000000FF 0x0000007D
# Register : L3_TM_E_ILL3 @ 0XFD40D92C</p>
# E ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
# PSU_SERDES_L3_TM_E_ILL3_ILL_BYPASS_E_CALCODE_F2 0x64
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD40D92C, 0x000000FFU ,0x00000064U) */
mask_write 0XFD40D92C 0x000000FF 0x00000064
# Register : L3_TM_ILL8 @ 0XFD40D980</p>
# ILL calibration code change wait time
# PSU_SERDES_L3_TM_ILL8_ILL_CAL_ITER_WAIT 0xFF
# ILL cal routine control
#(OFFSET, MASK, VALUE) (0XFD40D980, 0x000000FFU ,0x000000FFU) */
mask_write 0XFD40D980 0x000000FF 0x000000FF
# Register : L3_TM_IQ_ILL8 @ 0XFD40D914</p>
# IQ ILL polytrim bypass value
# PSU_SERDES_L3_TM_IQ_ILL8_ILL_BYPASS_IQ_POLYTRIM_VAL 0xF7
# iqpi polytrim
#(OFFSET, MASK, VALUE) (0XFD40D914, 0x000000FFU ,0x000000F7U) */
mask_write 0XFD40D914 0x000000FF 0x000000F7
# Register : L3_TM_IQ_ILL9 @ 0XFD40D918</p>
# bypass IQ polytrim
# PSU_SERDES_L3_TM_IQ_ILL9_ILL_BYPASS_IQ_POLYTIM 0x1
# enables for lf,constant gm trim and polytirm
#(OFFSET, MASK, VALUE) (0XFD40D918, 0x00000001U ,0x00000001U) */
mask_write 0XFD40D918 0x00000001 0x00000001
# Register : L3_TM_E_ILL8 @ 0XFD40D940</p>
# E ILL polytrim bypass value
# PSU_SERDES_L3_TM_E_ILL8_ILL_BYPASS_E_POLYTRIM_VAL 0xF7
# epi polytrim
#(OFFSET, MASK, VALUE) (0XFD40D940, 0x000000FFU ,0x000000F7U) */
mask_write 0XFD40D940 0x000000FF 0x000000F7
# Register : L3_TM_E_ILL9 @ 0XFD40D944</p>
# bypass E polytrim
# PSU_SERDES_L3_TM_E_ILL9_ILL_BYPASS_E_POLYTIM 0x1
# enables for lf,constant gm trim and polytirm
#(OFFSET, MASK, VALUE) (0XFD40D944, 0x00000001U ,0x00000001U) */
mask_write 0XFD40D944 0x00000001 0x00000001
# : SYMBOL LOCK AND WAIT
# Register : L0_TM_DIG_21 @ 0XFD4010A8</p>
# pre lock comma count threshold. 2'b 00 : 3, 2'b 01 : 5, 2'b 10 : 10, 2'b 11 : 20
# PSU_SERDES_L0_TM_DIG_21_COMMA_PRE_LOCK_THRESH 0x11
# Control symbol alignment locking - wait counts
#(OFFSET, MASK, VALUE) (0XFD4010A8, 0x00000003U ,0x00000003U) */
mask_write 0XFD4010A8 0x00000003 0x00000003
# Register : L0_TM_DIG_10 @ 0XFD40107C</p>
# CDR lock wait time. (1-16 us). cdr_lock_wait_time = 4'b xxxx + 4'b 0001
# PSU_SERDES_L0_TM_DIG_10_CDR_BIT_LOCK_TIME 0xF
# test control for changing cdr lock wait time
#(OFFSET, MASK, VALUE) (0XFD40107C, 0x0000000FU ,0x0000000FU) */
mask_write 0XFD40107C 0x0000000F 0x0000000F
# : SIOU SETTINGS FOR BYPASS CONTROL,HSRX-DIG
# Register : L0_TM_RST_DLY @ 0XFD4019A4</p>
# Delay apb reset by specified amount
# PSU_SERDES_L0_TM_RST_DLY_APB_RST_DLY 0xFF
# reset delay for apb reset w.r.t pso of hsrx
#(OFFSET, MASK, VALUE) (0XFD4019A4, 0x000000FFU ,0x000000FFU) */
mask_write 0XFD4019A4 0x000000FF 0x000000FF
# Register : L0_TM_ANA_BYP_15 @ 0XFD401038</p>
# Enable Bypass for <7> of TM_ANA_BYPS_15
# PSU_SERDES_L0_TM_ANA_BYP_15_FORCE_UPHY_ENABLE_LOW_LEAKAGE 0x1
# Bypass control for pcs-pma interface. EQ supplies, main master supply and ps for samp c2c
#(OFFSET, MASK, VALUE) (0XFD401038, 0x00000040U ,0x00000040U) */
mask_write 0XFD401038 0x00000040 0x00000040
# Register : L0_TM_ANA_BYP_12 @ 0XFD40102C</p>
# Enable Bypass for <7> of TM_ANA_BYPS_12
# PSU_SERDES_L0_TM_ANA_BYP_12_FORCE_UPHY_PSO_HSRXDIG 0x1
# Bypass control for pcs-pma interface. Hsrx supply, hsrx des, and cdr enable controls
#(OFFSET, MASK, VALUE) (0XFD40102C, 0x00000040U ,0x00000040U) */
mask_write 0XFD40102C 0x00000040 0x00000040
# Register : L1_TM_RST_DLY @ 0XFD4059A4</p>
# Delay apb reset by specified amount
# PSU_SERDES_L1_TM_RST_DLY_APB_RST_DLY 0xFF
# reset delay for apb reset w.r.t pso of hsrx
#(OFFSET, MASK, VALUE) (0XFD4059A4, 0x000000FFU ,0x000000FFU) */
mask_write 0XFD4059A4 0x000000FF 0x000000FF
# Register : L1_TM_ANA_BYP_15 @ 0XFD405038</p>
# Enable Bypass for <7> of TM_ANA_BYPS_15
# PSU_SERDES_L1_TM_ANA_BYP_15_FORCE_UPHY_ENABLE_LOW_LEAKAGE 0x1
# Bypass control for pcs-pma interface. EQ supplies, main master supply and ps for samp c2c
#(OFFSET, MASK, VALUE) (0XFD405038, 0x00000040U ,0x00000040U) */
mask_write 0XFD405038 0x00000040 0x00000040
# Register : L1_TM_ANA_BYP_12 @ 0XFD40502C</p>
# Enable Bypass for <7> of TM_ANA_BYPS_12
# PSU_SERDES_L1_TM_ANA_BYP_12_FORCE_UPHY_PSO_HSRXDIG 0x1
# Bypass control for pcs-pma interface. Hsrx supply, hsrx des, and cdr enable controls
#(OFFSET, MASK, VALUE) (0XFD40502C, 0x00000040U ,0x00000040U) */
mask_write 0XFD40502C 0x00000040 0x00000040
# Register : L2_TM_RST_DLY @ 0XFD4099A4</p>
# Delay apb reset by specified amount
# PSU_SERDES_L2_TM_RST_DLY_APB_RST_DLY 0xFF
# reset delay for apb reset w.r.t pso of hsrx
#(OFFSET, MASK, VALUE) (0XFD4099A4, 0x000000FFU ,0x000000FFU) */
mask_write 0XFD4099A4 0x000000FF 0x000000FF
# Register : L2_TM_ANA_BYP_15 @ 0XFD409038</p>
# Enable Bypass for <7> of TM_ANA_BYPS_15
# PSU_SERDES_L2_TM_ANA_BYP_15_FORCE_UPHY_ENABLE_LOW_LEAKAGE 0x1
# Bypass control for pcs-pma interface. EQ supplies, main master supply and ps for samp c2c
#(OFFSET, MASK, VALUE) (0XFD409038, 0x00000040U ,0x00000040U) */
mask_write 0XFD409038 0x00000040 0x00000040
# Register : L2_TM_ANA_BYP_12 @ 0XFD40902C</p>
# Enable Bypass for <7> of TM_ANA_BYPS_12
# PSU_SERDES_L2_TM_ANA_BYP_12_FORCE_UPHY_PSO_HSRXDIG 0x1
# Bypass control for pcs-pma interface. Hsrx supply, hsrx des, and cdr enable controls
#(OFFSET, MASK, VALUE) (0XFD40902C, 0x00000040U ,0x00000040U) */
mask_write 0XFD40902C 0x00000040 0x00000040
# Register : L3_TM_RST_DLY @ 0XFD40D9A4</p>
# Delay apb reset by specified amount
# PSU_SERDES_L3_TM_RST_DLY_APB_RST_DLY 0xFF
# reset delay for apb reset w.r.t pso of hsrx
#(OFFSET, MASK, VALUE) (0XFD40D9A4, 0x000000FFU ,0x000000FFU) */
mask_write 0XFD40D9A4 0x000000FF 0x000000FF
# Register : L3_TM_ANA_BYP_15 @ 0XFD40D038</p>
# Enable Bypass for <7> of TM_ANA_BYPS_15
# PSU_SERDES_L3_TM_ANA_BYP_15_FORCE_UPHY_ENABLE_LOW_LEAKAGE 0x1
# Bypass control for pcs-pma interface. EQ supplies, main master supply and ps for samp c2c
#(OFFSET, MASK, VALUE) (0XFD40D038, 0x00000040U ,0x00000040U) */
mask_write 0XFD40D038 0x00000040 0x00000040
# Register : L3_TM_ANA_BYP_12 @ 0XFD40D02C</p>
# Enable Bypass for <7> of TM_ANA_BYPS_12
# PSU_SERDES_L3_TM_ANA_BYP_12_FORCE_UPHY_PSO_HSRXDIG 0x1
# Bypass control for pcs-pma interface. Hsrx supply, hsrx des, and cdr enable controls
#(OFFSET, MASK, VALUE) (0XFD40D02C, 0x00000040U ,0x00000040U) */
mask_write 0XFD40D02C 0x00000040 0x00000040
# : GT LANE SETTINGS
# Register : ICM_CFG0 @ 0XFD410010</p>
# Controls UPHY Lane 0 protocol configuration. 0 - PowerDown, 1 - PCIe .0, 2 - Sata0, 3 - USB0, 4 - DP.1, 5 - SGMII0, 6 - Unuse
# , 7 - Unused
# PSU_SERDES_ICM_CFG0_L0_ICM_CFG 1
# Controls UPHY Lane 1 protocol configuration. 0 - PowerDown, 1 - PCIe.1, 2 - Sata1, 3 - USB0, 4 - DP.0, 5 - SGMII1, 6 - Unused
# 7 - Unused
# PSU_SERDES_ICM_CFG0_L1_ICM_CFG 4
# ICM Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD410010, 0x00000077U ,0x00000041U) */
mask_write 0XFD410010 0x00000077 0x00000041
# Register : ICM_CFG1 @ 0XFD410014</p>
# Controls UPHY Lane 2 protocol configuration. 0 - PowerDown, 1 - PCIe.1, 2 - Sata0, 3 - USB0, 4 - DP.1, 5 - SGMII2, 6 - Unused
# 7 - Unused
# PSU_SERDES_ICM_CFG1_L2_ICM_CFG 3
# Controls UPHY Lane 3 protocol configuration. 0 - PowerDown, 1 - PCIe.3, 2 - Sata1, 3 - USB1, 4 - DP.0, 5 - SGMII3, 6 - Unused
# 7 - Unused
# PSU_SERDES_ICM_CFG1_L3_ICM_CFG 2
# ICM Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD410014, 0x00000077U ,0x00000023U) */
mask_write 0XFD410014 0x00000077 0x00000023
# : CHECKING PLL LOCK
# : ENABLE SERIAL DATA MUX DEEMPH
# Register : L1_TXPMD_TM_45 @ 0XFD404CB4</p>
# Enable/disable DP post2 path
# PSU_SERDES_L1_TXPMD_TM_45_DP_TM_TX_DP_ENABLE_POST2_PATH 0x1
# Override enable/disable of DP post2 path
# PSU_SERDES_L1_TXPMD_TM_45_DP_TM_TX_OVRD_DP_ENABLE_POST2_PATH 0x1
# Override enable/disable of DP post1 path
# PSU_SERDES_L1_TXPMD_TM_45_DP_TM_TX_OVRD_DP_ENABLE_POST1_PATH 0x1
# Enable/disable DP main path
# PSU_SERDES_L1_TXPMD_TM_45_DP_TM_TX_DP_ENABLE_MAIN_PATH 0x1
# Override enable/disable of DP main path
# PSU_SERDES_L1_TXPMD_TM_45_DP_TM_TX_OVRD_DP_ENABLE_MAIN_PATH 0x1
# Post or pre or main DP path selection
#(OFFSET, MASK, VALUE) (0XFD404CB4, 0x00000037U ,0x00000037U) */
mask_write 0XFD404CB4 0x00000037 0x00000037
# Register : L1_TX_ANA_TM_118 @ 0XFD4041D8</p>
# Test register force for enabling/disablign TX deemphasis bits <17:0>
# PSU_SERDES_L1_TX_ANA_TM_118_FORCE_TX_DEEMPH_17_0 0x1
# Enable Override of TX deemphasis
#(OFFSET, MASK, VALUE) (0XFD4041D8, 0x00000001U ,0x00000001U) */
mask_write 0XFD4041D8 0x00000001 0x00000001
# Register : L3_TX_ANA_TM_118 @ 0XFD40C1D8</p>
# Test register force for enabling/disablign TX deemphasis bits <17:0>
# PSU_SERDES_L3_TX_ANA_TM_118_FORCE_TX_DEEMPH_17_0 0x1
# Enable Override of TX deemphasis
#(OFFSET, MASK, VALUE) (0XFD40C1D8, 0x00000001U ,0x00000001U) */
mask_write 0XFD40C1D8 0x00000001 0x00000001
# : CDR AND RX EQUALIZATION SETTINGS
# Register : L3_TM_CDR5 @ 0XFD40DC14</p>
# FPHL FSM accumulate cycles
# PSU_SERDES_L3_TM_CDR5_FPHL_FSM_ACC_CYCLES 0x7
# FFL Phase0 int gain aka 2ol SD update rate
# PSU_SERDES_L3_TM_CDR5_FFL_PH0_INT_GAIN 0x6
# Fast phase lock controls -- FSM accumulator cycle control and phase 0 int gain control.
#(OFFSET, MASK, VALUE) (0XFD40DC14, 0x000000FFU ,0x000000E6U) */
mask_write 0XFD40DC14 0x000000FF 0x000000E6
# Register : L3_TM_CDR16 @ 0XFD40DC40</p>
# FFL Phase0 prop gain aka 1ol SD update rate
# PSU_SERDES_L3_TM_CDR16_FFL_PH0_PROP_GAIN 0xC
# Fast phase lock controls -- phase 0 prop gain
#(OFFSET, MASK, VALUE) (0XFD40DC40, 0x0000001FU ,0x0000000CU) */
mask_write 0XFD40DC40 0x0000001F 0x0000000C
# Register : L3_TM_EQ0 @ 0XFD40D94C</p>
# EQ stg 2 controls BYPASSED
# PSU_SERDES_L3_TM_EQ0_EQ_STG2_CTRL_BYP 1
# eq stg1 and stg2 controls
#(OFFSET, MASK, VALUE) (0XFD40D94C, 0x00000020U ,0x00000020U) */
mask_write 0XFD40D94C 0x00000020 0x00000020
# Register : L3_TM_EQ1 @ 0XFD40D950</p>
# EQ STG2 RL PROG
# PSU_SERDES_L3_TM_EQ1_EQ_STG2_RL_PROG 0x2
# EQ stg 2 preamp mode val
# PSU_SERDES_L3_TM_EQ1_EQ_STG2_PREAMP_MODE_VAL 0x1
# eq stg1 and stg2 controls
#(OFFSET, MASK, VALUE) (0XFD40D950, 0x00000007U ,0x00000006U) */
mask_write 0XFD40D950 0x00000007 0x00000006
# : GEM SERDES SETTINGS
# : ENABLE PRE EMPHAIS AND VOLTAGE SWING
# Register : L1_TXPMD_TM_48 @ 0XFD404CC0</p>
# Margining factor value
# PSU_SERDES_L1_TXPMD_TM_48_TM_RESULTANT_MARGINING_FACTOR 0
# Margining factor
#(OFFSET, MASK, VALUE) (0XFD404CC0, 0x0000001FU ,0x00000000U) */
mask_write 0XFD404CC0 0x0000001F 0x00000000
# Register : L1_TX_ANA_TM_18 @ 0XFD404048</p>
# pipe_TX_Deemph. 0: -6dB de-emphasis, 1: -3.5dB de-emphasis, 2 : No de-emphasis, Others: reserved
# PSU_SERDES_L1_TX_ANA_TM_18_PIPE_TX_DEEMPH_7_0 0
# Override for PIPE TX de-emphasis
#(OFFSET, MASK, VALUE) (0XFD404048, 0x000000FFU ,0x00000000U) */
mask_write 0XFD404048 0x000000FF 0x00000000
# Register : L3_TX_ANA_TM_18 @ 0XFD40C048</p>
# pipe_TX_Deemph. 0: -6dB de-emphasis, 1: -3.5dB de-emphasis, 2 : No de-emphasis, Others: reserved
# PSU_SERDES_L3_TX_ANA_TM_18_PIPE_TX_DEEMPH_7_0 0x1
# Override for PIPE TX de-emphasis
#(OFFSET, MASK, VALUE) (0XFD40C048, 0x000000FFU ,0x00000001U) */
mask_write 0XFD40C048 0x000000FF 0x00000001
}
set psu_resetout_init_data {
# : TAKING SERDES PERIPHERAL OUT OF RESET RESET
# : PUTTING USB0 IN RESET
# Register : RST_LPD_TOP @ 0XFF5E023C</p>
# USB 0 reset for control registers
# PSU_CRL_APB_RST_LPD_TOP_USB0_APB_RESET 0X0
# Software control register for the LPD block.
#(OFFSET, MASK, VALUE) (0XFF5E023C, 0x00000400U ,0x00000000U) */
mask_write 0XFF5E023C 0x00000400 0x00000000
# : USB0 PIPE POWER PRESENT
# Register : fpd_power_prsnt @ 0XFF9D0080</p>
# This bit is used to choose between PIPE power present and 1'b1
# PSU_USB3_0_FPD_POWER_PRSNT_OPTION 0X1
# fpd_power_prsnt
#(OFFSET, MASK, VALUE) (0XFF9D0080, 0x00000001U ,0x00000001U) */
mask_write 0XFF9D0080 0x00000001 0x00000001
# Register : fpd_pipe_clk @ 0XFF9D007C</p>
# This bit is used to choose between PIPE clock coming from SerDes and the suspend clk
# PSU_USB3_0_FPD_PIPE_CLK_OPTION 0x0
# fpd_pipe_clk
#(OFFSET, MASK, VALUE) (0XFF9D007C, 0x00000001U ,0x00000000U) */
mask_write 0XFF9D007C 0x00000001 0x00000000
# :
# Register : RST_LPD_TOP @ 0XFF5E023C</p>
# USB 0 sleep circuit reset
# PSU_CRL_APB_RST_LPD_TOP_USB0_HIBERRESET 0X0
# USB 0 reset
# PSU_CRL_APB_RST_LPD_TOP_USB0_CORERESET 0X0
# Software control register for the LPD block.
#(OFFSET, MASK, VALUE) (0XFF5E023C, 0x00000140U ,0x00000000U) */
mask_write 0XFF5E023C 0x00000140 0x00000000
# : PUTTING GEM0 IN RESET
# Register : RST_LPD_IOU0 @ 0XFF5E0230</p>
# GEM 3 reset
# PSU_CRL_APB_RST_LPD_IOU0_GEM3_RESET 0X0
# Software controlled reset for the GEMs
#(OFFSET, MASK, VALUE) (0XFF5E0230, 0x00000008U ,0x00000000U) */
mask_write 0XFF5E0230 0x00000008 0x00000000
# : PUTTING SATA IN RESET
# Register : sata_misc_ctrl @ 0XFD3D0100</p>
# Sata PM clock control select
# PSU_SIOU_SATA_MISC_CTRL_SATA_PM_CLK_SEL 0x3
# Misc Contorls for SATA.This register may only be modified during bootup (while SATA block is disabled)
#(OFFSET, MASK, VALUE) (0XFD3D0100, 0x00000003U ,0x00000003U) */
mask_write 0XFD3D0100 0x00000003 0x00000003
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# Sata block level reset
# PSU_CRF_APB_RST_FPD_TOP_SATA_RESET 0X0
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x00000002U ,0x00000000U) */
mask_write 0XFD1A0100 0x00000002 0x00000000
# : PUTTING PCIE CFG AND BRIDGE IN RESET
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# PCIE config reset
# PSU_CRF_APB_RST_FPD_TOP_PCIE_CFG_RESET 0X0
# PCIE bridge block level reset (AXI interface)
# PSU_CRF_APB_RST_FPD_TOP_PCIE_BRIDGE_RESET 0X0
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x000C0000U ,0x00000000U) */
mask_write 0XFD1A0100 0x000C0000 0x00000000
# : PUTTING DP IN RESET
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# Display Port block level reset (includes DPDMA)
# PSU_CRF_APB_RST_FPD_TOP_DP_RESET 0X0
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x00010000U ,0x00000000U) */
mask_write 0XFD1A0100 0x00010000 0x00000000
# Register : DP_PHY_RESET @ 0XFD4A0200</p>
# Set to '1' to hold the GT in reset. Clear to release.
# PSU_DP_DP_PHY_RESET_GT_RESET 0X0
# Reset the transmitter PHY.
#(OFFSET, MASK, VALUE) (0XFD4A0200, 0x00000002U ,0x00000000U) */
mask_write 0XFD4A0200 0x00000002 0x00000000
# Register : DP_TX_PHY_POWER_DOWN @ 0XFD4A0238</p>
# Two bits per lane. When set to 11, moves the GT to power down mode. When set to 00, GT will be in active state. bits [1:0] -
# ane0 Bits [3:2] - lane 1
# PSU_DP_DP_TX_PHY_POWER_DOWN_POWER_DWN 0X0
# Control PHY Power down
#(OFFSET, MASK, VALUE) (0XFD4A0238, 0x0000000FU ,0x00000000U) */
mask_write 0XFD4A0238 0x0000000F 0x00000000
# : USB0 GFLADJ
# Register : GUSB2PHYCFG @ 0XFE20C200</p>
# USB 2.0 Turnaround Time (USBTrdTim) Sets the turnaround time in PHY clocks. Specifies the response time for a MAC request to
# he Packet FIFO Controller (PFC) to fetch data from the DFIFO (SPRAM). The following are the required values for the minimum S
# C bus frequency of 60 MHz. USB turnaround time is a critical certification criteria when using long cables and five hub level
# . The required values for this field: - 4'h5: When the MAC interface is 16-bit UTMI+. - 4'h9: When the MAC interface is 8-bit
# UTMI+/ULPI. If SoC bus clock is less than 60 MHz, and USB turnaround time is not critical, this field can be set to a larger
# alue. Note: This field is valid only in device mode.
# PSU_USB3_0_XHCI_GUSB2PHYCFG_USBTRDTIM 0x9
# Transceiver Delay: Enables a delay between the assertion of the UTMI/ULPI Transceiver Select signal (for HS) and the assertio
# of the TxValid signal during a HS Chirp. When this bit is set to 1, a delay (of approximately 2.5 us) is introduced from the
# time when the Transceiver Select is set to 2'b00 (HS) to the time the TxValid is driven to 0 for sending the chirp-K. This de
# ay is required for some UTMI/ULPI PHYs. Note: - If you enable the hibernation feature when the device core comes out of power
# off, you must re-initialize this bit with the appropriate value because the core does not save and restore this bit value dur
# ng hibernation. - This bit is valid only in device mode.
# PSU_USB3_0_XHCI_GUSB2PHYCFG_XCVRDLY 0x0
# Enable utmi_sleep_n and utmi_l1_suspend_n (EnblSlpM) The application uses this bit to control utmi_sleep_n and utmi_l1_suspen
# _n assertion to the PHY in the L1 state. - 1'b0: utmi_sleep_n and utmi_l1_suspend_n assertion from the core is not transferre
# to the external PHY. - 1'b1: utmi_sleep_n and utmi_l1_suspend_n assertion from the core is transferred to the external PHY.
# ote: This bit must be set high for Port0 if PHY is used. Note: In Device mode - Before issuing any device endpoint command wh
# n operating in 2.0 speeds, disable this bit and enable it after the command completes. Without disabling this bit, if a comma
# d is issued when the device is in L1 state and if mac2_clk (utmi_clk/ulpi_clk) is gated off, the command will not get complet
# d.
# PSU_USB3_0_XHCI_GUSB2PHYCFG_ENBLSLPM 0x0
# USB 2.0 High-Speed PHY or USB 1.1 Full-Speed Serial Transceiver Select The application uses this bit to select a high-speed P
# Y or a full-speed transceiver. - 1'b0: USB 2.0 high-speed UTMI+ or ULPI PHY. This bit is always 0, with Write Only access. -
# 'b1: USB 1.1 full-speed serial transceiver. This bit is always 1, with Write Only access. If both interface types are selecte
# in coreConsultant (that is, parameters' values are not zero), the application uses this bit to select the active interface i
# active, with Read-Write bit access. Note: USB 1.1 full-serial transceiver is not supported. This bit always reads as 1'b0.
# PSU_USB3_0_XHCI_GUSB2PHYCFG_PHYSEL 0x0
# Full-Speed Serial Interface Select (FSIntf) The application uses this bit to select a unidirectional or bidirectional USB 1.1
# full-speed serial transceiver interface. - 1'b0: 6-pin unidirectional full-speed serial interface. This bit is set to 0 with
# ead Only access. - 1'b1: 3-pin bidirectional full-speed serial interface. This bit is set to 0 with Read Only access. Note: U
# B 1.1 full-speed serial interface is not supported. This bit always reads as 1'b0.
# PSU_USB3_0_XHCI_GUSB2PHYCFG_FSINTF 0x0
# ULPI or UTMI+ Select (ULPI_UTMI_Sel) The application uses this bit to select a UTMI+ or ULPI Interface. - 1'b0: UTMI+ Interfa
# e - 1'b1: ULPI Interface This bit is writable only if UTMI+ and ULPI is specified for High-Speed PHY Interface(s) in coreCons
# ltant configuration (DWC_USB3_HSPHY_INTERFACE = 3). Otherwise, this bit is read-only and the value depends on the interface s
# lected through DWC_USB3_HSPHY_INTERFACE.
# PSU_USB3_0_XHCI_GUSB2PHYCFG_ULPI_UTMI_SEL 0x1
# PHY Interface (PHYIf) If UTMI+ is selected, the application uses this bit to configure the core to support a UTMI+ PHY with a
# 8- or 16-bit interface. - 1'b0: 8 bits - 1'b1: 16 bits ULPI Mode: 1'b0 Note: - All the enabled 2.0 ports must have the same
# lock frequency as Port0 clock frequency (utmi_clk[0]). - The UTMI 8-bit and 16-bit modes cannot be used together for differen
# ports at the same time (that is, all the ports must be in 8-bit mode, or all of them must be in 16-bit mode, at a time). - I
# any of the USB 2.0 ports is selected as ULPI port for operation, then all the USB 2.0 ports must be operating at 60 MHz.
# PSU_USB3_0_XHCI_GUSB2PHYCFG_PHYIF 0x0
# HS/FS Timeout Calibration (TOutCal) The number of PHY clocks, as indicated by the application in this field, is multiplied by
# a bit-time factor; this factor is added to the high-speed/full-speed interpacket timeout duration in the core to account for
# dditional delays introduced by the PHY. This may be required, since the delay introduced by the PHY in generating the linesta
# e condition may vary among PHYs. The USB standard timeout value for high-speed operation is 736 to 816 (inclusive) bit times.
# The USB standard timeout value for full-speed operation is 16 to 18 (inclusive) bit times. The application must program this
# ield based on the speed of connection. The number of bit times added per PHY clock are: High-speed operation: - One 30-MHz PH
# clock = 16 bit times - One 60-MHz PHY clock = 8 bit times Full-speed operation: - One 30-MHz PHY clock = 0.4 bit times - One
# 60-MHz PHY clock = 0.2 bit times - One 48-MHz PHY clock = 0.25 bit times
# PSU_USB3_0_XHCI_GUSB2PHYCFG_TOUTCAL 0x7
# Global USB2 PHY Configuration Register The application must program this register before starting any transactions on either
# he SoC bus or the USB. In Device-only configurations, only one register is needed. In Host mode, per-port registers are imple
# ented.
#(OFFSET, MASK, VALUE) (0XFE20C200, 0x00003FBFU ,0x00002417U) */
mask_write 0XFE20C200 0x00003FBF 0x00002417
# Register : GFLADJ @ 0XFE20C630</p>
# This field indicates the frame length adjustment to be applied when SOF/ITP counter is running on the ref_clk. This register
# alue is used to adjust the ITP interval when GCTL[SOFITPSYNC] is set to '1'; SOF and ITP interval when GLADJ.GFLADJ_REFCLK_LP
# _SEL is set to '1'. This field must be programmed to a non-zero value only if GFLADJ_REFCLK_LPM_SEL is set to '1' or GCTL.SOF
# TPSYNC is set to '1'. The value is derived as follows: FLADJ_REF_CLK_FLADJ=((125000/ref_clk_period_integer)-(125000/ref_clk_p
# riod)) * ref_clk_period where - the ref_clk_period_integer is the integer value of the ref_clk period got by truncating the d
# cimal (fractional) value that is programmed in the GUCTL.REF_CLK_PERIOD field. - the ref_clk_period is the ref_clk period inc
# uding the fractional value. Examples: If the ref_clk is 24 MHz then - GUCTL.REF_CLK_PERIOD = 41 - GFLADJ.GLADJ_REFCLK_FLADJ =
# ((125000/41)-(125000/41.6666))*41.6666 = 2032 (ignoring the fractional value) If the ref_clk is 48 MHz then - GUCTL.REF_CLK_P
# RIOD = 20 - GFLADJ.GLADJ_REFCLK_FLADJ = ((125000/20)-(125000/20.8333))*20.8333 = 5208 (ignoring the fractional value)
# PSU_USB3_0_XHCI_GFLADJ_GFLADJ_REFCLK_FLADJ 0x0
# Global Frame Length Adjustment Register This register provides options for the software to control the core behavior with res
# ect to SOF (Start of Frame) and ITP (Isochronous Timestamp Packet) timers and frame timer functionality. It provides an optio
# to override the fladj_30mhz_reg sideband signal. In addition, it enables running SOF or ITP frame timer counters completely
# rom the ref_clk. This facilitates hardware LPM in host mode with the SOF or ITP counters being run from the ref_clk signal.
#(OFFSET, MASK, VALUE) (0XFE20C630, 0x003FFF00U ,0x00000000U) */
mask_write 0XFE20C630 0x003FFF00 0x00000000
# : UPDATING TWO PCIE REGISTERS DEFAULT VALUES, AS THESE REGISTERS HAVE INCORRECT RESET VALUES IN SILICON.
# Register : ATTR_25 @ 0XFD480064</p>
# If TRUE Completion Timeout Disable is supported. This is required to be TRUE for Endpoint and either setting allowed for Root
# ports. Drives Device Capability 2 [4]; EP=0x0001; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_25_ATTR_CPL_TIMEOUT_DISABLE_SUPPORTED 0X1
# ATTR_25
#(OFFSET, MASK, VALUE) (0XFD480064, 0x00000200U ,0x00000200U) */
mask_write 0XFD480064 0x00000200 0x00000200
# : PCIE SETTINGS
# Register : ATTR_7 @ 0XFD48001C</p>
# Specifies mask/settings for Base Address Register (BAR) 0. If BAR is not to be implemented, set to 32'h00000000. Bits are def
# ned as follows: Memory Space BAR [0] = Mem Space Indicator (set to 0) [2:1] = Type field (10 for 64-bit, 00 for 32-bit) [3] =
# Prefetchable (0 or 1) [31:4] = Mask for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bits to 1, where 2^n=memory a
# erture size in bytes. If 64-bit BAR, set uppermost 63:n bits of \'7bBAR1,BAR0\'7d to 1. IO Space BAR 0] = IO Space Indicator
# set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits of BAR; set uppermost 31:n bits to 1, where 2^n=i/o apert
# re size in bytes.; EP=0x0004; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_7_ATTR_BAR0 0x0
# ATTR_7
#(OFFSET, MASK, VALUE) (0XFD48001C, 0x0000FFFFU ,0x00000000U) */
mask_write 0XFD48001C 0x0000FFFF 0x00000000
# Register : ATTR_8 @ 0XFD480020</p>
# Specifies mask/settings for Base Address Register (BAR) 0. If BAR is not to be implemented, set to 32'h00000000. Bits are def
# ned as follows: Memory Space BAR [0] = Mem Space Indicator (set to 0) [2:1] = Type field (10 for 64-bit, 00 for 32-bit) [3] =
# Prefetchable (0 or 1) [31:4] = Mask for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bits to 1, where 2^n=memory a
# erture size in bytes. If 64-bit BAR, set uppermost 63:n bits of \'7bBAR1,BAR0\'7d to 1. IO Space BAR 0] = IO Space Indicator
# set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits of BAR; set uppermost 31:n bits to 1, where 2^n=i/o apert
# re size in bytes.; EP=0xFFF0; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_8_ATTR_BAR0 0x0
# ATTR_8
#(OFFSET, MASK, VALUE) (0XFD480020, 0x0000FFFFU ,0x00000000U) */
mask_write 0XFD480020 0x0000FFFF 0x00000000
# Register : ATTR_9 @ 0XFD480024</p>
# Specifies mask/settings for Base Address Register (BAR) 1 if BAR0 is a 32-bit BAR, or the upper bits of \'7bBAR1,BAR0\'7d if
# AR0 is a 64-bit BAR. If BAR is not to be implemented, set to 32'h00000000. See BAR0 description if this functions as the uppe
# bits of a 64-bit BAR. Bits are defined as follows: Memory Space BAR (not upper bits of BAR0) [0] = Mem Space Indicator (set
# o 0) [2:1] = Type field (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = Mask for writable bits of BAR; if
# 32-bit BAR, set uppermost 31:n bits to 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost 63:n bits of
# '7bBAR2,BAR1\'7d to 1. IO Space BAR 0] = IO Space Indicator (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable b
# ts of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in bytes.; EP=0xFFFF; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_9_ATTR_BAR1 0x0
# ATTR_9
#(OFFSET, MASK, VALUE) (0XFD480024, 0x0000FFFFU ,0x00000000U) */
mask_write 0XFD480024 0x0000FFFF 0x00000000
# Register : ATTR_10 @ 0XFD480028</p>
# Specifies mask/settings for Base Address Register (BAR) 1 if BAR0 is a 32-bit BAR, or the upper bits of \'7bBAR1,BAR0\'7d if
# AR0 is a 64-bit BAR. If BAR is not to be implemented, set to 32'h00000000. See BAR0 description if this functions as the uppe
# bits of a 64-bit BAR. Bits are defined as follows: Memory Space BAR (not upper bits of BAR0) [0] = Mem Space Indicator (set
# o 0) [2:1] = Type field (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = Mask for writable bits of BAR; if
# 32-bit BAR, set uppermost 31:n bits to 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost 63:n bits of
# '7bBAR2,BAR1\'7d to 1. IO Space BAR 0] = IO Space Indicator (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable b
# ts of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in bytes.; EP=0xFFFF; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_10_ATTR_BAR1 0x0
# ATTR_10
#(OFFSET, MASK, VALUE) (0XFD480028, 0x0000FFFFU ,0x00000000U) */
mask_write 0XFD480028 0x0000FFFF 0x00000000
# Register : ATTR_11 @ 0XFD48002C</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR) 2 if BAR1 is a 32-bit BAR, or the upper bits of \'7b
# AR2,BAR1\'7d if BAR1 is the lower part of a 64-bit BAR. If BAR is not to be implemented, set to 32'h00000000. See BAR1 descri
# tion if this functions as the upper bits of a 64-bit BAR. For a switch or root: This must be set to 00FF_FFFF. For an endpoin
# , bits are defined as follows: Memory Space BAR (not upper bits of BAR1) [0] = Mem Space Indicator (set to 0) [2:1] = Type fi
# ld (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = Mask for writable bits of BAR; if 32-bit BAR, set uppe
# most 31:n bits to 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost 63:n bits of \'7bBAR3,BAR2\'7d to
# . IO Space BAR 0] = IO Space Indicator (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits of BAR; set upper
# ost 31:n bits to 1, where 2^n=i/o aperture size in bytes.; EP=0x0004; RP=0xFFFF
# PSU_PCIE_ATTRIB_ATTR_11_ATTR_BAR2 0xFFFF
# ATTR_11
#(OFFSET, MASK, VALUE) (0XFD48002C, 0x0000FFFFU ,0x0000FFFFU) */
mask_write 0XFD48002C 0x0000FFFF 0x0000FFFF
# Register : ATTR_12 @ 0XFD480030</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR) 2 if BAR1 is a 32-bit BAR, or the upper bits of \'7b
# AR2,BAR1\'7d if BAR1 is the lower part of a 64-bit BAR. If BAR is not to be implemented, set to 32'h00000000. See BAR1 descri
# tion if this functions as the upper bits of a 64-bit BAR. For a switch or root: This must be set to 00FF_FFFF. For an endpoin
# , bits are defined as follows: Memory Space BAR (not upper bits of BAR1) [0] = Mem Space Indicator (set to 0) [2:1] = Type fi
# ld (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = Mask for writable bits of BAR; if 32-bit BAR, set uppe
# most 31:n bits to 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost 63:n bits of \'7bBAR3,BAR2\'7d to
# . IO Space BAR 0] = IO Space Indicator (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits of BAR; set upper
# ost 31:n bits to 1, where 2^n=i/o aperture size in bytes.; EP=0xFFF0; RP=0x00FF
# PSU_PCIE_ATTRIB_ATTR_12_ATTR_BAR2 0xFF
# ATTR_12
#(OFFSET, MASK, VALUE) (0XFD480030, 0x0000FFFFU ,0x000000FFU) */
mask_write 0XFD480030 0x0000FFFF 0x000000FF
# Register : ATTR_13 @ 0XFD480034</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR) 3 if BAR2 is a 32-bit BAR, or the upper bits of \'7b
# AR3,BAR2\'7d if BAR2 is the lower part of a 64-bit BAR. If BAR is not to be implemented, set to 32'h00000000. See BAR2 descri
# tion if this functions as the upper bits of a 64-bit BAR. For a switch or root, this must be set to: FFFF_0000 = IO Limit/Bas
# Registers not implemented FFFF_F0F0 = IO Limit/Base Registers use 16-bit decode FFFF_F1F1 = IO Limit/Base Registers use 32-b
# t decode For an endpoint, bits are defined as follows: Memory Space BAR (not upper bits of BAR2) [0] = Mem Space Indicator (s
# t to 0) [2:1] = Type field (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = Mask for writable bits of BAR;
# if 32-bit BAR, set uppermost 31:n bits to 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost 63:n bits
# f \'7bBAR4,BAR3\'7d to 1. IO Space BAR 0] = IO Space Indicator (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writabl
# bits of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in bytes.; EP=0xFFFF; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_13_ATTR_BAR3 0x0
# ATTR_13
#(OFFSET, MASK, VALUE) (0XFD480034, 0x0000FFFFU ,0x00000000U) */
mask_write 0XFD480034 0x0000FFFF 0x00000000
# Register : ATTR_14 @ 0XFD480038</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR) 3 if BAR2 is a 32-bit BAR, or the upper bits of \'7b
# AR3,BAR2\'7d if BAR2 is the lower part of a 64-bit BAR. If BAR is not to be implemented, set to 32'h00000000. See BAR2 descri
# tion if this functions as the upper bits of a 64-bit BAR. For a switch or root, this must be set to: FFFF_0000 = IO Limit/Bas
# Registers not implemented FFFF_F0F0 = IO Limit/Base Registers use 16-bit decode FFFF_F1F1 = IO Limit/Base Registers use 32-b
# t decode For an endpoint, bits are defined as follows: Memory Space BAR (not upper bits of BAR2) [0] = Mem Space Indicator (s
# t to 0) [2:1] = Type field (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = Mask for writable bits of BAR;
# if 32-bit BAR, set uppermost 31:n bits to 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost 63:n bits
# f \'7bBAR4,BAR3\'7d to 1. IO Space BAR 0] = IO Space Indicator (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writabl
# bits of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in bytes.; EP=0xFFFF; RP=0xFFFF
# PSU_PCIE_ATTRIB_ATTR_14_ATTR_BAR3 0xFFFF
# ATTR_14
#(OFFSET, MASK, VALUE) (0XFD480038, 0x0000FFFFU ,0x0000FFFFU) */
mask_write 0XFD480038 0x0000FFFF 0x0000FFFF
# Register : ATTR_15 @ 0XFD48003C</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR) 4 if BAR3 is a 32-bit BAR, or the upper bits of \'7b
# AR4,BAR3\'7d if BAR3 is the lower part of a 64-bit BAR. If BAR is not to be implemented, set to 32'h00000000. See BAR3 descri
# tion if this functions as the upper bits of a 64-bit BAR. For a switch or root: This must be set to FFF0_FFF0. For an endpoin
# , bits are defined as follows: Memory Space BAR (not upper bits of BAR3) [0] = Mem Space Indicator (set to 0) [2:1] = Type fi
# ld (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = Mask for writable bits of BAR; if 32-bit BAR, set uppe
# most 31:n bits to 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost 63:n bits of \'7bBAR5,BAR4\'7d to
# . IO Space BAR 0] = IO Space Indicator (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits of BAR; set upper
# ost 31:n bits to 1, where 2^n=i/o aperture size in bytes.; EP=0x0004; RP=0xFFF0
# PSU_PCIE_ATTRIB_ATTR_15_ATTR_BAR4 0xFFF0
# ATTR_15
#(OFFSET, MASK, VALUE) (0XFD48003C, 0x0000FFFFU ,0x0000FFF0U) */
mask_write 0XFD48003C 0x0000FFFF 0x0000FFF0
# Register : ATTR_16 @ 0XFD480040</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR) 4 if BAR3 is a 32-bit BAR, or the upper bits of \'7b
# AR4,BAR3\'7d if BAR3 is the lower part of a 64-bit BAR. If BAR is not to be implemented, set to 32'h00000000. See BAR3 descri
# tion if this functions as the upper bits of a 64-bit BAR. For a switch or root: This must be set to FFF0_FFF0. For an endpoin
# , bits are defined as follows: Memory Space BAR (not upper bits of BAR3) [0] = Mem Space Indicator (set to 0) [2:1] = Type fi
# ld (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = Mask for writable bits of BAR; if 32-bit BAR, set uppe
# most 31:n bits to 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost 63:n bits of \'7bBAR5,BAR4\'7d to
# . IO Space BAR 0] = IO Space Indicator (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits of BAR; set upper
# ost 31:n bits to 1, where 2^n=i/o aperture size in bytes.; EP=0xFFF0; RP=0xFFF0
# PSU_PCIE_ATTRIB_ATTR_16_ATTR_BAR4 0xFFF0
# ATTR_16
#(OFFSET, MASK, VALUE) (0XFD480040, 0x0000FFFFU ,0x0000FFF0U) */
mask_write 0XFD480040 0x0000FFFF 0x0000FFF0
# Register : ATTR_17 @ 0XFD480044</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR) 5 if BAR4 is a 32-bit BAR, or the upper bits of \'7b
# AR5,BAR4\'7d if BAR4 is the lower part of a 64-bit BAR. If BAR is not to be implemented, set to 32'h00000000. See BAR4 descri
# tion if this functions as the upper bits of a 64-bit BAR. For a switch or root, this must be set to: 0000_0000 = Prefetchable
# Memory Limit/Base Registers not implemented FFF0_FFF0 = 32-bit Prefetchable Memory Limit/Base implemented FFF1_FFF1 = 64-bit
# refetchable Memory Limit/Base implemented For an endpoint, bits are defined as follows: Memory Space BAR (not upper bits of B
# R4) [0] = Mem Space Indicator (set to 0) [2:1] = Type field (00 for 32-bit; BAR5 cannot be lower part of a 64-bit BAR) [3] =
# refetchable (0 or 1) [31:4] = Mask for writable bits of BAR; set uppermost 31:n bits to 1, where 2^n=memory aperture size in
# ytes. IO Space BAR 0] = IO Space Indicator (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits of BAR; set u
# permost 31:n bits to 1, where 2^n=i/o aperture size in bytes.; EP=0xFFFF; RP=0xFFF1
# PSU_PCIE_ATTRIB_ATTR_17_ATTR_BAR5 0xFFF1
# ATTR_17
#(OFFSET, MASK, VALUE) (0XFD480044, 0x0000FFFFU ,0x0000FFF1U) */
mask_write 0XFD480044 0x0000FFFF 0x0000FFF1
# Register : ATTR_18 @ 0XFD480048</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR) 5 if BAR4 is a 32-bit BAR, or the upper bits of \'7b
# AR5,BAR4\'7d if BAR4 is the lower part of a 64-bit BAR. If BAR is not to be implemented, set to 32'h00000000. See BAR4 descri
# tion if this functions as the upper bits of a 64-bit BAR. For a switch or root, this must be set to: 0000_0000 = Prefetchable
# Memory Limit/Base Registers not implemented FFF0_FFF0 = 32-bit Prefetchable Memory Limit/Base implemented FFF1_FFF1 = 64-bit
# refetchable Memory Limit/Base implemented For an endpoint, bits are defined as follows: Memory Space BAR (not upper bits of B
# R4) [0] = Mem Space Indicator (set to 0) [2:1] = Type field (00 for 32-bit; BAR5 cannot be lower part of a 64-bit BAR) [3] =
# refetchable (0 or 1) [31:4] = Mask for writable bits of BAR; set uppermost 31:n bits to 1, where 2^n=memory aperture size in
# ytes. IO Space BAR 0] = IO Space Indicator (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits of BAR; set u
# permost 31:n bits to 1, where 2^n=i/o aperture size in bytes.; EP=0xFFFF; RP=0xFFF1
# PSU_PCIE_ATTRIB_ATTR_18_ATTR_BAR5 0xFFF1
# ATTR_18
#(OFFSET, MASK, VALUE) (0XFD480048, 0x0000FFFFU ,0x0000FFF1U) */
mask_write 0XFD480048 0x0000FFFF 0x0000FFF1
# Register : ATTR_27 @ 0XFD48006C</p>
# Specifies maximum payload supported. Valid settings are: 0- 128 bytes, 1- 256 bytes, 2- 512 bytes, 3- 1024 bytes. Transferred
# to the Device Capabilities register. The values: 4-2048 bytes, 5- 4096 bytes are not supported; EP=0x0001; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_27_ATTR_DEV_CAP_MAX_PAYLOAD_SUPPORTED 1
# Endpoint L1 Acceptable Latency. Records the latency that the endpoint can withstand on transitions from L1 state to L0 (if L1
# state supported). Valid settings are: 0h less than 1us, 1h 1 to 2us, 2h 2 to 4us, 3h 4 to 8us, 4h 8 to 16us, 5h 16 to 32us, 6
# 32 to 64us, 7h more than 64us. For Endpoints only. Must be 0h for other devices.; EP=0x0007; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_27_ATTR_DEV_CAP_ENDPOINT_L1_LATENCY 0x0
# ATTR_27
#(OFFSET, MASK, VALUE) (0XFD48006C, 0x00000738U ,0x00000100U) */
mask_write 0XFD48006C 0x00000738 0x00000100
# Register : ATTR_50 @ 0XFD4800C8</p>
# Identifies the type of device/port as follows: 0000b PCI Express Endpoint device, 0001b Legacy PCI Express Endpoint device, 0
# 00b Root Port of PCI Express Root Complex, 0101b Upstream Port of PCI Express Switch, 0110b Downstream Port of PCI Express Sw
# tch, 0111b PCIE Express to PCI/PCI-X Bridge, 1000b PCI/PCI-X to PCI Express Bridge. Transferred to PCI Express Capabilities r
# gister. Must be consistent with IS_SWITCH and UPSTREAM_FACING settings.; EP=0x0000; RP=0x0004
# PSU_PCIE_ATTRIB_ATTR_50_ATTR_PCIE_CAP_DEVICE_PORT_TYPE 4
# PCIe Capability's Next Capability Offset pointer to the next item in the capabilities list, or 00h if this is the final capab
# lity.; EP=0x009C; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_50_ATTR_PCIE_CAP_NEXTPTR 0
# ATTR_50
#(OFFSET, MASK, VALUE) (0XFD4800C8, 0x0000FFF0U ,0x00000040U) */
mask_write 0XFD4800C8 0x0000FFF0 0x00000040
# Register : ATTR_105 @ 0XFD4801A4</p>
# Number of credits that should be advertised for Completion data received on Virtual Channel 0. The bytes advertised must be l
# ss than or equal to the bram bytes available. See VC0_RX_RAM_LIMIT; EP=0x0172; RP=0x00CD
# PSU_PCIE_ATTRIB_ATTR_105_ATTR_VC0_TOTAL_CREDITS_CD 0xCD
# ATTR_105
#(OFFSET, MASK, VALUE) (0XFD4801A4, 0x000007FFU ,0x000000CDU) */
mask_write 0XFD4801A4 0x000007FF 0x000000CD
# Register : ATTR_106 @ 0XFD4801A8</p>
# Number of credits that should be advertised for Completion headers received on Virtual Channel 0. The sum of the posted, non
# osted, and completion header credits must be <= 80; EP=0x0048; RP=0x0024
# PSU_PCIE_ATTRIB_ATTR_106_ATTR_VC0_TOTAL_CREDITS_CH 0x24
# Number of credits that should be advertised for Non-Posted headers received on Virtual Channel 0. The number of non posted da
# a credits advertised by the block is equal to the number of non posted header credits. The sum of the posted, non posted, and
# completion header credits must be <= 80; EP=0x0004; RP=0x000C
# PSU_PCIE_ATTRIB_ATTR_106_ATTR_VC0_TOTAL_CREDITS_NPH 0xC
# ATTR_106
#(OFFSET, MASK, VALUE) (0XFD4801A8, 0x00003FFFU ,0x00000624U) */
mask_write 0XFD4801A8 0x00003FFF 0x00000624
# Register : ATTR_107 @ 0XFD4801AC</p>
# Number of credits that should be advertised for Non-Posted data received on Virtual Channel 0. The number of non posted data
# redits advertised by the block is equal to two times the number of non posted header credits if atomic operations are support
# d or is equal to the number of non posted header credits if atomic operations are not supported. The bytes advertised must be
# less than or equal to the bram bytes available. See VC0_RX_RAM_LIMIT; EP=0x0008; RP=0x0018
# PSU_PCIE_ATTRIB_ATTR_107_ATTR_VC0_TOTAL_CREDITS_NPD 0x18
# ATTR_107
#(OFFSET, MASK, VALUE) (0XFD4801AC, 0x000007FFU ,0x00000018U) */
mask_write 0XFD4801AC 0x000007FF 0x00000018
# Register : ATTR_108 @ 0XFD4801B0</p>
# Number of credits that should be advertised for Posted data received on Virtual Channel 0. The bytes advertised must be less
# han or equal to the bram bytes available. See VC0_RX_RAM_LIMIT; EP=0x0020; RP=0x00B5
# PSU_PCIE_ATTRIB_ATTR_108_ATTR_VC0_TOTAL_CREDITS_PD 0xB5
# ATTR_108
#(OFFSET, MASK, VALUE) (0XFD4801B0, 0x000007FFU ,0x000000B5U) */
mask_write 0XFD4801B0 0x000007FF 0x000000B5
# Register : ATTR_109 @ 0XFD4801B4</p>
# Not currently in use. Invert ECRC generated by block when trn_tecrc_gen_n and trn_terrfwd_n are asserted.; EP=0x0000; RP=0x00
# 0
# PSU_PCIE_ATTRIB_ATTR_109_ATTR_TECRC_EP_INV 0x0
# Enables td bit clear and ECRC trim on received TLP's FALSE == don't trim TRUE == trim.; EP=0x0001; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_109_ATTR_RECRC_CHK_TRIM 0x1
# Enables ECRC check on received TLP's 0 == don't check 1 == always check 3 == check if enabled by ECRC check enable bit of AER
# cap structure; EP=0x0003; RP=0x0003
# PSU_PCIE_ATTRIB_ATTR_109_ATTR_RECRC_CHK 0x3
# Index of last packet buffer used by TX TLM (i.e. number of buffers - 1). Calculated from max payload size supported and the n
# mber of brams configured for transmit; EP=0x001C; RP=0x001C
# PSU_PCIE_ATTRIB_ATTR_109_ATTR_VC0_TX_LASTPACKET 0x1c
# Number of credits that should be advertised for Posted headers received on Virtual Channel 0. The sum of the posted, non post
# d, and completion header credits must be <= 80; EP=0x0004; RP=0x0020
# PSU_PCIE_ATTRIB_ATTR_109_ATTR_VC0_TOTAL_CREDITS_PH 0x20
# ATTR_109
#(OFFSET, MASK, VALUE) (0XFD4801B4, 0x0000FFFFU ,0x00007E20U) */
mask_write 0XFD4801B4 0x0000FFFF 0x00007E20
# Register : ATTR_34 @ 0XFD480088</p>
# Specifies values to be transferred to Header Type register. Bit 7 should be set to '0' indicating single-function device. Bit
# 0 identifies header as Type 0 or Type 1, with '0' indicating a Type 0 header.; EP=0x0000; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_34_ATTR_HEADER_TYPE 0x1
# ATTR_34
#(OFFSET, MASK, VALUE) (0XFD480088, 0x000000FFU ,0x00000001U) */
mask_write 0XFD480088 0x000000FF 0x00000001
# Register : ATTR_53 @ 0XFD4800D4</p>
# PM Capability's Next Capability Offset pointer to the next item in the capabilities list, or 00h if this is the final capabil
# ty.; EP=0x0048; RP=0x0060
# PSU_PCIE_ATTRIB_ATTR_53_ATTR_PM_CAP_NEXTPTR 0x60
# ATTR_53
#(OFFSET, MASK, VALUE) (0XFD4800D4, 0x000000FFU ,0x00000060U) */
mask_write 0XFD4800D4 0x000000FF 0x00000060
# Register : ATTR_41 @ 0XFD4800A4</p>
# MSI Per-Vector Masking Capable. The value is transferred to the MSI Control Register[8]. When set, adds Mask and Pending Dwor
# to Cap structure; EP=0x0000; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_41_ATTR_MSI_CAP_PER_VECTOR_MASKING_CAPABLE 0x0
# Indicates that the MSI structures exists. If this is FALSE, then the MSI structure cannot be accessed via either the link or
# he management port.; EP=0x0001; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_41_ATTR_MSI_CAP_ON 0
# MSI Capability's Next Capability Offset pointer to the next item in the capabilities list, or 00h if this is the final capabi
# ity.; EP=0x0060; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_41_ATTR_MSI_CAP_NEXTPTR 0x0
# Indicates that the MSI structures exists. If this is FALSE, then the MSI structure cannot be accessed via either the link or
# he management port.; EP=0x0001; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_41_ATTR_MSI_CAP_ON 0
# ATTR_41
#(OFFSET, MASK, VALUE) (0XFD4800A4, 0x000003FFU ,0x00000000U) */
mask_write 0XFD4800A4 0x000003FF 0x00000000
# Register : ATTR_97 @ 0XFD480184</p>
# Maximum Link Width. Valid settings are: 000001b x1, 000010b x2, 000100b x4, 001000b x8.; EP=0x0004; RP=0x0004
# PSU_PCIE_ATTRIB_ATTR_97_ATTR_LINK_CAP_MAX_LINK_WIDTH 0x1
# Used by LTSSM to set Maximum Link Width. Valid settings are: 000001b [x1], 000010b [x2], 000100b [x4], 001000b [x8].; EP=0x00
# 4; RP=0x0004
# PSU_PCIE_ATTRIB_ATTR_97_ATTR_LTSSM_MAX_LINK_WIDTH 0x1
# ATTR_97
#(OFFSET, MASK, VALUE) (0XFD480184, 0x00000FFFU ,0x00000041U) */
mask_write 0XFD480184 0x00000FFF 0x00000041
# Register : ATTR_100 @ 0XFD480190</p>
# TRUE specifies upstream-facing port. FALSE specifies downstream-facing port.; EP=0x0001; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_100_ATTR_UPSTREAM_FACING 0x0
# ATTR_100
#(OFFSET, MASK, VALUE) (0XFD480190, 0x00000040U ,0x00000000U) */
mask_write 0XFD480190 0x00000040 0x00000000
# Register : ATTR_101 @ 0XFD480194</p>
# Enable the routing of message TLPs to the user through the TRN RX interface. A bit value of 1 enables routing of the message
# LP to the user. Messages are always decoded by the message decoder. Bit 0 - ERR COR, Bit 1 - ERR NONFATAL, Bit 2 - ERR FATAL,
# Bit 3 - INTA Bit 4 - INTB, Bit 5 - INTC, Bit 6 - INTD, Bit 7 PM_PME, Bit 8 - PME_TO_ACK, Bit 9 - unlock, Bit 10 PME_Turn_Off;
# EP=0x0000; RP=0x07FF
# PSU_PCIE_ATTRIB_ATTR_101_ATTR_ENABLE_MSG_ROUTE 0x7FF
# Disable BAR filtering. Does not change the behavior of the bar hit outputs; EP=0x0000; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_101_ATTR_DISABLE_BAR_FILTERING 0x1
# ATTR_101
#(OFFSET, MASK, VALUE) (0XFD480194, 0x0000FFE2U ,0x0000FFE2U) */
mask_write 0XFD480194 0x0000FFE2 0x0000FFE2
# Register : ATTR_37 @ 0XFD480094</p>
# Link Bandwidth notification capability. Indicates support for the link bandwidth notification status and interrupt mechanism.
# Required for Root.; EP=0x0000; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_37_ATTR_LINK_CAP_LINK_BANDWIDTH_NOTIFICATION_CAP 0x1
# Sets the ASPM Optionality Compliance bit, to comply with the 2.1 ASPM Optionality ECN. Transferred to the Link Capabilities r
# gister.; EP=0x0001; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_37_ATTR_LINK_CAP_ASPM_OPTIONALITY 0x1
# ATTR_37
#(OFFSET, MASK, VALUE) (0XFD480094, 0x00004200U ,0x00004200U) */
mask_write 0XFD480094 0x00004200 0x00004200
# Register : ATTR_93 @ 0XFD480174</p>
# Enables the Replay Timer to use the user-defined LL_REPLAY_TIMEOUT value (or combined with the built-in value, depending on L
# _REPLAY_TIMEOUT_FUNC). If FALSE, the built-in value is used.; EP=0x0000; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_93_ATTR_LL_REPLAY_TIMEOUT_EN 0x1
# Sets a user-defined timeout for the Replay Timer to force cause the retransmission of unacknowledged TLPs; refer to LL_REPLAY
# TIMEOUT_EN and LL_REPLAY_TIMEOUT_FUNC to see how this value is used. The unit for this attribute is in symbol times, which is
# 4ns at GEN1 speeds and 2ns at GEN2.; EP=0x0000; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_93_ATTR_LL_REPLAY_TIMEOUT 0x1000
# ATTR_93
#(OFFSET, MASK, VALUE) (0XFD480174, 0x0000FFFFU ,0x00009000U) */
mask_write 0XFD480174 0x0000FFFF 0x00009000
# Register : ID @ 0XFD480200</p>
# Device ID for the the PCIe Cap Structure Device ID field
# PSU_PCIE_ATTRIB_ID_CFG_DEV_ID 0xd021
# Vendor ID for the PCIe Cap Structure Vendor ID field
# PSU_PCIE_ATTRIB_ID_CFG_VEND_ID 0x10ee
# ID
#(OFFSET, MASK, VALUE) (0XFD480200, 0xFFFFFFFFU ,0x10EED021U) */
mask_write 0XFD480200 0xFFFFFFFF 0x10EED021
# Register : SUBSYS_ID @ 0XFD480204</p>
# Subsystem ID for the the PCIe Cap Structure Subsystem ID field
# PSU_PCIE_ATTRIB_SUBSYS_ID_CFG_SUBSYS_ID 0x7
# Subsystem Vendor ID for the PCIe Cap Structure Subsystem Vendor ID field
# PSU_PCIE_ATTRIB_SUBSYS_ID_CFG_SUBSYS_VEND_ID 0x10ee
# SUBSYS_ID
#(OFFSET, MASK, VALUE) (0XFD480204, 0xFFFFFFFFU ,0x10EE0007U) */
mask_write 0XFD480204 0xFFFFFFFF 0x10EE0007
# Register : REV_ID @ 0XFD480208</p>
# Revision ID for the the PCIe Cap Structure
# PSU_PCIE_ATTRIB_REV_ID_CFG_REV_ID 0x0
# REV_ID
#(OFFSET, MASK, VALUE) (0XFD480208, 0x000000FFU ,0x00000000U) */
mask_write 0XFD480208 0x000000FF 0x00000000
# Register : ATTR_24 @ 0XFD480060</p>
# Code identifying basic function, subclass and applicable programming interface. Transferred to the Class Code register.; EP=0
# 8000; RP=0x8000
# PSU_PCIE_ATTRIB_ATTR_24_ATTR_CLASS_CODE 0x400
# ATTR_24
#(OFFSET, MASK, VALUE) (0XFD480060, 0x0000FFFFU ,0x00000400U) */
mask_write 0XFD480060 0x0000FFFF 0x00000400
# Register : ATTR_25 @ 0XFD480064</p>
# Code identifying basic function, subclass and applicable programming interface. Transferred to the Class Code register.; EP=0
# 0005; RP=0x0006
# PSU_PCIE_ATTRIB_ATTR_25_ATTR_CLASS_CODE 0x6
# INTX Interrupt Generation Capable. If FALSE, this will cause Command[10] to be hardwired to 0.; EP=0x0001; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_25_ATTR_CMD_INTX_IMPLEMENTED 0
# ATTR_25
#(OFFSET, MASK, VALUE) (0XFD480064, 0x000001FFU ,0x00000006U) */
mask_write 0XFD480064 0x000001FF 0x00000006
# Register : ATTR_4 @ 0XFD480010</p>
# Indicates that the AER structures exists. If this is FALSE, then the AER structure cannot be accessed via either the link or
# he management port, and AER will be considered to not be present for error management tasks (such as what types of error mess
# ges are sent if an error is detected).; EP=0x0001; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_4_ATTR_AER_CAP_ON 0
# Indicates that the AER structures exists. If this is FALSE, then the AER structure cannot be accessed via either the link or
# he management port, and AER will be considered to not be present for error management tasks (such as what types of error mess
# ges are sent if an error is detected).; EP=0x0001; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_4_ATTR_AER_CAP_ON 0
# ATTR_4
#(OFFSET, MASK, VALUE) (0XFD480010, 0x00001000U ,0x00000000U) */
mask_write 0XFD480010 0x00001000 0x00000000
# Register : ATTR_89 @ 0XFD480164</p>
# VSEC's Next Capability Offset pointer to the next item in the capabilities list, or 000h if this is the final capability.; EP
# 0x0140; RP=0x0140
# PSU_PCIE_ATTRIB_ATTR_89_ATTR_VSEC_CAP_NEXTPTR 0
# ATTR_89
#(OFFSET, MASK, VALUE) (0XFD480164, 0x00001FFEU ,0x00000000U) */
mask_write 0XFD480164 0x00001FFE 0x00000000
# Register : ATTR_79 @ 0XFD48013C</p>
# CRS SW Visibility. Indicates RC can return CRS to SW. Transferred to the Root Capabilities register.; EP=0x0000; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_79_ATTR_ROOT_CAP_CRS_SW_VISIBILITY 1
# ATTR_79
#(OFFSET, MASK, VALUE) (0XFD48013C, 0x00000020U ,0x00000020U) */
mask_write 0XFD48013C 0x00000020 0x00000020
# Register : ATTR_43 @ 0XFD4800AC</p>
# Indicates that the MSIX structures exists. If this is FALSE, then the MSIX structure cannot be accessed via either the link o
# the management port.; EP=0x0001; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_43_ATTR_MSIX_CAP_ON 0
# ATTR_43
#(OFFSET, MASK, VALUE) (0XFD4800AC, 0x00000100U ,0x00000000U) */
mask_write 0XFD4800AC 0x00000100 0x00000000
# Register : ATTR_48 @ 0XFD4800C0</p>
# MSI-X Table Size. This value is transferred to the MSI-X Message Control[10:0] field. Set to 0 if MSI-X is not enabled. Note
# hat the core does not implement the table; that must be implemented in user logic.; EP=0x0003; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_48_ATTR_MSIX_CAP_TABLE_SIZE 0
# ATTR_48
#(OFFSET, MASK, VALUE) (0XFD4800C0, 0x000007FFU ,0x00000000U) */
mask_write 0XFD4800C0 0x000007FF 0x00000000
# Register : ATTR_46 @ 0XFD4800B8</p>
# MSI-X Table Offset. This value is transferred to the MSI-X Table Offset field. Set to 0 if MSI-X is not enabled.; EP=0x0001;
# P=0x0000
# PSU_PCIE_ATTRIB_ATTR_46_ATTR_MSIX_CAP_TABLE_OFFSET 0
# ATTR_46
#(OFFSET, MASK, VALUE) (0XFD4800B8, 0x0000FFFFU ,0x00000000U) */
mask_write 0XFD4800B8 0x0000FFFF 0x00000000
# Register : ATTR_47 @ 0XFD4800BC</p>
# MSI-X Table Offset. This value is transferred to the MSI-X Table Offset field. Set to 0 if MSI-X is not enabled.; EP=0x0000;
# P=0x0000
# PSU_PCIE_ATTRIB_ATTR_47_ATTR_MSIX_CAP_TABLE_OFFSET 0
# ATTR_47
#(OFFSET, MASK, VALUE) (0XFD4800BC, 0x00001FFFU ,0x00000000U) */
mask_write 0XFD4800BC 0x00001FFF 0x00000000
# Register : ATTR_44 @ 0XFD4800B0</p>
# MSI-X Pending Bit Array Offset This value is transferred to the MSI-X PBA Offset field. Set to 0 if MSI-X is not enabled.; EP
# 0x0001; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_44_ATTR_MSIX_CAP_PBA_OFFSET 0
# ATTR_44
#(OFFSET, MASK, VALUE) (0XFD4800B0, 0x0000FFFFU ,0x00000000U) */
mask_write 0XFD4800B0 0x0000FFFF 0x00000000
# Register : ATTR_45 @ 0XFD4800B4</p>
# MSI-X Pending Bit Array Offset This value is transferred to the MSI-X PBA Offset field. Set to 0 if MSI-X is not enabled.; EP
# 0x1000; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_45_ATTR_MSIX_CAP_PBA_OFFSET 0
# ATTR_45
#(OFFSET, MASK, VALUE) (0XFD4800B4, 0x0000FFF8U ,0x00000000U) */
mask_write 0XFD4800B4 0x0000FFF8 0x00000000
# Register : CB @ 0XFD48031C</p>
# DT837748 Enable
# PSU_PCIE_ATTRIB_CB_CB1 0x0
# ECO Register 1
#(OFFSET, MASK, VALUE) (0XFD48031C, 0x00000002U ,0x00000000U) */
mask_write 0XFD48031C 0x00000002 0x00000000
# Register : ATTR_35 @ 0XFD48008C</p>
# Active State PM Support. Indicates the level of active state power management supported by the selected PCI Express Link, enc
# ded as follows: 0 Reserved, 1 L0s entry supported, 2 Reserved, 3 L0s and L1 entry supported.; EP=0x0001; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_35_ATTR_LINK_CAP_ASPM_SUPPORT 0x0
# ATTR_35
#(OFFSET, MASK, VALUE) (0XFD48008C, 0x00003000U ,0x00000000U) */
mask_write 0XFD48008C 0x00003000 0x00000000
# : PUTTING PCIE CONTROL IN RESET
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# PCIE control block level reset
# PSU_CRF_APB_RST_FPD_TOP_PCIE_CTRL_RESET 0X0
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x00020000U ,0x00000000U) */
mask_write 0XFD1A0100 0x00020000 0x00000000
# : CHECK PLL LOCK FOR LANE0
# Register : L0_PLL_STATUS_READ_1 @ 0XFD4023E4</p>
# Status Read value of PLL Lock
# PSU_SERDES_L0_PLL_STATUS_READ_1_PLL_LOCK_STATUS_READ 1
mask_poll 0XFD4023E4 0x00000010
# : CHECK PLL LOCK FOR LANE1
# Register : L1_PLL_STATUS_READ_1 @ 0XFD4063E4</p>
# Status Read value of PLL Lock
# PSU_SERDES_L1_PLL_STATUS_READ_1_PLL_LOCK_STATUS_READ 1
mask_poll 0XFD4063E4 0x00000010
# : CHECK PLL LOCK FOR LANE2
# Register : L2_PLL_STATUS_READ_1 @ 0XFD40A3E4</p>
# Status Read value of PLL Lock
# PSU_SERDES_L2_PLL_STATUS_READ_1_PLL_LOCK_STATUS_READ 1
mask_poll 0XFD40A3E4 0x00000010
# : CHECK PLL LOCK FOR LANE3
# Register : L3_PLL_STATUS_READ_1 @ 0XFD40E3E4</p>
# Status Read value of PLL Lock
# PSU_SERDES_L3_PLL_STATUS_READ_1_PLL_LOCK_STATUS_READ 1
mask_poll 0XFD40E3E4 0x00000010
# : SATA AHCI VENDOR SETTING
# Register : PP2C @ 0XFD0C00AC</p>
# CIBGMN: COMINIT Burst Gap Minimum.
# PSU_SATA_AHCI_VENDOR_PP2C_CIBGMN 0x18
# CIBGMX: COMINIT Burst Gap Maximum.
# PSU_SATA_AHCI_VENDOR_PP2C_CIBGMX 0x40
# CIBGN: COMINIT Burst Gap Nominal.
# PSU_SATA_AHCI_VENDOR_PP2C_CIBGN 0x18
# CINMP: COMINIT Negate Minimum Period.
# PSU_SATA_AHCI_VENDOR_PP2C_CINMP 0x28
# PP2C - Port Phy2Cfg Register. This register controls the configuration of the Phy Control OOB timing for the COMINIT paramete
# s for either Port 0 or Port 1. The Port configured is controlled by the value programmed into the Port Config Register.
#(OFFSET, MASK, VALUE) (0XFD0C00AC, 0xFFFFFFFFU ,0x28184018U) */
mask_write 0XFD0C00AC 0xFFFFFFFF 0x28184018
# Register : PP3C @ 0XFD0C00B0</p>
# CWBGMN: COMWAKE Burst Gap Minimum.
# PSU_SATA_AHCI_VENDOR_PP3C_CWBGMN 0x06
# CWBGMX: COMWAKE Burst Gap Maximum.
# PSU_SATA_AHCI_VENDOR_PP3C_CWBGMX 0x14
# CWBGN: COMWAKE Burst Gap Nominal.
# PSU_SATA_AHCI_VENDOR_PP3C_CWBGN 0x08
# CWNMP: COMWAKE Negate Minimum Period.
# PSU_SATA_AHCI_VENDOR_PP3C_CWNMP 0x0E
# PP3C - Port Phy3CfgRegister. This register controls the configuration of the Phy Control OOB timing for the COMWAKE parameter
# for either Port 0 or Port 1. The Port configured is controlled by the value programmed into the Port Config Register.
#(OFFSET, MASK, VALUE) (0XFD0C00B0, 0xFFFFFFFFU ,0x0E081406U) */
mask_write 0XFD0C00B0 0xFFFFFFFF 0x0E081406
# Register : PP4C @ 0XFD0C00B4</p>
# BMX: COM Burst Maximum.
# PSU_SATA_AHCI_VENDOR_PP4C_BMX 0x13
# BNM: COM Burst Nominal.
# PSU_SATA_AHCI_VENDOR_PP4C_BNM 0x08
# SFD: Signal Failure Detection, if the signal detection de-asserts for a time greater than this then the OOB detector will det
# rmine this is a line idle and cause the PhyInit state machine to exit the Phy Ready State. A value of zero disables the Signa
# Failure Detector. The value is based on the OOB Detector Clock typically (PMCLK Clock Period) * SFD giving a nominal time of
# 500ns based on a 150MHz PMCLK.
# PSU_SATA_AHCI_VENDOR_PP4C_SFD 0x4A
# PTST: Partial to Slumber timer value, specific delay the controller should apply while in partial before entering slumber. Th
# value is bases on the system clock divided by 128, total delay = (Sys Clock Period) * PTST * 128
# PSU_SATA_AHCI_VENDOR_PP4C_PTST 0x06
# PP4C - Port Phy4Cfg Register. This register controls the configuration of the Phy Control Burst timing for the COM parameters
# for either Port 0 or Port 1. The Port configured is controlled by the value programmed into the Port Config Register.
#(OFFSET, MASK, VALUE) (0XFD0C00B4, 0xFFFFFFFFU ,0x064A0813U) */
mask_write 0XFD0C00B4 0xFFFFFFFF 0x064A0813
# Register : PP5C @ 0XFD0C00B8</p>
# RIT: Retry Interval Timer. The calculated value divided by two, the lower digit of precision is not needed.
# PSU_SATA_AHCI_VENDOR_PP5C_RIT 0xC96A4
# RCT: Rate Change Timer, a value based on the 54.2us for which a SATA device will transmit at a fixed rate ALIGNp after OOB ha
# completed, for a fast SERDES it is suggested that this value be 54.2us / 4
# PSU_SATA_AHCI_VENDOR_PP5C_RCT 0x3FF
# PP5C - Port Phy5Cfg Register. This register controls the configuration of the Phy Control Retry Interval timing for either Po
# t 0 or Port 1. The Port configured is controlled by the value programmed into the Port Config Register.
#(OFFSET, MASK, VALUE) (0XFD0C00B8, 0xFFFFFFFFU ,0x3FFC96A4U) */
mask_write 0XFD0C00B8 0xFFFFFFFF 0x3FFC96A4
}
set psu_resetin_init_data {
# : PUTTING SERDES PERIPHERAL IN RESET
# : PUTTING USB0 IN RESET
# Register : RST_LPD_TOP @ 0XFF5E023C</p>
# USB 0 reset for control registers
# PSU_CRL_APB_RST_LPD_TOP_USB0_APB_RESET 0X1
# USB 0 sleep circuit reset
# PSU_CRL_APB_RST_LPD_TOP_USB0_HIBERRESET 0X1
# USB 0 reset
# PSU_CRL_APB_RST_LPD_TOP_USB0_CORERESET 0X1
# Software control register for the LPD block.
#(OFFSET, MASK, VALUE) (0XFF5E023C, 0x00000540U ,0x00000540U) */
mask_write 0XFF5E023C 0x00000540 0x00000540
# : PUTTING GEM0 IN RESET
# Register : RST_LPD_IOU0 @ 0XFF5E0230</p>
# GEM 3 reset
# PSU_CRL_APB_RST_LPD_IOU0_GEM3_RESET 0X1
# Software controlled reset for the GEMs
#(OFFSET, MASK, VALUE) (0XFF5E0230, 0x00000008U ,0x00000008U) */
mask_write 0XFF5E0230 0x00000008 0x00000008
# : PUTTING SATA IN RESET
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# Sata block level reset
# PSU_CRF_APB_RST_FPD_TOP_SATA_RESET 0X1
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x00000002U ,0x00000002U) */
mask_write 0XFD1A0100 0x00000002 0x00000002
# : PUTTING PCIE IN RESET
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# PCIE config reset
# PSU_CRF_APB_RST_FPD_TOP_PCIE_CFG_RESET 0X1
# PCIE control block level reset
# PSU_CRF_APB_RST_FPD_TOP_PCIE_CTRL_RESET 0X1
# PCIE bridge block level reset (AXI interface)
# PSU_CRF_APB_RST_FPD_TOP_PCIE_BRIDGE_RESET 0X1
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x000E0000U ,0x000E0000U) */
mask_write 0XFD1A0100 0x000E0000 0x000E0000
# : PUTTING DP IN RESET
# Register : DP_TX_PHY_POWER_DOWN @ 0XFD4A0238</p>
# Two bits per lane. When set to 11, moves the GT to power down mode. When set to 00, GT will be in active state. bits [1:0] -
# ane0 Bits [3:2] - lane 1
# PSU_DP_DP_TX_PHY_POWER_DOWN_POWER_DWN 0XA
# Control PHY Power down
#(OFFSET, MASK, VALUE) (0XFD4A0238, 0x0000000FU ,0x0000000AU) */
mask_write 0XFD4A0238 0x0000000F 0x0000000A
# Register : DP_PHY_RESET @ 0XFD4A0200</p>
# Set to '1' to hold the GT in reset. Clear to release.
# PSU_DP_DP_PHY_RESET_GT_RESET 0X1
# Reset the transmitter PHY.
#(OFFSET, MASK, VALUE) (0XFD4A0200, 0x00000002U ,0x00000002U) */
mask_write 0XFD4A0200 0x00000002 0x00000002
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# Display Port block level reset (includes DPDMA)
# PSU_CRF_APB_RST_FPD_TOP_DP_RESET 0X1
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x00010000U ,0x00010000U) */
mask_write 0XFD1A0100 0x00010000 0x00010000
}
set psu_ps_pl_isolation_removal_data {
# : PS-PL POWER UP REQUEST
# Register : REQ_PWRUP_INT_EN @ 0XFFD80118</p>
# Power-up Request Interrupt Enable for PL
# PSU_PMU_GLOBAL_REQ_PWRUP_INT_EN_PL 1
# Power-up Request Interrupt Enable Register. Writing a 1 to this location will unmask the interrupt.
#(OFFSET, MASK, VALUE) (0XFFD80118, 0x00800000U ,0x00800000U) */
mask_write 0XFFD80118 0x00800000 0x00800000
# Register : REQ_PWRUP_TRIG @ 0XFFD80120</p>
# Power-up Request Trigger for PL
# PSU_PMU_GLOBAL_REQ_PWRUP_TRIG_PL 1
# Power-up Request Trigger Register. A write of one to this location will generate a power-up request to the PMU.
#(OFFSET, MASK, VALUE) (0XFFD80120, 0x00800000U ,0x00800000U) */
mask_write 0XFFD80120 0x00800000 0x00800000
# : POLL ON PL POWER STATUS
# Register : REQ_PWRUP_STATUS @ 0XFFD80110</p>
# Power-up Request Status for PL
# PSU_PMU_GLOBAL_REQ_PWRUP_STATUS_PL 1
mask_poll 0XFFD80110 0x00800000 0x00000000
}
set psu_ps_pl_reset_config_data {
# : PS PL RESET SEQUENCE
# : FABRIC RESET USING EMIO
# Register : MASK_DATA_5_MSW @ 0XFF0A002C</p>
# Operation is the same as MASK_DATA_0_LSW[MASK_0_LSW]
# PSU_GPIO_MASK_DATA_5_MSW_MASK_5_MSW 0x8000
# Maskable Output Data (GPIO Bank5, EMIO, Upper 16bits)
#(OFFSET, MASK, VALUE) (0XFF0A002C, 0xFFFF0000U ,0x80000000U) */
mask_write 0XFF0A002C 0xFFFF0000 0x80000000
# Register : DIRM_5 @ 0XFF0A0344</p>
# Operation is the same as DIRM_0[DIRECTION_0]
# PSU_GPIO_DIRM_5_DIRECTION_5 0x80000000
# Direction mode (GPIO Bank5, EMIO)
#(OFFSET, MASK, VALUE) (0XFF0A0344, 0xFFFFFFFFU ,0x80000000U) */
mask_write 0XFF0A0344 0xFFFFFFFF 0x80000000
# Register : OEN_5 @ 0XFF0A0348</p>
# Operation is the same as OEN_0[OP_ENABLE_0]
# PSU_GPIO_OEN_5_OP_ENABLE_5 0x80000000
# Output enable (GPIO Bank5, EMIO)
#(OFFSET, MASK, VALUE) (0XFF0A0348, 0xFFFFFFFFU ,0x80000000U) */
mask_write 0XFF0A0348 0xFFFFFFFF 0x80000000
# Register : DATA_5 @ 0XFF0A0054</p>
# Output Data
# PSU_GPIO_DATA_5_DATA_5 0x80000000
# Output Data (GPIO Bank5, EMIO)
#(OFFSET, MASK, VALUE) (0XFF0A0054, 0xFFFFFFFFU ,0x80000000U) */
mask_write 0XFF0A0054 0xFFFFFFFF 0x80000000
mask_delay 0x00000000 1
# : FABRIC RESET USING DATA_5 TOGGLE
# Register : DATA_5 @ 0XFF0A0054</p>
# Output Data
# PSU_GPIO_DATA_5_DATA_5 0X00000000
# Output Data (GPIO Bank5, EMIO)
#(OFFSET, MASK, VALUE) (0XFF0A0054, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFF0A0054 0xFFFFFFFF 0x00000000
mask_delay 0x00000000 1
# : FABRIC RESET USING DATA_5 TOGGLE
# Register : DATA_5 @ 0XFF0A0054</p>
# Output Data
# PSU_GPIO_DATA_5_DATA_5 0x80000000
# Output Data (GPIO Bank5, EMIO)
#(OFFSET, MASK, VALUE) (0XFF0A0054, 0xFFFFFFFFU ,0x80000000U) */
mask_write 0XFF0A0054 0xFFFFFFFF 0x80000000
}
proc psu_init {} {
# save current mode
set saved_mode [configparams force-mem-accesses]
# force accesses
configparams force-mem-accesses 1
variable psu_mio_init_data
variable psu_pll_init_data
variable psu_clock_init_data
variable psu_ddr_init_data
variable psu_peripherals_init_data
variable psu_resetin_init_data
variable psu_resetout_init_data
variable psu_serdes_init_data
variable psu_resetin_init_data
variable psu_peripherals_powerdwn_data
init_ps [subst {$psu_mio_init_data $psu_pll_init_data $psu_clock_init_data $psu_ddr_init_data }]
psu_ddr_phybringup_data
init_ps [subst {$psu_peripherals_init_data $psu_resetin_init_data }]
init_serdes
init_ps [subst {$psu_serdes_init_data $psu_resetout_init_data }]
init_peripheral
init_ps [subst {$psu_peripherals_powerdwn_data }]
# restore original mode
configparams force-mem-accesses $saved_mode
}
proc psu_post_config {} {
variable psu_post_config_data
init_ps [subst {$psu_post_config_data}]
}
proc psu_ps_pl_reset_config {} {
variable psu_ps_pl_reset_config_data
init_ps [subst {$psu_ps_pl_reset_config_data}]
}
proc psu_ps_pl_isolation_removal {} {
variable psu_ps_pl_isolation_removal_data
init_ps [subst {$psu_ps_pl_isolation_removal_data}]
}
proc mask_read { addr mask } {
set curval "0x[string range [mrd -force $addr] end-8 end]"
set maskedval [expr {$curval & $mask}]
return $maskedval
}
proc mask_poll { addr mask } {
set count 1
set curval "0x[string range [mrd -force $addr] end-8 end]"
set maskedval [expr {$curval & $mask}]
while { $maskedval == 0 } {
set curval "0x[string range [mrd -force $addr] end-8 end]"
set maskedval [expr {$curval & $mask}]
set count [ expr { $count + 1 } ]
if { $count == 100000000 } {
puts "Timeout Reached. Mask poll failed at ADDRESS: $addr MASK: $mask"
break
}
}
}
proc psu_mask_write { addr mask value } {
set curval "0x[string range [mrd -force $addr] end-8 end]"
set curval [expr {$curval & ~($mask)}]
set maskedval [expr {$value & $mask}]
set maskedval [expr {$curval | $maskedval}]
mwr -force $addr $maskedval
}
proc serdes_fixcal_code {} {
#/*
# * L3_TM_CALIB_DIG19
# */
mask_write 0xFD40EC4C 0xFFFFFFFF 0x00000020
#/*
# * ICM_CFG0
# */
mask_write 0xFD410010 0xFFFFFFFF 0x00000001
#/*
# * is calibration done, polling on L3_CALIB_DONE_STATUS
# */
mask_poll 0xFD40EF14 0x2
#unsigned int tmp_0_1;
set tmp_0_1 [mrd -force -value 0xFD400B0C]
set tmp_0_1 [expr {$tmp_0_1 & 0x3F}]
set tmp_0_2 [expr {$tmp_0_1 & 0x7}]
set tmp_0_3 [expr {$tmp_0_1 & 0x38}]
#Configure ICM for de-asserting CMN_Resetn
mask_write 0xFD410010 0xFFFFFFFF 0x00000000
mask_write 0xFD410014 0xFFFFFFFF 0x00000000
set tmp_0_2_mod [expr {($tmp_0_2 << 1) | (0x1)}]
set tmp_0_2_mod [expr {$tmp_0_2_mod << 4}]
set tmp_0_3 [expr {$tmp_0_3 >> 3}]
mask_write 0xFD40EC4C 0xFFFFFFFF $tmp_0_3
#L3_TM_CALIB_DIG18
mask_write 0xFD40EC48 0xFFFFFFFF $tmp_0_2_mod
}
proc serdes_enb_coarse_saturation {} {
#/*
# * Enable PLL Coarse Code saturation Logic
# */
mask_write 0xFD402094 0xFFFFFFFF 0x00000010
mask_write 0xFD406094 0xFFFFFFFF 0x00000010
mask_write 0xFD40A094 0xFFFFFFFF 0x00000010
mask_write 0xFD40E094 0xFFFFFFFF 0x00000010
}
proc init_serdes {} {
serdes_fixcal_code
serdes_enb_coarse_saturation
}
proc poll { addr mask data} {
set curval "0x[string range [mrd -force $addr] end-8 end]"
set maskedval [expr {$curval & $mask}]
set count 1
while { $maskedval != $data } {
set curval "0x[string range [mrd -force $addr] end-8 end]"
set maskedval [expr {$curval & $mask}]
set count [ expr { $count + 1 } ]
if { $count == 100000000 } {
puts "Timeout Reached. Mask poll failed at ADDRESS: $addr MASK: $mask"
break
}
}
}
proc init_peripheral {} {
# Release all resets in the IOU */
mask_write 0xFF5E0230 0xFFFFFFFF 0x00000000
mask_write 0xFF5E0234 0xFFFFFFFF 0x00000000
mask_write 0xFF5E0238 0xFFFFFFFF 0x00000000
# Take LPD out of reset except R5 */
set tmp_0_1 [mrd -force -value 0xFF5E023C]
set tmp_0_1 [expr {$tmp_0_1 & 0x7}]
mask_write 0xFF5E023C 0xFFFFFFFF $tmp_0_1
# Take most of FPD out of reset */
mask_write 0XFD1A0100 0xFFFFFFFF 0x00000000
# Making DPDMA as secure
mask_write 0xFD690040 0x00000001 0x00000000
# Making PCIe as secure
mask_write 0xFD690030 0x00000001 0x00000000
}
proc psu_init_xppu_aper_ram {} {
set APER_OFFSET 0xFF981000
set i 0
while { $i <= 400 } {
mask_write $APER_OFFSET 0xF80FFFFF 0x08080000
set APER_OFFSET [ expr $APER_OFFSET + 4 ]
set APER_OFFSET "0x[format %08X [ expr $APER_OFFSET] ]"
set i [ expr { $i + 1 } ]
}
}
proc psu_lpd_protection {} {
set saved_mode [configparams force-mem-accesses]
configparams force-mem-accesses 1
psu_init_xppu_aper_ram;
variable psu_lpd_xppu_data
init_ps [subst {$psu_lpd_xppu_data }]
configparams force-mem-accesses $saved_mode
}
proc psu_ddr_protection {} {
set saved_mode [configparams force-mem-accesses]
configparams force-mem-accesses 1
variable psu_ddr_xmpu0_data
variable psu_ddr_xmpu1_data
variable psu_ddr_xmpu2_data
variable psu_ddr_xmpu3_data
variable psu_ddr_xmpu4_data
variable psu_ddr_xmpu5_data
init_ps [subst {$psu_ddr_xmpu0_data $psu_ddr_xmpu1_data $psu_ddr_xmpu2_data $psu_ddr_xmpu3_data $psu_ddr_xmpu4_data $psu_ddr_xmpu5_data}]
configparams force-mem-accesses $saved_mode
}
proc psu_ocm_protection {} {
set saved_mode [configparams force-mem-accesses]
configparams force-mem-accesses 1
variable psu_ocm_xmpu_data
init_ps [subst {$psu_ocm_xmpu_data }]
configparams force-mem-accesses $saved_mode
}
proc psu_fpd_protection {} {
set saved_mode [configparams force-mem-accesses]
configparams force-mem-accesses 1
variable psu_fpd_xmpu_data
init_ps [subst {$psu_fpd_xmpu_data }]
configparams force-mem-accesses $saved_mode
}
proc psu_protection_lock {} {
set saved_mode [configparams force-mem-accesses]
configparams force-mem-accesses 1
variable psu_protection_lock_data
init_ps [subst {$psu_protection_lock_data }]
configparams force-mem-accesses $saved_mode
}
proc psu_protection {} {
psu_ddr_protection
psu_ocm_protection
psu_fpd_protection
psu_lpd_protection
}
proc psu_ddr_phybringup_data {} {
set dpll_divisor [expr {(0x00003F00 & [mrd -force -value 0xFD1A0080]) >> 0x00000008 }]
psu_mask_write 0xFD1A0080 0x00003F00 0x00000500
psu_mask_write 0xFD080028 0x00000001 0x00000001
mwr -force 0xFD080004 0x00040003
mask_poll 0xFD080030 0x00000001
psu_mask_write 0xFD080684 0x06000000 0x02000000
psu_mask_write 0xFD0806A4 0x06000000 0x02000000
psu_mask_write 0xFD0806C4 0x06000000 0x02000000
psu_mask_write 0xFD0806E4 0x06000000 0x02000000
psu_mask_write 0xFD1A0080 0x3F00 [expr {($dpll_divisor << 8)}]
mwr -force 0xFD080004 0x40040071
mask_poll 0xFD080030 0x00000001
mwr -force 0xFD080004 0x40040001
mask_poll 0xFD080030 0x00000001
poll 0xFD080030 0x0000000F 0x0000000F
psu_mask_write 0xFD080004 0x00000001 0x00000001
#poll for PHY initialization to complete
poll 0xFD080030 0x000000FF 0x0000001F
mwr -force 0xFD0701B0 0x00000001
mwr -force 0xFD070320 0x00000001
#//poll for DDR initialization to complete
poll 0xFD070004 0x0000000F 0x00000001
psu_mask_write 0xFD080014 0x00000040 0x00000040
#Dummy reads before PHY training starts
mrd -force 0xFD070004
#//dummy reads
mrd -force 0xFD070004
#//dummy reads
mrd -force 0xFD070004
#//dummy reads
mrd -force 0xFD070004
#//dummy reads
mrd -force 0xFD070004
#//dummy reads
mrd -force 0xFD070004
#//dummy reads
psu_mask_write 0xFD080004 0xFFFFFFFF 0x0004FE01
#trigger PHY training
poll 0xFD080030 0x00000FFF 0x00000FFF
#Poll PUB_PGSR0 for Trng complete
# Run Vref training in static read mode
mwr -force 0xFD080200 0x100091C7
mwr -force 0xFD080018 0x00F01EF2
mwr -force 0xFD08001C 0x55AA5498
mwr -force 0xFD08142C 0x00041830
mwr -force 0xFD08146C 0x00041830
mwr -force 0xFD0814AC 0x00041830
mwr -force 0xFD0814EC 0x00041830
mwr -force 0xFD08152C 0x00041830
psu_mask_write 0xFD080004 0xFFFFFFFF 0x00060001
#trigger VreFPHY training
poll 0xFD080030 0x00000C01 0x00000C01
#//Poll PUB_PGSR0 for Trng complete
mwr -force 0xFD080200 0x800091C7
mwr -force 0xFD080018 0x00F12302
mwr -force 0xFD08001C 0x55AA5480
mwr -force 0xFD08142C 0x00041800
mwr -force 0xFD08146C 0x00041800
mwr -force 0xFD0814AC 0x00041800
mwr -force 0xFD0814EC 0x00041800
mwr -force 0xFD08152C 0x00041800
psu_mask_write 0xFD080004 0xFFFFFFFF 0x0000C001
#trigger VreFPHY training
poll 0xFD080030 0x00004001 0x00004001
#//Poll PUB_PGSR0 for Trng complete
mwr -force 0xFD070180 0x01000040
mwr -force 0xFD070060 0x00000000
psu_mask_write 0xFD080014 0x00000040 0x00000000
}