blob: f7bdb4905f138ba2c0d84a2b787a2d0d02e55059 [file] [log] [blame]
/**
******************************************************************************
* @file stm32l1xx_rcc.c
* @author MCD Application Team
* @version V1.0.0RC1
* @date 07/02/2010
* @brief This file provides all the RCC firmware functions.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2010 STMicroelectronics</center></h2>
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_rcc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup RCC
* @brief RCC driver modules
* @{
*/
/** @defgroup RCC_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup RCC_Private_Defines
* @{
*/
/* ------------ RCC registers bit address in the alias region ----------- */
#define RCC_OFFSET (RCC_BASE - PERIPH_BASE)
/* --- CR Register ---*/
/* Alias word address of HSION bit */
#define CR_OFFSET (RCC_OFFSET + 0x00)
#define HSION_BitNumber 0x00
#define CR_HSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4))
/* Alias word address of MSION bit */
#define MSION_BitNumber 0x08
#define CR_MSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (MSION_BitNumber * 4))
/* Alias word address of PLLON bit */
#define PLLON_BitNumber 0x18
#define CR_PLLON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4))
/* Alias word address of CSSON bit */
#define CSSON_BitNumber 0x1C
#define CR_CSSON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4))
/* --- CSR Register ---*/
/* Alias word address of LSION bit */
#define CSR_OFFSET (RCC_OFFSET + 0x34)
#define LSION_BitNumber 0x00
#define CSR_LSION_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4))
/* Alias word address of RTCEN bit */
#define RTCEN_BitNumber 0x16
#define CSR_RTCEN_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (RTCEN_BitNumber * 4))
/* Alias word address of RTCRST bit */
#define RTCRST_BitNumber 0x17
#define CSR_RTCRST_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (RTCRST_BitNumber * 4))
/* ---------------------- RCC registers mask -------------------------------- */
/* RCC Flag Mask */
#define FLAG_MASK ((uint8_t)0x1F)
/* CR register byte 3 (Bits[23:16]) base address */
#define CR_BYTE3_ADDRESS ((uint32_t)0x40023802)
/* ICSCR register byte 4 (Bits[31:24]) base address */
#define ICSCR_BYTE4_ADDRESS ((uint32_t)0x40023807)
/* CFGR register byte 3 (Bits[23:16]) base address */
#define CFGR_BYTE3_ADDRESS ((uint32_t)0x4002380A)
/* CFGR register byte 4 (Bits[31:24]) base address */
#define CFGR_BYTE4_ADDRESS ((uint32_t)0x4002380B)
/* CIR register byte 2 (Bits[15:8]) base address */
#define CIR_BYTE2_ADDRESS ((uint32_t)0x4002380D)
/* CIR register byte 3 (Bits[23:16]) base address */
#define CIR_BYTE3_ADDRESS ((uint32_t)0x4002380E)
/* CSR register byte 2 (Bits[15:8]) base address */
#define CSR_BYTE2_ADDRESS ((uint32_t)0x40023835)
/**
* @}
*/
/** @defgroup RCC_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup RCC_Private_Variables
* @{
*/
static __I uint8_t PLLMulTable[9] = {3, 4, 6, 8, 12, 16, 24, 32, 48};
static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
static __I uint8_t MSITable[7] = {0, 0, 0, 0, 1, 2, 4};
/**
* @}
*/
/** @defgroup RCC_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @defgroup RCC_Private_Functions
* @{
*/
/**
* @brief Resets the RCC clock configuration to the default reset state.
* @param None
* @retval None
*/
void RCC_DeInit(void)
{
/* Set MSION bit */
RCC->CR |= (uint32_t)0x00000100;
/* Reset SW[1:0], HPRE[3:0], PPRE1[2:0], PPRE2[2:0], MCOSEL[2:0] and MCOPRE[2:0] bits */
RCC->CFGR &= (uint32_t)0x88FFC00C;
/* Reset HSION, HSEON, CSSON and PLLON bits */
RCC->CR &= (uint32_t)0xEEFEFFFE;
/* Reset HSEBYP bit */
RCC->CR &= (uint32_t)0xFFFBFFFF;
/* Reset PLLSRC, PLLMUL[3:0] and PLLDIV[1:0] bits */
RCC->CFGR &= (uint32_t)0xFF02FFFF;
/* Disable all interrupts */
RCC->CIR = 0x00000000;
}
/**
* @brief Configures the External High Speed oscillator (HSE).
* @note HSE can not be stopped if it is used directly or through the PLL as system clock.
* @param RCC_HSE: specifies the new state of the HSE.
* This parameter can be one of the following values:
* @arg RCC_HSE_OFF: HSE oscillator OFF
* @arg RCC_HSE_ON: HSE oscillator ON
* @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock
* @retval None
*/
void RCC_HSEConfig(uint8_t RCC_HSE)
{
/* Check the parameters */
assert_param(IS_RCC_HSE(RCC_HSE));
/* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/
*(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE_OFF;
/* Set the new HSE configuration -------------------------------------------*/
*(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE;
}
/**
* @brief Waits for HSE start-up.
* @param None
* @retval An ErrorStatus enumuration value:
* - SUCCESS: HSE oscillator is stable and ready to use
* - ERROR: HSE oscillator not yet ready
*/
ErrorStatus RCC_WaitForHSEStartUp(void)
{
__IO uint32_t StartUpCounter = 0;
ErrorStatus status = ERROR;
FlagStatus HSEStatus = RESET;
/* Wait till HSE is ready and if Time out is reached exit */
do
{
HSEStatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY);
StartUpCounter++;
} while((StartUpCounter != HSE_STARTUP_TIMEOUT) && (HSEStatus == RESET));
if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET)
{
status = SUCCESS;
}
else
{
status = ERROR;
}
return (status);
}
/**
* @brief Adjusts the Internal High Speed oscillator (HSI) calibration value.
* @param HSICalibrationValue: specifies the HSI calibration trimming value.
* This parameter must be a number between 0 and 0x1F.
* @retval None
*/
void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_HSI_CALIBRATION_VALUE(HSICalibrationValue));
tmpreg = RCC->ICSCR;
/* Clear HSITRIM[4:0] bits */
tmpreg &= ~RCC_ICSCR_HSITRIM;
/* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */
tmpreg |= (uint32_t)HSICalibrationValue << 8;
/* Store the new value */
RCC->ICSCR = tmpreg;
}
/**
* @brief Adjusts the Internal Multi Speed oscillator (MSI) calibration value.
* @param MSICalibrationValue: specifies the MSI calibration trimming value.
* This parameter must be a number between 0 and 0xFF.
* @retval None
*/
void RCC_AdjustMSICalibrationValue(uint8_t MSICalibrationValue)
{
/* Check the parameters */
assert_param(IS_RCC_MSI_CALIBRATION_VALUE(MSICalibrationValue));
*(__IO uint8_t *) ICSCR_BYTE4_ADDRESS = MSICalibrationValue;
}
/**
* @brief Configures the Internal Multi Speed oscillator (MSI) clock range.
* @param RCC_MSIRange: specifies the MSI Clcok range.
* This parameter must be one of the following values:
* @arg RCC_MSIRange_64KHz: MSI clock is around 64 KHz
* @arg RCC_MSIRange_128KHz: MSI clock is around 128 KHz
* @arg RCC_MSIRange_256KHz: MSI clock is around 256 KHz
* @arg RCC_MSIRange_512KHz: MSI clock is around 512 KHz
* @arg RCC_MSIRange_1MHz: MSI clock is around 1 MHz
* @arg RCC_MSIRange_2MHz: MSI clock is around 2 MHz
* @arg RCC_MSIRange_4MHz: MSI clock is around 4 MHz
* @retval None
*/
void RCC_MSIRangeConfig(uint32_t RCC_MSIRange)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_MSIRange));
tmpreg = RCC->ICSCR;
/* Clear MSIRANGE[2:0] bits */
tmpreg &= ~RCC_ICSCR_MSIRANGE;
/* Set the MSIRANGE[2:0] bits according to RCC_MSIRange value */
tmpreg |= (uint32_t)RCC_MSIRange;
/* Store the new value */
RCC->ICSCR = tmpreg;
}
/**
* @brief Enables or disables the Internal Multi Speed oscillator (MSI).
* @note MSI can not be stopped if it is used directly as system clock.
* @param NewState: new state of the MSI.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_MSICmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_MSION_BB = (uint32_t)NewState;
}
/**
* @brief Enables or disables the Internal High Speed oscillator (HSI).
* @note HSI can not be stopped if it is used directly or through the PLL as system clock.
* @param NewState: new state of the HSI.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_HSICmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_HSION_BB = (uint32_t)NewState;
}
/**
* @brief Configures the PLL clock source and multiplication factor.
* @note This function must be used only when the PLL is disabled.
* @param RCC_PLLSource: specifies the PLL entry clock source.
* This parameter can be one of the following values:
* @arg RCC_PLLSource_HSI: HSI oscillator clock selected as PLL clock entry
* @arg RCC_PLLSource_HSE: HSE oscillator clock selected as PLL clock entry
* @param RCC_PLLMul: specifies the PLL multiplication factor.
* This parameter can be:
* @arg RCC_PLLMul_3: PLL Clock entry multiplied by 3
* @arg RCC_PLLMul_4: PLL Clock entry multiplied by 4
* @arg RCC_PLLMul_6: PLL Clock entry multiplied by 6
* @arg RCC_PLLMul_8: PLL Clock entry multiplied by 8
* @arg RCC_PLLMul_12: PLL Clock entry multiplied by 12
* @arg RCC_PLLMul_16: PLL Clock entry multiplied by 16
* @arg RCC_PLLMul_24: PLL Clock entry multiplied by 24
* @arg RCC_PLLMul_32: PLL Clock entry multiplied by 32
* @arg RCC_PLLMul_48: PLL Clock entry multiplied by 48
* @param RCC_PLLDiv: specifies the PLL division factor.
* This parameter can be:
* @arg RCC_PLLDiv_2: PLL Clock output divided by 2
* @arg RCC_PLLDiv_3: PLL Clock output divided by 3
* @arg RCC_PLLDiv_4: PLL Clock output divided by 4
* @retval None
*/
void RCC_PLLConfig(uint8_t RCC_PLLSource, uint8_t RCC_PLLMul, uint8_t RCC_PLLDiv)
{
/* Check the parameters */
assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource));
assert_param(IS_RCC_PLL_MUL(RCC_PLLMul));
assert_param(IS_RCC_PLL_DIV(RCC_PLLDiv));
*(__IO uint8_t *) CFGR_BYTE3_ADDRESS = (uint8_t)(RCC_PLLSource | ((uint8_t)(RCC_PLLMul | (uint8_t)(RCC_PLLDiv))));
}
/**
* @brief Enables or disables the PLL.
* @note The PLL can not be disabled if it is used as system clock.
* @param NewState: new state of the PLL.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_PLLCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_PLLON_BB = (uint32_t)NewState;
}
/**
* @brief Configures the system clock (SYSCLK).
* @param RCC_SYSCLKSource: specifies the clock source used as system clock.
* This parameter can be one of the following values:
* @arg RCC_SYSCLKSource_MSI: MSI selected as system clock
* @arg RCC_SYSCLKSource_HSI: HSI selected as system clock
* @arg RCC_SYSCLKSource_HSE: HSE selected as system clock
* @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock
* @retval None
*/
void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource));
tmpreg = RCC->CFGR;
/* Clear SW[1:0] bits */
tmpreg &= ~RCC_CFGR_SW;
/* Set SW[1:0] bits according to RCC_SYSCLKSource value */
tmpreg |= RCC_SYSCLKSource;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Returns the clock source used as system clock.
* @param None
* @retval The clock source used as system clock. The returned value can be one
* of the following values:
* - 0x00: MSI used as system clock
* - 0x04: HSI used as system clock
* - 0x08: HSE used as system clock
* - 0x0C: PLL used as system clock
*/
uint8_t RCC_GetSYSCLKSource(void)
{
return ((uint8_t)(RCC->CFGR & RCC_CFGR_SWS));
}
/**
* @brief Configures the AHB clock (HCLK).
* @param RCC_SYSCLK: defines the AHB clock divider. This clock is derived from
* the system clock (SYSCLK).
* This parameter can be one of the following values:
* @arg RCC_SYSCLK_Div1: AHB clock = SYSCLK
* @arg RCC_SYSCLK_Div2: AHB clock = SYSCLK/2
* @arg RCC_SYSCLK_Div4: AHB clock = SYSCLK/4
* @arg RCC_SYSCLK_Div8: AHB clock = SYSCLK/8
* @arg RCC_SYSCLK_Div16: AHB clock = SYSCLK/16
* @arg RCC_SYSCLK_Div64: AHB clock = SYSCLK/64
* @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128
* @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256
* @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512
* @retval None
*/
void RCC_HCLKConfig(uint32_t RCC_SYSCLK)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_HCLK(RCC_SYSCLK));
tmpreg = RCC->CFGR;
/* Clear HPRE[3:0] bits */
tmpreg &= ~RCC_CFGR_HPRE;
/* Set HPRE[3:0] bits according to RCC_SYSCLK value */
tmpreg |= RCC_SYSCLK;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Configures the Low Speed APB clock (PCLK1).
* @param RCC_HCLK: defines the APB1 clock divider. This clock is derived from
* the AHB clock (HCLK).
* This parameter can be one of the following values:
* @arg RCC_HCLK_Div1: APB1 clock = HCLK
* @arg RCC_HCLK_Div2: APB1 clock = HCLK/2
* @arg RCC_HCLK_Div4: APB1 clock = HCLK/4
* @arg RCC_HCLK_Div8: APB1 clock = HCLK/8
* @arg RCC_HCLK_Div16: APB1 clock = HCLK/16
* @retval None
*/
void RCC_PCLK1Config(uint32_t RCC_HCLK)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PCLK(RCC_HCLK));
tmpreg = RCC->CFGR;
/* Clear PPRE1[2:0] bits */
tmpreg &= ~RCC_CFGR_PPRE1;
/* Set PPRE1[2:0] bits according to RCC_HCLK value */
tmpreg |= RCC_HCLK;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Configures the High Speed APB clock (PCLK2).
* @param RCC_HCLK: defines the APB2 clock divider. This clock is derived from
* the AHB clock (HCLK).
* This parameter can be one of the following values:
* @arg RCC_HCLK_Div1: APB2 clock = HCLK
* @arg RCC_HCLK_Div2: APB2 clock = HCLK/2
* @arg RCC_HCLK_Div4: APB2 clock = HCLK/4
* @arg RCC_HCLK_Div8: APB2 clock = HCLK/8
* @arg RCC_HCLK_Div16: APB2 clock = HCLK/16
* @retval None
*/
void RCC_PCLK2Config(uint32_t RCC_HCLK)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_PCLK(RCC_HCLK));
tmpreg = RCC->CFGR;
/* Clear PPRE2[2:0] bits */
tmpreg &= ~RCC_CFGR_PPRE2;
/* Set PPRE2[2:0] bits according to RCC_HCLK value */
tmpreg |= RCC_HCLK << 3;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Enables or disables the specified RCC interrupts.
* @param RCC_IT: specifies the RCC interrupt sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_MSIRDY: MSI ready interrupt
* @param NewState: new state of the specified RCC interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_IT(RCC_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Perform Byte access to RCC_CIR[12:8] bits to enable the selected interrupts */
*(__IO uint8_t *) CIR_BYTE2_ADDRESS |= RCC_IT;
}
else
{
/* Perform Byte access to RCC_CIR[12:8] bits to disable the selected interrupts */
*(__IO uint8_t *) CIR_BYTE2_ADDRESS &= (uint8_t)~RCC_IT;
}
}
/**
* @brief Configures the External Low Speed oscillator (LSE).
* @param RCC_LSE: specifies the new state of the LSE.
* This parameter can be one of the following values:
* @arg RCC_LSE_OFF: LSE oscillator OFF
* @arg RCC_LSE_ON: LSE oscillator ON
* @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock
* @retval None
*/
void RCC_LSEConfig(uint8_t RCC_LSE)
{
/* Check the parameters */
assert_param(IS_RCC_LSE(RCC_LSE));
/* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/
*(__IO uint8_t *) CSR_BYTE2_ADDRESS = RCC_LSE_OFF;
/* Set the new LSE configuration -------------------------------------------*/
*(__IO uint8_t *) CSR_BYTE2_ADDRESS = RCC_LSE;
}
/**
* @brief Enables or disables the Internal Low Speed oscillator (LSI).
* @note LSI can not be disabled if the IWDG is running.
* @param NewState: new state of the LSI.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_LSICmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState;
}
/**
* @brief Configures the RTC and LCD clock (RTCCLK / LCDCLK).
* @note
* - Once the RTC clock is selected it can't be changed unless the RTC is
* reset using RCC_RTCResetCmd function.
* - This RTC clock (RTCCLK) is used to clock the LCD (LCDCLK).
* @param RCC_RTCCLKSource: specifies the RTC clock source.
* This parameter can be one of the following values:
* @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock
* @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock
* @arg RCC_RTCCLKSource_HSE_Div2: HSE divided by 2 selected as RTC clock
* @arg RCC_RTCCLKSource_HSE_Div4: HSE divided by 4 selected as RTC clock
* @arg RCC_RTCCLKSource_HSE_Div8: HSE divided by 8 selected as RTC clock
* @arg RCC_RTCCLKSource_HSE_Div16: HSE divided by 16 selected as RTC clock
* @retval None
*/
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource));
if ((RCC_RTCCLKSource & RCC_CSR_RTCSEL_HSE) == RCC_CSR_RTCSEL_HSE)
{
/* If HSE is selected as RTC clock source, configure HSE division factor for RTC clock */
tmpreg = RCC->CR;
/* Clear RTCPRE[1:0] bits */
tmpreg &= ~RCC_CR_RTCPRE;
/* Configure HSE division factor for RTC clock */
tmpreg |= (RCC_RTCCLKSource & RCC_CR_RTCPRE);
/* Store the new value */
RCC->CR = tmpreg;
}
RCC->CSR &= ~RCC_CSR_RTCSEL;
/* Select the RTC clock source */
RCC->CSR |= (RCC_RTCCLKSource & RCC_CSR_RTCSEL);
}
/**
* @brief Enables or disables the RTC clock.
* @note This function must be used only after the RTC clock was selected using the
* RCC_RTCCLKConfig function.
* @param NewState: new state of the RTC clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_RTCCLKCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CSR_RTCEN_BB = (uint32_t)NewState;
}
/**
* @brief Forces or releases the RTC peripheral reset.
* @param NewState: new state of the RTC reset.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_RTCResetCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CSR_RTCRST_BB = (uint32_t)NewState;
}
/**
* @brief Returns the frequencies of different on chip clocks.
* @param RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold
* the clocks frequencies.
* @retval None
*/
void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)
{
uint32_t tmp = 0, pllmul = 0, plldiv = 0, pllsource = 0, presc = 0, msirange = 0;
/* Get SYSCLK source -------------------------------------------------------*/
tmp = RCC->CFGR & RCC_CFGR_SWS;
switch (tmp)
{
case 0x00: /* MSI used as system clock */
msirange = (RCC->ICSCR & RCC_ICSCR_MSIRANGE ) >> 13;
RCC_Clocks->SYSCLK_Frequency = (((1 << msirange) * 64000) - (MSITable[msirange] * 24000));
break;
case 0x04: /* HSI used as system clock */
RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
break;
case 0x08: /* HSE used as system clock */
RCC_Clocks->SYSCLK_Frequency = HSE_VALUE;
break;
case 0x0C: /* PLL used as system clock */
/* Get PLL clock source and multiplication factor ----------------------*/
pllmul = RCC->CFGR & RCC_CFGR_PLLMUL;
plldiv = RCC->CFGR & RCC_CFGR_PLLDIV;
pllmul = PLLMulTable[(pllmul >> 18)];
plldiv = (plldiv >> 22) + 1;
pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
if (pllsource == 0x00)
{
/* HSI oscillator clock selected as PLL clock entry */
RCC_Clocks->SYSCLK_Frequency = (((HSI_VALUE) * pllmul) / plldiv);
}
else
{
/* HSE selected as PLL clock entry */
RCC_Clocks->SYSCLK_Frequency = (((HSE_VALUE) * pllmul) / plldiv);
}
break;
default:
RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
break;
}
/* Compute HCLK, PCLK1, PCLK2 and ADCCLK clocks frequencies ----------------*/
/* Get HCLK prescaler */
tmp = RCC->CFGR & RCC_CFGR_HPRE;
tmp = tmp >> 4;
presc = APBAHBPrescTable[tmp];
/* HCLK clock frequency */
RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc;
/* Get PCLK1 prescaler */
tmp = RCC->CFGR & RCC_CFGR_PPRE1;
tmp = tmp >> 8;
presc = APBAHBPrescTable[tmp];
/* PCLK1 clock frequency */
RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
/* Get PCLK2 prescaler */
tmp = RCC->CFGR & RCC_CFGR_PPRE2;
tmp = tmp >> 11;
presc = APBAHBPrescTable[tmp];
/* PCLK2 clock frequency */
RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
}
/**
* @brief Enables or disables the AHB peripheral clock.
* @param RCC_AHBPeriph: specifies the AHB peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_AHBPeriph_GPIOA
* @arg RCC_AHBPeriph_GPIOB
* @arg RCC_AHBPeriph_GPIOC
* @arg RCC_AHBPeriph_GPIOD
* @arg RCC_AHBPeriph_GPIOE
* @arg RCC_AHBPeriph_GPIOH
* @arg RCC_AHBPeriph_CRC
* @arg RCC_AHBPeriph_FLITF (has effect only when the Flash memory is in power down mode)
* @arg RCC_AHBPeriph_DMA1
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->AHBENR |= RCC_AHBPeriph;
}
else
{
RCC->AHBENR &= ~RCC_AHBPeriph;
}
}
/**
* @brief Enables or disables the High Speed APB (APB2) peripheral clock.
* @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB2Periph_SYSCFG
* @arg RCC_APB2Periph_TIM9
* @arg RCC_APB2Periph_TIM10
* @arg RCC_APB2Periph_TIM11
* @arg RCC_APB2Periph_ADC1
* @arg RCC_APB2Periph_SPI1
* @arg RCC_APB2Periph_USART1
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB2ENR |= RCC_APB2Periph;
}
else
{
RCC->APB2ENR &= ~RCC_APB2Periph;
}
}
/**
* @brief Enables or disables the Low Speed APB (APB1) peripheral clock.
* @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB1Periph_TIM2
* @arg RCC_APB1Periph_TIM3
* @arg RCC_APB1Periph_TIM4
* @arg RCC_APB1Periph_TIM6
* @arg RCC_APB1Periph_TIM7
* @arg RCC_APB1Periph_LCD
* @arg RCC_APB1Periph_WWDG
* @arg RCC_APB1Periph_SPI2
* @arg RCC_APB1Periph_USART2
* @arg RCC_APB1Periph_USART3
* @arg RCC_APB1Periph_I2C1
* @arg RCC_APB1Periph_I2C2
* @arg RCC_APB1Periph_USB
* @arg RCC_APB1Periph_PWR
* @arg RCC_APB1Periph_DAC
* @arg RCC_APB1Periph_COMP
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB1ENR |= RCC_APB1Periph;
}
else
{
RCC->APB1ENR &= ~RCC_APB1Periph;
}
}
/**
* @brief Forces or releases AHB peripheral reset.
* @param RCC_AHBPeriph: specifies the AHB peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_AHBPeriph_GPIOA
* @arg RCC_AHBPeriph_GPIOB
* @arg RCC_AHBPeriph_GPIOC
* @arg RCC_AHBPeriph_GPIOD
* @arg RCC_AHBPeriph_GPIOE
* @arg RCC_AHBPeriph_GPIOH
* @arg RCC_AHBPeriph_CRC
* @arg RCC_AHBPeriph_FLITF (has effect only when the Flash memory is in power down mode)
* @arg RCC_AHBPeriph_DMA1
* @param NewState: new state of the specified peripheral reset.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->AHBRSTR |= RCC_AHBPeriph;
}
else
{
RCC->AHBRSTR &= ~RCC_AHBPeriph;
}
}
/**
* @brief Forces or releases High Speed APB (APB2) peripheral reset.
* @param RCC_APB2Periph: specifies the APB2 peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_APB2Periph_SYSCFG
* @arg RCC_APB2Periph_TIM9
* @arg RCC_APB2Periph_TIM10
* @arg RCC_APB2Periph_TIM11
* @arg RCC_APB2Periph_ADC1
* @arg RCC_APB2Periph_SPI1
* @arg RCC_APB2Periph_USART1
* @param NewState: new state of the specified peripheral reset.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB2RSTR |= RCC_APB2Periph;
}
else
{
RCC->APB2RSTR &= ~RCC_APB2Periph;
}
}
/**
* @brief Forces or releases Low Speed APB (APB1) peripheral reset.
* @param RCC_APB1Periph: specifies the APB1 peripheral to reset.
* This parameter can be any combination of the following values:
* @arg RCC_APB1Periph_TIM2
* @arg RCC_APB1Periph_TIM3
* @arg RCC_APB1Periph_TIM4
* @arg RCC_APB1Periph_TIM6
* @arg RCC_APB1Periph_TIM7
* @arg RCC_APB1Periph_LCD
* @arg RCC_APB1Periph_WWDG
* @arg RCC_APB1Periph_SPI2
* @arg RCC_APB1Periph_USART2
* @arg RCC_APB1Periph_USART3
* @arg RCC_APB1Periph_I2C1
* @arg RCC_APB1Periph_I2C2
* @arg RCC_APB1Periph_USB
* @arg RCC_APB1Periph_PWR
* @arg RCC_APB1Periph_DAC
* @arg RCC_APB1Periph_COMP
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB1RSTR |= RCC_APB1Periph;
}
else
{
RCC->APB1RSTR &= ~RCC_APB1Periph;
}
}
/**
* @brief Enables or disables the AHB peripheral clock during Low Power (SLEEP) mode.
* @param RCC_AHBPeriph: specifies the AHB peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_AHBPeriph_GPIOA
* @arg RCC_AHBPeriph_GPIOB
* @arg RCC_AHBPeriph_GPIOC
* @arg RCC_AHBPeriph_GPIOD
* @arg RCC_AHBPeriph_GPIOE
* @arg RCC_AHBPeriph_GPIOH
* @arg RCC_AHBPeriph_CRC
* @arg RCC_AHBPeriph_FLITF (has effect only when the Flash memory is in power down mode)
* @arg RCC_AHBPeriph_SRAM
* @arg RCC_AHBPeriph_DMA1
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_AHBPeriphClockLPModeCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_AHB_LPMODE_PERIPH(RCC_AHBPeriph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->AHBLPENR |= RCC_AHBPeriph;
}
else
{
RCC->AHBLPENR &= ~RCC_AHBPeriph;
}
}
/**
* @brief Enables or disables the APB2 peripheral clock during Low Power (SLEEP) mode.
* @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB2Periph_SYSCFG
* @arg RCC_APB2Periph_TIM9
* @arg RCC_APB2Periph_TIM10
* @arg RCC_APB2Periph_TIM11
* @arg RCC_APB2Periph_ADC1
* @arg RCC_APB2Periph_SPI1
* @arg RCC_APB2Periph_USART1
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB2PeriphClockLPModeCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB2LPENR |= RCC_APB2Periph;
}
else
{
RCC->APB2LPENR &= ~RCC_APB2Periph;
}
}
/**
* @brief Enables or disables the APB1 peripheral clock during Low Power (SLEEP) mode.
* @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
* This parameter can be any combination of the following values:
* @arg RCC_APB1Periph_TIM2
* @arg RCC_APB1Periph_TIM3
* @arg RCC_APB1Periph_TIM4
* @arg RCC_APB1Periph_TIM6
* @arg RCC_APB1Periph_TIM7
* @arg RCC_APB1Periph_LCD
* @arg RCC_APB1Periph_WWDG
* @arg RCC_APB1Periph_SPI2
* @arg RCC_APB1Periph_USART2
* @arg RCC_APB1Periph_USART3
* @arg RCC_APB1Periph_I2C1
* @arg RCC_APB1Periph_I2C2
* @arg RCC_APB1Periph_USB
* @arg RCC_APB1Periph_PWR
* @arg RCC_APB1Periph_DAC
* @arg RCC_APB1Periph_COMP
* @param NewState: new state of the specified peripheral clock.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_APB1PeriphClockLPModeCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
RCC->APB1LPENR |= RCC_APB1Periph;
}
else
{
RCC->APB1LPENR &= ~RCC_APB1Periph;
}
}
/**
* @brief Enables or disables the Clock Security System.
* @param NewState: new state of the Clock Security System..
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RCC_ClockSecuritySystemCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState;
}
/**
* @brief Selects the clock source to output on MCO pin.
* @param RCC_MCOSource: specifies the clock source to output.
* This parameter can be one of the following values:
* @arg RCC_MCOSource_NoClock: No clock selected
* @arg RCC_MCOSource_SYSCLK: System clock selected
* @arg RCC_MCOSource_HSI: HSI oscillator clock selected
* @arg RCC_MCOSource_MSI: MSI oscillator clock selected
* @arg RCC_MCOSource_HSE: HSE oscillator clock selected
* @arg RCC_MCOSource_PLLCLK: PLL clock selected
* @arg RCC_MCOSource_LSI: LSI clock selected
* @arg RCC_MCOSource_LSE: LSE clock selected
* @param RCC_MCODiv: specifies the MCO prescaler.
* This parameter can be one of the following values:
* @arg RCC_MCODiv_1: no division applied to MCO clock
* @arg RCC_MCODiv_2: division by 2 applied to MCO clock
* @arg RCC_MCODiv_4: division by 4 applied to MCO clock
* @arg RCC_MCODiv_8: division by 8 applied to MCO clock
* @arg RCC_MCODiv_16: division by 16 applied to MCO clock
* @retval None
*/
void RCC_MCOConfig(uint8_t RCC_MCOSource, uint8_t RCC_MCODiv)
{
/* Check the parameters */
assert_param(IS_RCC_MCO_SOURCE(RCC_MCOSource));
assert_param(IS_RCC_MCO_DIV(RCC_MCODiv));
/* Select MCO clock source and prescaler */
*(__IO uint8_t *) CFGR_BYTE4_ADDRESS = RCC_MCOSource | RCC_MCODiv;
}
/**
* @brief Checks whether the specified RCC flag is set or not.
* @param RCC_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
* @arg RCC_FLAG_MSIRDY: MSI oscillator clock ready
* @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
* @arg RCC_FLAG_PLLRDY: PLL clock ready
* @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
* @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
* @arg RCC_FLAG_OBLRST: Option Byte Loader (OBL) reset
* @arg RCC_FLAG_PINRST: Pin reset
* @arg RCC_FLAG_PORRST: POR/PDR reset
* @arg RCC_FLAG_SFTRST: Software reset
* @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
* @arg RCC_FLAG_WWDGRST: Window Watchdog reset
* @arg RCC_FLAG_LPWRRST: Low Power reset
* @retval The new state of RCC_FLAG (SET or RESET).
*/
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
{
uint32_t tmp = 0;
uint32_t statusreg = 0;
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_RCC_FLAG(RCC_FLAG));
/* Get the RCC register index */
tmp = RCC_FLAG >> 5;
if (tmp == 1) /* The flag to check is in CR register */
{
statusreg = RCC->CR;
}
else /* The flag to check is in CSR register (tmp == 2) */
{
statusreg = RCC->CSR;
}
/* Get the flag position */
tmp = RCC_FLAG & FLAG_MASK;
if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the flag status */
return bitstatus;
}
/**
* @brief Clears the RCC reset flags.
* The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_PORRST,
* RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST.
* @param None
* @retval None
*/
void RCC_ClearFlag(void)
{
/* Set RMVF bit to clear the reset flags */
RCC->CSR |= RCC_CSR_RMVF;
}
/**
* @brief Checks whether the specified RCC interrupt has occurred or not.
* @param RCC_IT: specifies the RCC interrupt source to check.
* This parameter can be one of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_MSIRDY: MSI ready interrupt
* @arg RCC_IT_CSS: Clock Security System interrupt
* @retval The new state of RCC_IT (SET or RESET).
*/
ITStatus RCC_GetITStatus(uint8_t RCC_IT)
{
ITStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_RCC_GET_IT(RCC_IT));
/* Check the status of the specified RCC interrupt */
if ((RCC->CIR & RCC_IT) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
/* Return the RCC_IT status */
return bitstatus;
}
/**
* @brief Clears the RCC's interrupt pending bits.
* @param RCC_IT: specifies the interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_MSIRDY: MSI ready interrupt
* @arg RCC_IT_CSS: Clock Security System interrupt
* @retval None
*/
void RCC_ClearITPendingBit(uint8_t RCC_IT)
{
/* Check the parameters */
assert_param(IS_RCC_CLEAR_IT(RCC_IT));
/* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt
pending bits */
*(__IO uint8_t *) CIR_BYTE3_ADDRESS = RCC_IT;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2010 STMicroelectronics *****END OF FILE****/