blob: a3b46afb8efdee3d7b0c079716bc59497b377758 [file] [log] [blame]
/******************************************************************************
*
* Copyright (C) 2002 - 2014 Xilinx, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* Use of the Software is limited solely to applications:
* (a) running on a Xilinx device, or
* (b) that interact with a Xilinx device through a bus or interconnect.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* XILINX CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the Xilinx shall not be used
* in advertising or otherwise to promote the sale, use or other dealings in
* this Software without prior written authorization from Xilinx.
*
******************************************************************************/
/*****************************************************************************/
/**
*
* @file xintc.c
* @addtogroup intc_v3_4
* @{
*
* Contains required functions for the XIntc driver for the Xilinx Interrupt
* Controller. See xintc.h for a detailed description of the driver.
*
* <pre>
* MODIFICATION HISTORY:
*
* Ver Who Date Changes
* ----- ---- -------- --------------------------------------------------------
* 1.00a ecm 08/16/01 First release
* 1.00b jhl 02/21/02 Repartitioned the driver for smaller files
* 1.00b jhl 04/24/02 Made LookupConfig global and compressed ack before table
* in the configuration into a bit mask
* 1.00c rpm 10/17/03 New release. Support the static vector table created
* in the xintc_g.c configuration table.
* 1.00c rpm 04/23/04 Removed check in XIntc_Connect for a previously connected
* handler. Always overwrite the vector table handler with
* the handler provided as an argument.
* 1.10c mta 03/21/07 Updated to new coding style
* 1.11a sv 11/21/07 Updated driver to support access through a DCR bridge
* 2.00a ktn 10/20/09 Updated to use HAL Processor APIs.
* 2.04a bss 01/13/12 Added XIntc_ConnectFastHandler API for Fast Interrupt
* and XIntc_SetNormalIntrMode for setting to normal
* interrupt mode.
* 2.05a bss 08/16/12 Updated to support relocatable vectors in Microblaze,
* updated XIntc_SetNormalIntrMode to use IntVectorAddr
* which is the interrupt vector address
* 2.06a bss 01/28/13 To support Cascade mode:
* Modified XIntc_Initialize,XIntc_Start,XIntc_Connect
* XIntc_Disconnect,XIntc_Enable,XIntc_Disable,
* XIntc_Acknowledge,XIntc_ConnectFastHandler and
* XIntc_SetNormalIntrMode APIs.
* Added XIntc_InitializeSlaves API.
* 3.0 bss 01/28/13 Modified to initialize IVAR register with
* XPAR_MICROBLAZE_BASE_VECTORS + 0x10 to fix
* CR#765931
*
* </pre>
*
******************************************************************************/
/***************************** Include Files *********************************/
#include "xil_types.h"
#include "xil_assert.h"
#include "xintc.h"
#include "xintc_l.h"
#include "xintc_i.h"
/************************** Constant Definitions *****************************/
/**************************** Type Definitions *******************************/
/***************** Macros (Inline Functions) Definitions *********************/
/************************** Variable Definitions *****************************/
/*
* Array of masks associated with the bit position, improves performance
* in the ISR and acknowledge functions, this table is shared between all
* instances of the driver. XIN_CONTROLLER_MAX_INTRS is the maximum number of
* sources of Interrupt controller
*/
u32 XIntc_BitPosMask[XIN_CONTROLLER_MAX_INTRS];
/************************** Function Prototypes ******************************/
static void StubHandler(void *CallBackRef);
static void XIntc_InitializeSlaves(XIntc * InstancePtr);
/*****************************************************************************/
/**
*
* Initialize a specific interrupt controller instance/driver. The
* initialization entails:
*
* - Initialize fields of the XIntc structure
* - Initial vector table with stub function calls
* - All interrupt sources are disabled
* - Interrupt output is disabled
*
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param DeviceId is the unique id of the device controlled by this XIntc
* instance. Passing in a device id associates the generic XIntc
* instance to a specific device, as chosen by the caller or
* application developer.
*
* @return
* - XST_SUCCESS if initialization was successful
* - XST_DEVICE_IS_STARTED if the device has already been started
* - XST_DEVICE_NOT_FOUND if device configuration information was
* not found for a device with the supplied device ID.
*
* @note In Cascade mode this function calls XIntc_InitializeSlaves to
* initialiaze Slave Interrupt controllers.
*
******************************************************************************/
int XIntc_Initialize(XIntc * InstancePtr, u16 DeviceId)
{
u8 Id;
XIntc_Config *CfgPtr;
u32 NextBitMask = 1;
Xil_AssertNonvoid(InstancePtr != NULL);
/*
* If the device is started, disallow the initialize and return a status
* indicating it is started. This allows the user to stop the device
* and reinitialize, but prevents a user from inadvertently initializing
*/
if (InstancePtr->IsStarted == XIL_COMPONENT_IS_STARTED) {
return XST_DEVICE_IS_STARTED;
}
/*
* Lookup the device configuration in the CROM table. Use this
* configuration info down below when initializing this component.
*/
CfgPtr = XIntc_LookupConfig(DeviceId);
if (CfgPtr == NULL) {
return XST_DEVICE_NOT_FOUND;
}
/*
* Set some default values
*/
InstancePtr->IsReady = 0;
InstancePtr->IsStarted = 0; /* not started */
InstancePtr->CfgPtr = CfgPtr;
InstancePtr->CfgPtr->Options = XIN_SVC_SGL_ISR_OPTION;
InstancePtr->CfgPtr->IntcType = CfgPtr->IntcType;
/*
* Save the base address pointer such that the registers of the
* interrupt can be accessed
*/
#if (XPAR_XINTC_USE_DCR_BRIDGE != 0)
InstancePtr->BaseAddress = ((CfgPtr->BaseAddress >> 2)) & 0xFFF;
#else
InstancePtr->BaseAddress = CfgPtr->BaseAddress;
#endif
/*
* Initialize all the data needed to perform interrupt processing for
* each interrupt ID up to the maximum used
*/
for (Id = 0; Id < CfgPtr->NumberofIntrs; Id++) {
/*
* Initalize the handler to point to a stub to handle an
* interrupt which has not been connected to a handler. Only
* initialize it if the handler is 0 or XNullHandler, which
* means it was not initialized statically by the tools/user.
* Set the callback reference to this instance so that
* unhandled interrupts can be tracked.
*/
if ((InstancePtr->CfgPtr->HandlerTable[Id].Handler == 0) ||
(InstancePtr->CfgPtr->HandlerTable[Id].Handler ==
XNullHandler)) {
InstancePtr->CfgPtr->HandlerTable[Id].Handler =
StubHandler;
}
InstancePtr->CfgPtr->HandlerTable[Id].CallBackRef = InstancePtr;
/*
* Initialize the bit position mask table such that bit
* positions are lookups only for each interrupt id, with 0
* being a special case
* (XIntc_BitPosMask[] = { 1, 2, 4, 8, ... })
*/
XIntc_BitPosMask[Id] = NextBitMask;
NextBitMask *= 2;
}
/*
* Disable IRQ output signal
* Disable all interrupt sources
* Acknowledge all sources
*/
XIntc_Out32(InstancePtr->BaseAddress + XIN_MER_OFFSET, 0);
XIntc_Out32(InstancePtr->BaseAddress + XIN_IER_OFFSET, 0);
XIntc_Out32(InstancePtr->BaseAddress + XIN_IAR_OFFSET, 0xFFFFFFFF);
/*
* If the fast Interrupt mode is enabled then set all the
* interrupts as normal mode.
*/
if(InstancePtr->CfgPtr->FastIntr == TRUE) {
XIntc_Out32(InstancePtr->BaseAddress + XIN_IMR_OFFSET, 0);
#ifdef XPAR_MICROBLAZE_BASE_VECTORS
for (Id = 0; Id < 32 ; Id++)
{
XIntc_Out32(InstancePtr->BaseAddress + XIN_IVAR_OFFSET
+ (Id * 4), XPAR_MICROBLAZE_BASE_VECTORS
+ 0x10);
}
#else
for (Id = 0; Id < 32 ; Id++)
{
XIntc_Out32(InstancePtr->BaseAddress + XIN_IVAR_OFFSET
+ (Id * 4), 0x10);
}
#endif
}
/* Initialize slaves in Cascade mode*/
if (InstancePtr->CfgPtr->IntcType != XIN_INTC_NOCASCADE) {
XIntc_InitializeSlaves(InstancePtr);
}
/*
* Indicate the instance is now ready to use, successfully initialized
*/
InstancePtr->IsReady = XIL_COMPONENT_IS_READY;
return XST_SUCCESS;
}
/*****************************************************************************/
/**
*
* Starts the interrupt controller by enabling the output from the controller
* to the processor. Interrupts may be generated by the interrupt controller
* after this function is called.
*
* It is necessary for the caller to connect the interrupt handler of this
* component to the proper interrupt source. This function also starts Slave
* controllers in Cascade mode.
*
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param Mode determines if software is allowed to simulate interrupts or
* real interrupts are allowed to occur. Note that these modes are
* mutually exclusive. The interrupt controller hardware resets in
* a mode that allows software to simulate interrupts until this
* mode is exited. It cannot be reentered once it has been exited.
*
* One of the following values should be used for the mode.
* - XIN_SIMULATION_MODE enables simulation of interrupts only
* - XIN_REAL_MODE enables hardware interrupts only
*
* @return
* - XST_SUCCESS if the device was started successfully
* - XST_FAILURE if simulation mode was specified and it could not
* be set because real mode has already been entered.
*
* @note Must be called after XIntc initialization is completed.
*
******************************************************************************/
int XIntc_Start(XIntc * InstancePtr, u8 Mode)
{
u32 MasterEnable = XIN_INT_MASTER_ENABLE_MASK;
XIntc_Config *CfgPtr;
int Index;
/*
* Assert the arguments
*/
Xil_AssertNonvoid(InstancePtr != NULL);
Xil_AssertNonvoid((Mode == XIN_SIMULATION_MODE) ||
(Mode == XIN_REAL_MODE))
Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
/*
* Check for simulation mode
*/
if (Mode == XIN_SIMULATION_MODE) {
if (MasterEnable & XIN_INT_HARDWARE_ENABLE_MASK) {
return XST_FAILURE;
}
}
else {
MasterEnable |= XIN_INT_HARDWARE_ENABLE_MASK;
}
/*
* Indicate the instance is ready to be used and is started before we
* enable the device.
*/
InstancePtr->IsStarted = XIL_COMPONENT_IS_STARTED;
/* Start the Slaves for Cascade Mode */
if (InstancePtr->CfgPtr->IntcType != XIN_INTC_NOCASCADE) {
for (Index = 1; Index <= XPAR_XINTC_NUM_INSTANCES - 1; Index++)
{
CfgPtr = XIntc_LookupConfig(Index);
XIntc_Out32(CfgPtr->BaseAddress + XIN_MER_OFFSET,
MasterEnable);
}
}
/* Start the master */
XIntc_Out32(InstancePtr->BaseAddress + XIN_MER_OFFSET, MasterEnable);
return XST_SUCCESS;
}
/*****************************************************************************/
/**
*
* Stops the interrupt controller by disabling the output from the controller
* so that no interrupts will be caused by the interrupt controller.
*
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
*
* @return None.
*
* @note None.
*
******************************************************************************/
void XIntc_Stop(XIntc * InstancePtr)
{
/*
* Assert the arguments
*/
Xil_AssertVoid(InstancePtr != NULL);
Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
/*
* Stop all interrupts from occurring thru the interrupt controller by
* disabling all interrupts in the MER register
*/
XIntc_Out32(InstancePtr->BaseAddress + XIN_MER_OFFSET, 0);
InstancePtr->IsStarted = 0;
}
/*****************************************************************************/
/**
*
* Makes the connection between the Id of the interrupt source and the
* associated handler that is to run when the interrupt is recognized. The
* argument provided in this call as the Callbackref is used as the argument
* for the handler when it is called. In Cascade mode, connects handler to
* Slave controller handler table depending on the interrupt Id.
*
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param Id contains the ID of the interrupt source and should be in the
* range of 0 to XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being
* the highest priority interrupt.
* @param Handler to the handler for that interrupt.
* @param CallBackRef is the callback reference, usually the instance
* pointer of the connecting driver.
*
* @return
*
* - XST_SUCCESS if the handler was connected correctly.
*
* @note
*
* WARNING: The handler provided as an argument will overwrite any handler
* that was previously connected.
*
****************************************************************************/
int XIntc_Connect(XIntc * InstancePtr, u8 Id,
XInterruptHandler Handler, void *CallBackRef)
{
XIntc_Config *CfgPtr;
/*
* Assert the arguments
*/
Xil_AssertNonvoid(InstancePtr != NULL);
Xil_AssertNonvoid(Id < XPAR_INTC_MAX_NUM_INTR_INPUTS);
Xil_AssertNonvoid(Handler != NULL);
Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
/* Connect Handlers for Slave controllers in Cascade Mode */
if (Id > 31) {
CfgPtr = XIntc_LookupConfig(Id/32);
CfgPtr->HandlerTable[Id%32].Handler = Handler;
CfgPtr->HandlerTable[Id%32].CallBackRef = CallBackRef;
}
/* Connect Handlers for Master/primary controller */
else {
/*
* The Id is used as an index into the table to select the
* proper handler
*/
InstancePtr->CfgPtr->HandlerTable[Id].Handler = Handler;
InstancePtr->CfgPtr->HandlerTable[Id].CallBackRef =
CallBackRef;
}
return XST_SUCCESS;
}
/*****************************************************************************/
/**
*
* Updates the interrupt table with the Null Handler and NULL arguments at the
* location pointed at by the Id. This effectively disconnects that interrupt
* source from any handler. The interrupt is disabled also. In Cascade mode,
* disconnects handler from Slave controller handler table depending on the
* interrupt Id.
*
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param Id contains the ID of the interrupt source and should be in the
* range of 0 to XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being
* the highest priority interrupt.
*
* @return None.
*
* @note None.
*
****************************************************************************/
void XIntc_Disconnect(XIntc * InstancePtr, u8 Id)
{
u32 CurrentIER;
u32 Mask;
XIntc_Config *CfgPtr;
/*
* Assert the arguments
*/
Xil_AssertVoid(InstancePtr != NULL);
Xil_AssertVoid(Id < XPAR_INTC_MAX_NUM_INTR_INPUTS);
Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
/*
* Disable the interrupt such that it won't occur while disconnecting
* the handler, only disable the specified interrupt id without
* modifying the other interrupt ids
*/
/* Disconnect Handlers for Slave controllers in Cascade Mode */
if (Id > 31) {
CfgPtr = XIntc_LookupConfig(Id/32);
CurrentIER = XIntc_In32(CfgPtr->BaseAddress + XIN_IER_OFFSET);
/* Convert from integer id to bit mask */
Mask = XIntc_BitPosMask[(Id%32)];
XIntc_Out32(CfgPtr->BaseAddress + XIN_IER_OFFSET,
(CurrentIER & ~Mask));
/*
* Disconnect the handler and connect a stub, the callback
* reference must be set to this instance to allow unhandled
* interrupts to be tracked
*/
CfgPtr->HandlerTable[Id%32].Handler = StubHandler;
CfgPtr->HandlerTable[Id%32].CallBackRef = InstancePtr;
}
/* Disconnect Handlers for Master/primary controller */
else {
CurrentIER = XIntc_In32(InstancePtr->BaseAddress +
XIN_IER_OFFSET);
/* Convert from integer id to bit mask */
Mask = XIntc_BitPosMask[Id];
XIntc_Out32(InstancePtr->BaseAddress + XIN_IER_OFFSET,
(CurrentIER & ~Mask));
InstancePtr->CfgPtr->HandlerTable[Id%32].Handler =
StubHandler;
InstancePtr->CfgPtr->HandlerTable[Id%32].CallBackRef =
InstancePtr;
}
}
/*****************************************************************************/
/**
*
* Enables the interrupt source provided as the argument Id. Any pending
* interrupt condition for the specified Id will occur after this function is
* called. In Cascade mode, enables corresponding interrupt of Slave controllers
* depending on the Id.
*
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param Id contains the ID of the interrupt source and should be in the
* range of 0 to XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being
* the highest priority interrupt.
*
* @return None.
*
* @note None.
*
****************************************************************************/
void XIntc_Enable(XIntc * InstancePtr, u8 Id)
{
u32 CurrentIER;
u32 Mask;
XIntc_Config *CfgPtr;
/*
* Assert the arguments
*/
Xil_AssertVoid(InstancePtr != NULL);
Xil_AssertVoid(Id < XPAR_INTC_MAX_NUM_INTR_INPUTS);
Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
if (Id > 31) {
/* Enable user required Id in Slave controller */
CfgPtr = XIntc_LookupConfig(Id/32);
CurrentIER = XIntc_In32(CfgPtr->BaseAddress + XIN_IER_OFFSET);
/* Convert from integer id to bit mask */
Mask = XIntc_BitPosMask[(Id%32)];
XIntc_Out32(CfgPtr->BaseAddress + XIN_IER_OFFSET,
(CurrentIER | Mask));
}
else {
/*
* The Id is used to create the appropriate mask for the
* desired bit position.
*/
Mask = XIntc_BitPosMask[Id];
/*
* Enable the selected interrupt source by reading the
* interrupt enable register and then modifying only the
* specified interrupt id enable
*/
CurrentIER = XIntc_In32(InstancePtr->BaseAddress +
XIN_IER_OFFSET);
XIntc_Out32(InstancePtr->BaseAddress + XIN_IER_OFFSET,
(CurrentIER | Mask));
}
}
/*****************************************************************************/
/**
*
* Disables the interrupt source provided as the argument Id such that the
* interrupt controller will not cause interrupts for the specified Id. The
* interrupt controller will continue to hold an interrupt condition for the
* Id, but will not cause an interrupt.In Cascade mode, disables corresponding
* interrupt of Slave controllers depending on the Id.
*
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param Id contains the ID of the interrupt source and should be in the
* range of 0 to XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the
* highest priority interrupt.
*
* @return None.
*
* @note None.
*
****************************************************************************/
void XIntc_Disable(XIntc * InstancePtr, u8 Id)
{
u32 CurrentIER;
u32 Mask;
XIntc_Config *CfgPtr;
/*
* Assert the arguments
*/
Xil_AssertVoid(InstancePtr != NULL);
Xil_AssertVoid(Id < XPAR_INTC_MAX_NUM_INTR_INPUTS);
Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
if (Id > 31) {
/* Enable user required Id in Slave controller */
CfgPtr = XIntc_LookupConfig(Id/32);
CurrentIER = XIntc_In32(CfgPtr->BaseAddress + XIN_IER_OFFSET);
/* Convert from integer id to bit mask */
Mask = XIntc_BitPosMask[(Id%32)];
XIntc_Out32(CfgPtr->BaseAddress + XIN_IER_OFFSET,
(CurrentIER & ~Mask));
} else {
/*
* The Id is used to create the appropriate mask for the
* desired bit position. Id currently limited to 0 - 31
*/
Mask = XIntc_BitPosMask[Id];
/*
* Disable the selected interrupt source by reading the
* interrupt enable register and then modifying only the
* specified interrupt id
*/
CurrentIER = XIntc_In32(InstancePtr->BaseAddress +
XIN_IER_OFFSET);
XIntc_Out32(InstancePtr->BaseAddress + XIN_IER_OFFSET,
(CurrentIER & ~Mask));
}
}
/*****************************************************************************/
/**
*
* Acknowledges the interrupt source provided as the argument Id. When the
* interrupt is acknowledged, it causes the interrupt controller to clear its
* interrupt condition.In Cascade mode, acknowledges corresponding interrupt
* source of Slave controllers depending on the Id.
*
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param Id contains the ID of the interrupt source and should be in the
* range of 0 to XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being
* the highest priority interrupt.
*
* @return None.
*
* @note None.
*
****************************************************************************/
void XIntc_Acknowledge(XIntc * InstancePtr, u8 Id)
{
u32 Mask;
XIntc_Config *CfgPtr;
/*
* Assert the arguments
*/
Xil_AssertVoid(InstancePtr != NULL);
Xil_AssertVoid(Id < XPAR_INTC_MAX_NUM_INTR_INPUTS);
Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
if (Id > 31) {
/* Enable user required Id in Slave controller */
CfgPtr = XIntc_LookupConfig(Id/32);
/* Convert from integer id to bit mask */
Mask = XIntc_BitPosMask[(Id%32)];
XIntc_Out32(CfgPtr->BaseAddress + XIN_IAR_OFFSET, Mask);
} else {
/*
* The Id is used to create the appropriate mask for the
* desired bit position.
*/
Mask = XIntc_BitPosMask[Id];
/*
* Acknowledge the selected interrupt source, no read of the
* acknowledge register is necessary since only the bits set
* in the mask will be affected by the write
*/
XIntc_Out32(InstancePtr->BaseAddress + XIN_IAR_OFFSET, Mask);
}
}
/*****************************************************************************/
/**
*
* A stub for the asynchronous callback. The stub is here in case the upper
* layers forget to set the handler.
*
* @param CallBackRef is a pointer to the upper layer callback reference
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void StubHandler(void *CallBackRef)
{
/*
* Verify that the inputs are valid
*/
Xil_AssertVoid(CallBackRef != NULL);
/*
* Indicate another unhandled interrupt for stats
*/
((XIntc *) CallBackRef)->UnhandledInterrupts++;
}
/*****************************************************************************/
/**
*
* Looks up the device configuration based on the unique device ID. A table
* contains the configuration info for each device in the system.
*
* @param DeviceId is the unique identifier for a device.
*
* @return A pointer to the XIntc configuration structure for the specified
* device, or NULL if the device was not found.
*
* @note None.
*
******************************************************************************/
XIntc_Config *XIntc_LookupConfig(u16 DeviceId)
{
XIntc_Config *CfgPtr = NULL;
int Index;
for (Index = 0; Index < XPAR_XINTC_NUM_INSTANCES; Index++) {
if (XIntc_ConfigTable[Index].DeviceId == DeviceId) {
CfgPtr = &XIntc_ConfigTable[Index];
break;
}
}
return CfgPtr;
}
/*****************************************************************************/
/**
*
* Makes the connection between the Id of the interrupt source and the
* associated handler that is to run when the interrupt is recognized.In Cascade
* mode, connects handler to corresponding Slave controller IVAR register
* depending on the Id and sets all interrupt sources of the Slave controller as
* fast interrupts.
*
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param Id contains the ID of the interrupt source and should be in the
* range of 0 to XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being
* the highest priority interrupt.
* @param Handler to the handler for that interrupt.
*
* @return
* - XST_SUCCESS
*
* @note
* Slave controllers in Cascade Mode should have all as Fast
* interrupts or Normal interrupts, mixed interrupts are not
* supported
*
* WARNING: The handler provided as an argument will overwrite any handler
* that was previously connected.
*
****************************************************************************/
int XIntc_ConnectFastHandler(XIntc *InstancePtr, u8 Id,
XFastInterruptHandler Handler)
{
u32 Imr;
u32 CurrentIER;
u32 Mask;
XIntc_Config *CfgPtr;
/*
* Assert the arguments
*/
Xil_AssertNonvoid(InstancePtr != NULL);
Xil_AssertNonvoid(Id < XPAR_INTC_MAX_NUM_INTR_INPUTS);
Xil_AssertNonvoid(Handler != NULL);
Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
Xil_AssertNonvoid(InstancePtr->CfgPtr->FastIntr == TRUE);
if (Id > 31) {
/* Enable user required Id in Slave controller */
CfgPtr = XIntc_LookupConfig(Id/32);
if (CfgPtr->FastIntr != TRUE) {
/*Fast interrupts of slave controller are not enabled*/
return XST_FAILURE;
}
/* Get the Enabled Interrupts */
CurrentIER = XIntc_In32(CfgPtr->BaseAddress + XIN_IER_OFFSET);
/* Convert from integer id to bit mask */
Mask = XIntc_BitPosMask[(Id%32)];
/* Disable the Interrupt if it was enabled before calling
* this function
*/
if (CurrentIER & Mask) {
XIntc_Disable(InstancePtr, Id);
}
XIntc_Out32(CfgPtr->BaseAddress + XIN_IVAR_OFFSET +
((Id%32) * 4), (u32) Handler);
/* Slave controllers in Cascade Mode should have all as Fast
* interrupts or Normal interrupts, mixed interrupts are not
* supported
*/
XIntc_Out32(CfgPtr->BaseAddress + XIN_IMR_OFFSET, 0xFFFFFFFF);
/* Enable the Interrupt if it was enabled before calling this
* function
*/
if (CurrentIER & Mask) {
XIntc_Enable(InstancePtr, Id);
}
}
else {
/* Get the Enabled Interrupts */
CurrentIER = XIntc_In32(InstancePtr->BaseAddress +
XIN_IER_OFFSET);
/* Convert from integer id to bit mask */
Mask = XIntc_BitPosMask[Id];
/* Disable the Interrupt if it was enabled before calling
* this function
*/
if (CurrentIER & Mask) {
XIntc_Disable(InstancePtr, Id);
}
XIntc_Out32(InstancePtr->BaseAddress + XIN_IVAR_OFFSET +
(Id * 4), (u32) Handler);
Imr = XIntc_In32(InstancePtr->BaseAddress + XIN_IMR_OFFSET);
XIntc_Out32(InstancePtr->BaseAddress + XIN_IMR_OFFSET,
Imr | Mask);
/* Enable the Interrupt if it was enabled before
* calling this function
*/
if (CurrentIER & Mask) {
XIntc_Enable(InstancePtr, Id);
}
}
return XST_SUCCESS;
}
/*****************************************************************************/
/**
*
* Sets the normal interrupt mode for the specified interrupt in the Interrupt
* Mode Register. In Cascade mode disconnects handler from corresponding Slave
* controller IVAR register depending on the Id and sets all interrupt sources
* of the Slave controller as normal interrupts.
*
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param Id contains the ID of the interrupt source and should be in the
* range of 0 to XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the
* highest priority interrupt.
*
* @return None.
*
* @note
* Slave controllers in Cascade Mode should have all as Fast
* interrupts or Normal interrupts, mixed interrupts are not
* supported
*
****************************************************************************/
void XIntc_SetNormalIntrMode(XIntc *InstancePtr, u8 Id)
{
u32 Imr;
u32 CurrentIER;
u32 Mask;
XIntc_Config *CfgPtr;
/*
* Assert the arguments
*/
Xil_AssertVoid(InstancePtr != NULL);
Xil_AssertVoid(Id < XPAR_INTC_MAX_NUM_INTR_INPUTS);
Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
Xil_AssertVoid(InstancePtr->CfgPtr->FastIntr == TRUE);
if (Id > 31) {
/* Enable user required Id in Slave controller */
CfgPtr = XIntc_LookupConfig(Id/32);
/* Get the Enabled Interrupts */
CurrentIER = XIntc_In32(CfgPtr->BaseAddress + XIN_IER_OFFSET);
/* Convert from integer id to bit mask */
Mask = XIntc_BitPosMask[(Id%32)];
/* Disable the Interrupt if it was enabled before calling
* this function
*/
if (CurrentIER & Mask) {
XIntc_Disable(InstancePtr, Id);
}
/* Slave controllers in Cascade Mode should have all as Fast
* interrupts or Normal interrupts, mixed interrupts are not
* supported
*/
XIntc_Out32(CfgPtr->BaseAddress + XIN_IMR_OFFSET, 0x0);
#ifdef XPAR_MICROBLAZE_BASE_VECTORS
for (Id = 0; Id < 32 ; Id++)
{
XIntc_Out32(CfgPtr->BaseAddress + XIN_IVAR_OFFSET
+ (Id * 4), XPAR_MICROBLAZE_BASE_VECTORS
+ 0x10);
}
#else
for (Id = 0; Id < 32 ; Id++)
{
XIntc_Out32(CfgPtr->BaseAddress + XIN_IVAR_OFFSET
+ (Id * 4), 0x10);
}
#endif
/* Enable the Interrupt if it was enabled before calling this
* function
*/
if (CurrentIER & Mask) {
XIntc_Enable(InstancePtr, Id);
}
}
else {
/* Get the Enabled Interrupts */
CurrentIER = XIntc_In32(InstancePtr->BaseAddress + XIN_IER_OFFSET);
Mask = XIntc_BitPosMask[Id];/* Convert from integer id to bit mask */
/* Disable the Interrupt if it was enabled before
* calling this function
*/
if (CurrentIER & Mask) {
XIntc_Disable(InstancePtr, Id);
}
/*
* Disable the selected interrupt as Fast Interrupt by reading the
* interrupt mode register and then modifying only the
* specified interrupt id
*/
Imr = XIntc_In32(InstancePtr->BaseAddress + XIN_IMR_OFFSET);
XIntc_Out32(InstancePtr->BaseAddress + XIN_IMR_OFFSET,
Imr & ~Mask);
#ifdef XPAR_MICROBLAZE_BASE_VECTORS
for (Id = 0; Id < 32 ; Id++)
{
XIntc_Out32(InstancePtr->BaseAddress + XIN_IVAR_OFFSET
+ (Id * 4), XPAR_MICROBLAZE_BASE_VECTORS
+ 0x10);
}
#else
for (Id = 0; Id < 32 ; Id++)
{
XIntc_Out32(InstancePtr->BaseAddress + XIN_IVAR_OFFSET
+ (Id * 4), 0x10);
}
#endif
/* Enable the Interrupt if it was enabled before
* calling this function
*/
if (CurrentIER & Mask) {
XIntc_Enable(InstancePtr, Id);
}
}
}
/*****************************************************************************/
/**
*
* Initializes Slave controllers in Cascade mode. The initialization entails:
* - Initial vector table with stub function calls
* - All interrupt sources are disabled for last controller.
* - All interrupt sources are disabled except sources to 31 pin of
* primary and secondary controllers
* - Interrupt outputs are disabled
*
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
*
* @return None
*
* @note None.
*
******************************************************************************/
static void XIntc_InitializeSlaves(XIntc * InstancePtr)
{
int Index;
u32 Mask;
XIntc_Config *CfgPtr;
int Id;
Mask = XIntc_BitPosMask[31]; /* Convert from integer id to bit mask */
/* Enable interrupt id with 31 for Master
* interrupt controller
*/
XIntc_Out32(InstancePtr->CfgPtr->BaseAddress + XIN_IER_OFFSET, Mask);
for (Index = 1; Index <= XPAR_XINTC_NUM_INSTANCES - 1; Index++) {
CfgPtr = XIntc_LookupConfig(Index);
XIntc_Out32(CfgPtr->BaseAddress + XIN_IAR_OFFSET,
0xFFFFFFFF);
if (CfgPtr->IntcType != XIN_INTC_LAST) {
/* Enable interrupt ids with 31 for secondary
* interrupt controllers
*/
XIntc_Out32(CfgPtr->BaseAddress + XIN_IER_OFFSET,
Mask);
} else {
XIntc_Out32(CfgPtr->BaseAddress + XIN_IER_OFFSET, 0x0);
}
/* Disable Interrupt output */
XIntc_Out32(CfgPtr->BaseAddress + XIN_MER_OFFSET, 0);
/* Set all interrupts as normal mode if Fast Interrupts
* are enabled
*/
if(CfgPtr->FastIntr == TRUE) {
XIntc_Out32(CfgPtr->BaseAddress + XIN_IMR_OFFSET, 0);
#ifdef XPAR_MICROBLAZE_BASE_VECTORS
for (Id = 0; Id < 32 ; Id++)
{
XIntc_Out32(CfgPtr->BaseAddress +
XIN_IVAR_OFFSET + (Id * 4),
XPAR_MICROBLAZE_BASE_VECTORS + 0x10);
}
#else
for (Id = 0; Id < 32 ; Id++)
{
XIntc_Out32(CfgPtr->BaseAddress +
XIN_IVAR_OFFSET + (Id * 4), 0x10);
}
#endif
}
/*
* Initialize all the data needed to perform interrupt
* processing for each interrupt ID up to the maximum used
*/
for (Id = 0; Id < CfgPtr->NumberofIntrs; Id++) {
/*
* Initalize the handler to point to a stub to handle an
* interrupt which has not been connected to a handler.
* Only initialize it if the handler is 0 or
* XNullHandler, which means it was not initialized
* statically by the tools/user.Set the callback
* reference to this instance so that unhandled
* interrupts can be tracked.
*/
if ((CfgPtr->HandlerTable[Id].Handler == 0) ||
(CfgPtr->HandlerTable[Id].Handler ==
XNullHandler)) {
CfgPtr->HandlerTable[Id].Handler = StubHandler;
}
CfgPtr->HandlerTable[Id].CallBackRef = InstancePtr;
}
}
}
/** @} */