blob: 2ad827a7585b4e624c1e6da89ad00e478396eb19 [file] [log] [blame]
/*
* Texas Instruments 3-Port Ethernet Switch Address Lookup Engine
*
* Copyright (C) 2010 Texas Instruments
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/io.h>
#include "cpsw_ale.h"
#define BITMASK(bits) (BIT(bits) - 1)
#define ADDR_FMT_STR "%02x:%02x:%02x:%02x:%02x:%02x"
#define ADDR_FMT_ARGS(addr) (addr)[0], (addr)[1], (addr)[2], \
(addr)[3], (addr)[4], (addr)[5]
#define ALE_ENTRY_BITS 68
#define ALE_ENTRY_WORDS DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
/* ALE Registers */
#define ALE_IDVER 0x00
#define ALE_CONTROL 0x08
#define ALE_PRESCALE 0x10
#define ALE_UNKNOWNVLAN 0x18
#define ALE_TABLE_CONTROL 0x20
#define ALE_TABLE 0x34
#define ALE_PORTCTL 0x40
#define ALE_TABLE_WRITE BIT(31)
#define ALE_TYPE_FREE 0
#define ALE_TYPE_ADDR 1
#define ALE_TYPE_VLAN 2
#define ALE_TYPE_VLAN_ADDR 3
#define ALE_UCAST_PERSISTANT 0
#define ALE_UCAST_UNTOUCHED 1
#define ALE_UCAST_OUI 2
#define ALE_UCAST_TOUCHED 3
#define ALE_MCAST_FWD 0
#define ALE_MCAST_BLOCK_LEARN_FWD 1
#define ALE_MCAST_FWD_LEARN 2
#define ALE_MCAST_FWD_2 3
/* the following remap params into members of cpsw_ale */
#define ale_regs params.ale_regs
#define ale_entries params.ale_entries
#define ale_ports params.ale_ports
static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
{
int idx;
idx = start / 32;
start -= idx * 32;
idx = 2 - idx; /* flip */
return (ale_entry[idx] >> start) & BITMASK(bits);
}
static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
u32 value)
{
int idx;
value &= BITMASK(bits);
idx = start / 32;
start -= idx * 32;
idx = 2 - idx; /* flip */
ale_entry[idx] &= ~(BITMASK(bits) << start);
ale_entry[idx] |= (value << start);
}
#define DEFINE_ALE_FIELD(name, start, bits) \
static inline int cpsw_ale_get_##name(u32 *ale_entry) \
{ \
return cpsw_ale_get_field(ale_entry, start, bits); \
} \
static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value) \
{ \
cpsw_ale_set_field(ale_entry, start, bits, value); \
}
DEFINE_ALE_FIELD(entry_type, 60, 2)
DEFINE_ALE_FIELD(vlan_id, 48, 12)
DEFINE_ALE_FIELD(mcast_state, 62, 2)
DEFINE_ALE_FIELD(port_mask, 66, 3)
DEFINE_ALE_FIELD(super, 65, 1)
DEFINE_ALE_FIELD(ucast_type, 62, 2)
DEFINE_ALE_FIELD(port_num, 66, 2)
DEFINE_ALE_FIELD(blocked, 65, 1)
DEFINE_ALE_FIELD(secure, 64, 1)
DEFINE_ALE_FIELD(vlan_untag_force, 24, 3)
DEFINE_ALE_FIELD(vlan_reg_mcast, 16, 3)
DEFINE_ALE_FIELD(vlan_unreg_mcast, 8, 3)
DEFINE_ALE_FIELD(vlan_member_list, 0, 3)
DEFINE_ALE_FIELD(mcast, 40, 1)
/* The MAC address field in the ALE entry cannot be macroized as above */
static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
{
int i;
for (i = 0; i < 6; i++)
addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
}
static inline void cpsw_ale_set_addr(u32 *ale_entry, u8 *addr)
{
int i;
for (i = 0; i < 6; i++)
cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
}
static int cpsw_ale_read(struct cpsw_ale *ale, int idx, u32 *ale_entry)
{
int i;
WARN_ON(idx > ale->ale_entries);
__raw_writel(idx, ale->ale_regs + ALE_TABLE_CONTROL);
for (i = 0; i < ALE_ENTRY_WORDS; i++)
ale_entry[i] = __raw_readl(ale->ale_regs + ALE_TABLE + 4 * i);
return idx;
}
static int cpsw_ale_write(struct cpsw_ale *ale, int idx, u32 *ale_entry)
{
int i;
WARN_ON(idx > ale->ale_entries);
for (i = 0; i < ALE_ENTRY_WORDS; i++)
__raw_writel(ale_entry[i], ale->ale_regs + ALE_TABLE + 4 * i);
__raw_writel(idx | ALE_TABLE_WRITE, ale->ale_regs + ALE_TABLE_CONTROL);
return idx;
}
static int cpsw_ale_match_addr(struct cpsw_ale *ale, u8* addr)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < ale->ale_entries; idx++) {
u8 entry_addr[6];
cpsw_ale_read(ale, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
continue;
cpsw_ale_get_addr(ale_entry, entry_addr);
if (memcmp(entry_addr, addr, 6) == 0)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_match_free(struct cpsw_ale *ale)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < ale->ale_entries; idx++) {
cpsw_ale_read(ale, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type == ALE_TYPE_FREE)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_find_ageable(struct cpsw_ale *ale)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < ale->ale_entries; idx++) {
cpsw_ale_read(ale, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
continue;
if (cpsw_ale_get_mcast(ale_entry))
continue;
type = cpsw_ale_get_ucast_type(ale_entry);
if (type != ALE_UCAST_PERSISTANT &&
type != ALE_UCAST_OUI)
return idx;
}
return -ENOENT;
}
static void cpsw_ale_flush_mcast(struct cpsw_ale *ale, u32 *ale_entry,
int port_mask)
{
int mask;
mask = cpsw_ale_get_port_mask(ale_entry);
if ((mask & port_mask) == 0)
return; /* ports dont intersect, not interested */
mask &= ~port_mask;
/* free if only remaining port is host port */
if (mask == BIT(ale->ale_ports))
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
else
cpsw_ale_set_port_mask(ale_entry, mask);
}
static void cpsw_ale_flush_ucast(struct cpsw_ale *ale, u32 *ale_entry,
int port_mask)
{
int port;
port = cpsw_ale_get_port_num(ale_entry);
if ((BIT(port) & port_mask) == 0)
return; /* ports dont intersect, not interested */
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
}
int cpsw_ale_flush(struct cpsw_ale *ale, int port_mask)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int ret, idx;
for (idx = 0; idx < ale->ale_entries; idx++) {
cpsw_ale_read(ale, idx, ale_entry);
ret = cpsw_ale_get_entry_type(ale_entry);
if (ret != ALE_TYPE_ADDR && ret != ALE_TYPE_VLAN_ADDR)
continue;
if (cpsw_ale_get_mcast(ale_entry))
cpsw_ale_flush_mcast(ale, ale_entry, port_mask);
else
cpsw_ale_flush_ucast(ale, ale_entry, port_mask);
cpsw_ale_write(ale, idx, ale_entry);
}
return 0;
}
static int cpsw_ale_dump_mcast(u32 *ale_entry, char *buf, int len)
{
int outlen = 0;
static const char *str_mcast_state[] = {"f", "blf", "lf", "f"};
int mcast_state = cpsw_ale_get_mcast_state(ale_entry);
int port_mask = cpsw_ale_get_port_mask(ale_entry);
int super = cpsw_ale_get_super(ale_entry);
outlen += snprintf(buf + outlen, len - outlen,
"mcstate: %s(%d), ", str_mcast_state[mcast_state],
mcast_state);
outlen += snprintf(buf + outlen, len - outlen,
"port mask: %x, %ssuper\n", port_mask,
super ? "" : "no ");
return outlen;
}
static int cpsw_ale_dump_ucast(u32 *ale_entry, char *buf, int len)
{
int outlen = 0;
static const char *str_ucast_type[] = {"persistant", "untouched",
"oui", "touched"};
int ucast_type = cpsw_ale_get_ucast_type(ale_entry);
int port_num = cpsw_ale_get_port_num(ale_entry);
int secure = cpsw_ale_get_secure(ale_entry);
int blocked = cpsw_ale_get_blocked(ale_entry);
outlen += snprintf(buf + outlen, len - outlen,
"uctype: %s(%d), ", str_ucast_type[ucast_type],
ucast_type);
outlen += snprintf(buf + outlen, len - outlen,
"port: %d%s%s\n", port_num, secure ? ", Secure" : "",
blocked ? ", Blocked" : "");
return outlen;
}
static int cpsw_ale_dump_entry(int idx, u32 *ale_entry, char *buf, int len)
{
int type, outlen = 0;
u8 addr[6];
static const char *str_type[] = {"free", "addr", "vlan", "vlan+addr"};
type = cpsw_ale_get_entry_type(ale_entry);
if (type == ALE_TYPE_FREE)
return outlen;
if (idx >= 0) {
outlen += snprintf(buf + outlen, len - outlen,
"index %d, ", idx);
}
outlen += snprintf(buf + outlen, len - outlen, "raw: %08x %08x %08x, ",
ale_entry[0], ale_entry[1], ale_entry[2]);
outlen += snprintf(buf + outlen, len - outlen,
"type: %s(%d), ", str_type[type], type);
cpsw_ale_get_addr(ale_entry, addr);
outlen += snprintf(buf + outlen, len - outlen,
"addr: " ADDR_FMT_STR ", ", ADDR_FMT_ARGS(addr));
if (type == ALE_TYPE_VLAN || type == ALE_TYPE_VLAN_ADDR) {
outlen += snprintf(buf + outlen, len - outlen, "vlan: %d, ",
cpsw_ale_get_vlan_id(ale_entry));
}
outlen += cpsw_ale_get_mcast(ale_entry) ?
cpsw_ale_dump_mcast(ale_entry, buf + outlen, len - outlen) :
cpsw_ale_dump_ucast(ale_entry, buf + outlen, len - outlen);
return outlen;
}
int cpsw_ale_add_ucast(struct cpsw_ale *ale, u8 *addr, int port, int flags)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx;
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
cpsw_ale_set_addr(ale_entry, addr);
cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
cpsw_ale_set_port_num(ale_entry, port);
idx = cpsw_ale_match_addr(ale, addr);
if (idx < 0)
idx = cpsw_ale_match_free(ale);
if (idx < 0)
idx = cpsw_ale_find_ageable(ale);
if (idx < 0)
return -ENOMEM;
cpsw_ale_write(ale, idx, ale_entry);
return 0;
}
int cpsw_ale_del_ucast(struct cpsw_ale *ale, u8 *addr, int port)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx;
idx = cpsw_ale_match_addr(ale, addr);
if (idx < 0)
return -ENOENT;
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
cpsw_ale_write(ale, idx, ale_entry);
return 0;
}
int cpsw_ale_add_mcast(struct cpsw_ale *ale, u8 *addr, int port_mask)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx, mask;
idx = cpsw_ale_match_addr(ale, addr);
if (idx >= 0) {
cpsw_ale_read(ale, idx, ale_entry);
}
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
cpsw_ale_set_addr(ale_entry, addr);
cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
mask = cpsw_ale_get_port_mask(ale_entry);
port_mask |= mask;
cpsw_ale_set_port_mask(ale_entry, port_mask);
if (idx < 0) {
idx = cpsw_ale_match_free(ale);
}
if (idx < 0) {
idx = cpsw_ale_find_ageable(ale);
}
if (idx < 0)
return -ENOMEM;
cpsw_ale_write(ale, idx, ale_entry);
return 0;
}
int cpsw_ale_del_mcast(struct cpsw_ale *ale, u8 *addr, int port_mask)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx, mask;
idx = cpsw_ale_match_addr(ale, addr);
if (idx < 0)
return -EINVAL;
cpsw_ale_read(ale, idx, ale_entry);
mask = cpsw_ale_get_port_mask(ale_entry);
port_mask = mask & ~port_mask;
if (port_mask == BIT(ale->ale_ports))
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
else
cpsw_ale_set_port_mask(ale_entry, port_mask);
cpsw_ale_write(ale, idx, ale_entry);
return 0;
}
struct ale_control_info {
const char *name;
int offset, port_offset;
int shift, port_shift;
int bits;
};
#define CTRL_GLOBAL(name, bit) {#name, ALE_CONTROL, 0, bit, 0, 1}
#define CTRL_UNK(name, bit) {#name, ALE_UNKNOWNVLAN, 0, bit, 1, 1}
#define CTRL_PORTCTL(name, start, bits) {#name, ALE_PORTCTL, 4, start, 0, bits}
static struct ale_control_info ale_controls[] = {
[ALE_ENABLE] = CTRL_GLOBAL(enable, 31),
[ALE_CLEAR] = CTRL_GLOBAL(clear, 30),
[ALE_AGEOUT] = CTRL_GLOBAL(ageout, 29),
[ALE_VLAN_NOLEARN] = CTRL_GLOBAL(vlan_nolearn, 7),
[ALE_NO_PORT_VLAN] = CTRL_GLOBAL(no_port_vlan, 6),
[ALE_OUI_DENY] = CTRL_GLOBAL(oui_deny, 5),
[ALE_BYPASS] = CTRL_GLOBAL(bypass, 4),
[ALE_RATE_LIMIT_TX] = CTRL_GLOBAL(rate_limit_tx, 3),
[ALE_VLAN_AWARE] = CTRL_GLOBAL(vlan_aware, 2),
[ALE_AUTH_ENABLE] = CTRL_GLOBAL(auth_enable, 1),
[ALE_RATE_LIMIT] = CTRL_GLOBAL(rate_limit, 0),
[ALE_PORT_STATE] = CTRL_PORTCTL(port_state, 0, 2),
[ALE_PORT_DROP_UNTAGGED] = CTRL_PORTCTL(drop_untagged, 2, 1),
[ALE_PORT_DROP_UNKNOWN_VLAN] = CTRL_PORTCTL(drop_unknown, 3, 1),
[ALE_PORT_NOLEARN] = CTRL_PORTCTL(nolearn, 4, 1),
[ALE_PORT_MCAST_LIMIT] = CTRL_PORTCTL(mcast_limit, 16, 8),
[ALE_PORT_BCAST_LIMIT] = CTRL_PORTCTL(bcast_limit, 24, 8),
[ALE_PORT_UNKNOWN_VLAN_MEMBER] = CTRL_UNK(unknown_vlan_member, 0),
[ALE_PORT_UNKNOWN_MCAST_FLOOD] = CTRL_UNK(unknown_mcast_flood, 8),
[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD] = CTRL_UNK(unknown_reg_flood, 16),
[ALE_PORT_UNTAGGED_EGRESS] = CTRL_UNK(untagged_egress, 24),
};
int cpsw_ale_control_set(struct cpsw_ale *ale, int port, int control,
int value)
{
struct ale_control_info *info = &ale_controls[control];
int offset, shift;
u32 tmp, mask;
if (control < 0 || control >= ARRAY_SIZE(ale_controls))
return -EINVAL;
if (info->port_offset == 0 && info->port_shift == 0)
port = 0; /* global, port is a dont care */
if (port < 0 || port > ale->ale_ports)
return -EINVAL;
mask = BITMASK(info->bits);
if (value & ~mask)
return -EINVAL;
offset = info->offset + (port * info->port_offset);
shift = info->shift + (port * info->port_shift);
tmp = __raw_readl(ale->ale_regs + offset);
tmp = (tmp & ~(mask << shift)) | (value << shift);
__raw_writel(tmp, ale->ale_regs + offset);
{
volatile u32 dly = 10000;
while (dly--);
}
return 0;
}
int cpsw_ale_control_get(struct cpsw_ale *ale, int port, int control)
{
struct ale_control_info *info = &ale_controls[control];
int offset, shift;
u32 tmp;
if (control < 0 || control >= ARRAY_SIZE(ale_controls))
return -EINVAL;
if (info->port_offset == 0 && info->port_shift == 0)
port = 0; /* global, port is a dont care */
if (port < 0 || port > ale->ale_ports)
return -EINVAL;
offset = info->offset + (port * info->port_offset);
shift = info->shift + (port * info->port_shift);
tmp = __raw_readl(ale->ale_regs + offset) >> shift;
return tmp & BITMASK(info->bits);
}
static ssize_t cpsw_ale_control_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int i, port, len = 0;
struct ale_control_info *info;
struct cpsw_ale *ale = control_attr_to_ale(attr);
for (i = 0, info = ale_controls; i < ALE_NUM_CONTROLS; i++, info++) {
/* global controls */
if (info->port_shift == 0 && info->port_offset == 0) {
len += snprintf(buf + len, SZ_4K - len,
"%s=%d\n", info->name,
cpsw_ale_control_get(ale, 0, i));
continue;
}
/* port specific controls */
for (port = 0; port < ale->ale_ports; port++) {
len += snprintf(buf + len, SZ_4K - len,
"%s.%d=%d\n", info->name, port,
cpsw_ale_control_get(ale, port, i));
}
}
return len;
}
static ssize_t cpsw_ale_control_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
char ctrl_str[33], *end;
int port = 0, value, len, ret, control;
struct cpsw_ale *ale = control_attr_to_ale(attr);
len = strcspn(buf, ".=");
if (len >= 32)
return -ENOMEM;
strncpy(ctrl_str, buf, len);
ctrl_str[len] = '\0';
buf += len;
if (*buf == '.') {
port = simple_strtoul(buf + 1, &end, 0);
buf = end;
}
if (*buf != '=')
return -EINVAL;
value = simple_strtoul(buf + 1, NULL, 0);
for (control = 0; control < ALE_NUM_CONTROLS; control++)
if (strcmp(ctrl_str, ale_controls[control].name) == 0)
break;
if (control >= ALE_NUM_CONTROLS)
return -ENOENT;
dev_dbg(ale->params.dev, "processing command %s.%d=%d\n",
ale_controls[control].name, port, value);
ret = cpsw_ale_control_set(ale, port, control, value);
if (ret < 0)
return ret;
return count;
}
DEVICE_ATTR(ale_control, S_IRUGO | S_IWUSR, cpsw_ale_control_show,
cpsw_ale_control_store);
static ssize_t cpsw_ale_table_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int len = SZ_4K, outlen = 0, idx;
u32 ale_entry[ALE_ENTRY_WORDS];
struct cpsw_ale *ale = table_attr_to_ale(attr);
for (idx = 0; idx < ale->ale_entries; idx++) {
cpsw_ale_read(ale, idx, ale_entry);
outlen += cpsw_ale_dump_entry(idx, ale_entry, buf + outlen,
len - outlen);
}
return outlen;
}
DEVICE_ATTR(ale_table, S_IRUGO, cpsw_ale_table_show, NULL);
static void cpsw_ale_timer(unsigned long arg)
{
struct cpsw_ale *ale = (struct cpsw_ale *)arg;
cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
if (ale->ageout) {
ale->timer.expires = jiffies + ale->ageout;
add_timer(&ale->timer);
}
}
int cpsw_ale_set_ageout(struct cpsw_ale *ale, int ageout)
{
del_timer_sync(&ale->timer);
ale->ageout = ageout * HZ;
if (ale->ageout) {
ale->timer.expires = jiffies + ale->ageout;
add_timer(&ale->timer);
}
return 0;
}
void cpsw_ale_start(struct cpsw_ale *ale)
{
u32 rev;
int ret;
rev = __raw_readl(ale->ale_regs + ALE_IDVER);
dev_dbg(ale->params.dev, "initialized cpsw ale revision %d.%d\n",
(rev >> 8) & 0xff, rev & 0xff);
cpsw_ale_control_set(ale, 0, ALE_ENABLE, 1);
cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
ale->ale_control_attr = dev_attr_ale_control;
ret = device_create_file(ale->params.dev, &ale->ale_control_attr);
WARN_ON(ret < 0);
ale->ale_table_attr = dev_attr_ale_table;
ret = device_create_file(ale->params.dev, &ale->ale_table_attr);
WARN_ON(ret < 0);
init_timer(&ale->timer);
ale->timer.data = (unsigned long)ale;
ale->timer.function = cpsw_ale_timer;
if (ale->ageout) {
ale->timer.expires = jiffies + ale->ageout;
add_timer(&ale->timer);
}
}
void cpsw_ale_stop(struct cpsw_ale *ale)
{
del_timer_sync(&ale->timer);
device_remove_file(ale->params.dev, &ale->ale_table_attr);
device_remove_file(ale->params.dev, &ale->ale_control_attr);
}
struct cpsw_ale *cpsw_ale_create(struct cpsw_ale_params *params)
{
struct cpsw_ale *ale;
int ret;
ret = -ENOMEM;
ale = kzalloc(sizeof(*ale), GFP_KERNEL);
if (WARN_ON(!ale))
return NULL;
ale->params = *params;
ale->ageout = ale->params.ale_ageout * HZ;
return ale;
}
int cpsw_ale_destroy(struct cpsw_ale *ale)
{
if (!ale)
return -EINVAL;
cpsw_ale_stop(ale);
cpsw_ale_control_set(ale, 0, ALE_ENABLE, 0);
kfree(ale);
return 0;
}