blob: 52cb6082b910cd3c2a6072662a750691b6bc2173 [file] [log] [blame]
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2010 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include "efx.h"
#include "filter.h"
#include "io.h"
#include "nic.h"
#include "regs.h"
/* "Fudge factors" - difference between programmed value and actual depth.
* Due to pipelined implementation we need to program H/W with a value that
* is larger than the hop limit we want.
*/
#define FILTER_CTL_SRCH_FUDGE_WILD 3
#define FILTER_CTL_SRCH_FUDGE_FULL 1
/* Hard maximum hop limit. Hardware will time-out beyond 200-something.
* We also need to avoid infinite loops in efx_filter_search() when the
* table is full.
*/
#define FILTER_CTL_SRCH_MAX 200
struct efx_filter_table {
u32 offset; /* address of table relative to BAR */
unsigned size; /* number of entries */
unsigned step; /* step between entries */
unsigned used; /* number currently used */
unsigned long *used_bitmap;
struct efx_filter_spec *spec;
};
struct efx_filter_state {
spinlock_t lock;
struct efx_filter_table table[EFX_FILTER_TABLE_COUNT];
unsigned search_depth[EFX_FILTER_TYPE_COUNT];
};
/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
* key derived from the n-tuple. The initial LFSR state is 0xffff. */
static u16 efx_filter_hash(u32 key)
{
u16 tmp;
/* First 16 rounds */
tmp = 0x1fff ^ key >> 16;
tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
tmp = tmp ^ tmp >> 9;
/* Last 16 rounds */
tmp = tmp ^ tmp << 13 ^ key;
tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
return tmp ^ tmp >> 9;
}
/* To allow for hash collisions, filter search continues at these
* increments from the first possible entry selected by the hash. */
static u16 efx_filter_increment(u32 key)
{
return key * 2 - 1;
}
static enum efx_filter_table_id
efx_filter_type_table_id(enum efx_filter_type type)
{
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_RX_TCP_FULL >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_RX_TCP_WILD >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_RX_UDP_FULL >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_RX_UDP_WILD >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_MAC != (EFX_FILTER_RX_MAC_FULL >> 2));
BUILD_BUG_ON(EFX_FILTER_TABLE_RX_MAC != (EFX_FILTER_RX_MAC_WILD >> 2));
return type >> 2;
}
static void
efx_filter_table_reset_search_depth(struct efx_filter_state *state,
enum efx_filter_table_id table_id)
{
memset(state->search_depth + (table_id << 2), 0,
sizeof(state->search_depth[0]) << 2);
}
static void efx_filter_push_rx_limits(struct efx_nic *efx)
{
struct efx_filter_state *state = efx->filter_state;
efx_oword_t filter_ctl;
efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
state->search_depth[EFX_FILTER_RX_TCP_FULL] +
FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
state->search_depth[EFX_FILTER_RX_TCP_WILD] +
FILTER_CTL_SRCH_FUDGE_WILD);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
state->search_depth[EFX_FILTER_RX_UDP_FULL] +
FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
state->search_depth[EFX_FILTER_RX_UDP_WILD] +
FILTER_CTL_SRCH_FUDGE_WILD);
if (state->table[EFX_FILTER_TABLE_RX_MAC].size) {
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
state->search_depth[EFX_FILTER_RX_MAC_FULL] +
FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
state->search_depth[EFX_FILTER_RX_MAC_WILD] +
FILTER_CTL_SRCH_FUDGE_WILD);
}
efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
}
/* Build a filter entry and return its n-tuple key. */
static u32 efx_filter_build(efx_oword_t *filter, struct efx_filter_spec *spec)
{
u32 data3;
switch (efx_filter_type_table_id(spec->type)) {
case EFX_FILTER_TABLE_RX_IP: {
bool is_udp = (spec->type == EFX_FILTER_RX_UDP_FULL ||
spec->type == EFX_FILTER_RX_UDP_WILD);
EFX_POPULATE_OWORD_7(
*filter,
FRF_BZ_RSS_EN,
!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
FRF_BZ_SCATTER_EN,
!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
FRF_BZ_TCP_UDP, is_udp,
FRF_BZ_RXQ_ID, spec->dmaq_id,
EFX_DWORD_2, spec->data[2],
EFX_DWORD_1, spec->data[1],
EFX_DWORD_0, spec->data[0]);
data3 = is_udp;
break;
}
case EFX_FILTER_TABLE_RX_MAC: {
bool is_wild = spec->type == EFX_FILTER_RX_MAC_WILD;
EFX_POPULATE_OWORD_8(
*filter,
FRF_CZ_RMFT_RSS_EN,
!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
FRF_CZ_RMFT_SCATTER_EN,
!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
FRF_CZ_RMFT_IP_OVERRIDE,
!!(spec->flags & EFX_FILTER_FLAG_RX_OVERRIDE_IP),
FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
data3 = is_wild;
break;
}
default:
BUG();
}
return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
}
static bool efx_filter_equal(const struct efx_filter_spec *left,
const struct efx_filter_spec *right)
{
if (left->type != right->type ||
memcmp(left->data, right->data, sizeof(left->data)))
return false;
return true;
}
static int efx_filter_search(struct efx_filter_table *table,
struct efx_filter_spec *spec, u32 key,
bool for_insert, int *depth_required)
{
unsigned hash, incr, filter_idx, depth;
struct efx_filter_spec *cmp;
hash = efx_filter_hash(key);
incr = efx_filter_increment(key);
for (depth = 1, filter_idx = hash & (table->size - 1);
depth <= FILTER_CTL_SRCH_MAX &&
test_bit(filter_idx, table->used_bitmap);
++depth) {
cmp = &table->spec[filter_idx];
if (efx_filter_equal(spec, cmp))
goto found;
filter_idx = (filter_idx + incr) & (table->size - 1);
}
if (!for_insert)
return -ENOENT;
if (depth > FILTER_CTL_SRCH_MAX)
return -EBUSY;
found:
*depth_required = depth;
return filter_idx;
}
/**
* efx_filter_insert_filter - add or replace a filter
* @efx: NIC in which to insert the filter
* @spec: Specification for the filter
* @replace: Flag for whether the specified filter may replace a filter
* with an identical match expression and equal or lower priority
*
* On success, return the filter index within its table.
* On failure, return a negative error code.
*/
int efx_filter_insert_filter(struct efx_nic *efx, struct efx_filter_spec *spec,
bool replace)
{
struct efx_filter_state *state = efx->filter_state;
enum efx_filter_table_id table_id =
efx_filter_type_table_id(spec->type);
struct efx_filter_table *table = &state->table[table_id];
struct efx_filter_spec *saved_spec;
efx_oword_t filter;
int filter_idx, depth;
u32 key;
int rc;
if (table->size == 0)
return -EINVAL;
key = efx_filter_build(&filter, spec);
netif_vdbg(efx, hw, efx->net_dev,
"%s: type %d search_depth=%d", __func__, spec->type,
state->search_depth[spec->type]);
spin_lock_bh(&state->lock);
rc = efx_filter_search(table, spec, key, true, &depth);
if (rc < 0)
goto out;
filter_idx = rc;
BUG_ON(filter_idx >= table->size);
saved_spec = &table->spec[filter_idx];
if (test_bit(filter_idx, table->used_bitmap)) {
/* Should we replace the existing filter? */
if (!replace) {
rc = -EEXIST;
goto out;
}
if (spec->priority < saved_spec->priority) {
rc = -EPERM;
goto out;
}
} else {
__set_bit(filter_idx, table->used_bitmap);
++table->used;
}
*saved_spec = *spec;
if (state->search_depth[spec->type] < depth) {
state->search_depth[spec->type] = depth;
efx_filter_push_rx_limits(efx);
}
efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
netif_vdbg(efx, hw, efx->net_dev,
"%s: filter type %d index %d rxq %u set",
__func__, spec->type, filter_idx, spec->dmaq_id);
out:
spin_unlock_bh(&state->lock);
return rc;
}
static void efx_filter_table_clear_entry(struct efx_nic *efx,
struct efx_filter_table *table,
int filter_idx)
{
static efx_oword_t filter;
if (test_bit(filter_idx, table->used_bitmap)) {
__clear_bit(filter_idx, table->used_bitmap);
--table->used;
memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
efx_writeo(efx, &filter,
table->offset + table->step * filter_idx);
}
}
/**
* efx_filter_remove_filter - remove a filter by specification
* @efx: NIC from which to remove the filter
* @spec: Specification for the filter
*
* On success, return zero.
* On failure, return a negative error code.
*/
int efx_filter_remove_filter(struct efx_nic *efx, struct efx_filter_spec *spec)
{
struct efx_filter_state *state = efx->filter_state;
enum efx_filter_table_id table_id =
efx_filter_type_table_id(spec->type);
struct efx_filter_table *table = &state->table[table_id];
struct efx_filter_spec *saved_spec;
efx_oword_t filter;
int filter_idx, depth;
u32 key;
int rc;
key = efx_filter_build(&filter, spec);
spin_lock_bh(&state->lock);
rc = efx_filter_search(table, spec, key, false, &depth);
if (rc < 0)
goto out;
filter_idx = rc;
saved_spec = &table->spec[filter_idx];
if (spec->priority < saved_spec->priority) {
rc = -EPERM;
goto out;
}
efx_filter_table_clear_entry(efx, table, filter_idx);
if (table->used == 0)
efx_filter_table_reset_search_depth(state, table_id);
rc = 0;
out:
spin_unlock_bh(&state->lock);
return rc;
}
/**
* efx_filter_table_clear - remove filters from a table by priority
* @efx: NIC from which to remove the filters
* @table_id: Table from which to remove the filters
* @priority: Maximum priority to remove
*/
void efx_filter_table_clear(struct efx_nic *efx,
enum efx_filter_table_id table_id,
enum efx_filter_priority priority)
{
struct efx_filter_state *state = efx->filter_state;
struct efx_filter_table *table = &state->table[table_id];
int filter_idx;
spin_lock_bh(&state->lock);
for (filter_idx = 0; filter_idx < table->size; ++filter_idx)
if (table->spec[filter_idx].priority <= priority)
efx_filter_table_clear_entry(efx, table, filter_idx);
if (table->used == 0)
efx_filter_table_reset_search_depth(state, table_id);
spin_unlock_bh(&state->lock);
}
/* Restore filter stater after reset */
void efx_restore_filters(struct efx_nic *efx)
{
struct efx_filter_state *state = efx->filter_state;
enum efx_filter_table_id table_id;
struct efx_filter_table *table;
efx_oword_t filter;
int filter_idx;
spin_lock_bh(&state->lock);
for (table_id = 0; table_id < EFX_FILTER_TABLE_COUNT; table_id++) {
table = &state->table[table_id];
for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
if (!test_bit(filter_idx, table->used_bitmap))
continue;
efx_filter_build(&filter, &table->spec[filter_idx]);
efx_writeo(efx, &filter,
table->offset + table->step * filter_idx);
}
}
efx_filter_push_rx_limits(efx);
spin_unlock_bh(&state->lock);
}
int efx_probe_filters(struct efx_nic *efx)
{
struct efx_filter_state *state;
struct efx_filter_table *table;
unsigned table_id;
state = kzalloc(sizeof(*efx->filter_state), GFP_KERNEL);
if (!state)
return -ENOMEM;
efx->filter_state = state;
spin_lock_init(&state->lock);
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
table = &state->table[EFX_FILTER_TABLE_RX_IP];
table->offset = FR_BZ_RX_FILTER_TBL0;
table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
table->step = FR_BZ_RX_FILTER_TBL0_STEP;
}
if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
table = &state->table[EFX_FILTER_TABLE_RX_MAC];
table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
}
for (table_id = 0; table_id < EFX_FILTER_TABLE_COUNT; table_id++) {
table = &state->table[table_id];
if (table->size == 0)
continue;
table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
sizeof(unsigned long),
GFP_KERNEL);
if (!table->used_bitmap)
goto fail;
table->spec = vmalloc(table->size * sizeof(*table->spec));
if (!table->spec)
goto fail;
memset(table->spec, 0, table->size * sizeof(*table->spec));
}
return 0;
fail:
efx_remove_filters(efx);
return -ENOMEM;
}
void efx_remove_filters(struct efx_nic *efx)
{
struct efx_filter_state *state = efx->filter_state;
enum efx_filter_table_id table_id;
for (table_id = 0; table_id < EFX_FILTER_TABLE_COUNT; table_id++) {
kfree(state->table[table_id].used_bitmap);
vfree(state->table[table_id].spec);
}
kfree(state);
}