blob: fe503e7de563889c6511a67e321859269904436b [file] [log] [blame]
/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linuxver.h>
#include <bcmdefs.h>
#include <bcmdevs.h>
#include <osl.h>
#include <bcmendian.h>
#include <hndsoc.h>
#include <bcmutils.h>
#include <siutils.h>
#include <sbhnddma.h>
#include <hnddma.h>
/* debug/trace */
#ifdef BCMDBG
#define DMA_ERROR(args) \
do { \
if (!(*di->msg_level & 1)) \
; \
else \
printf args; \
} while (0)
#define DMA_TRACE(args) \
do { \
if (!(*di->msg_level & 2)) \
; \
else \
printf args; \
} while (0)
#else
#define DMA_ERROR(args)
#define DMA_TRACE(args)
#endif /* BCMDBG */
#define DMA_NONE(args)
#define d32txregs dregs.d32_u.txregs_32
#define d32rxregs dregs.d32_u.rxregs_32
#define txd32 dregs.d32_u.txd_32
#define rxd32 dregs.d32_u.rxd_32
#define d64txregs dregs.d64_u.txregs_64
#define d64rxregs dregs.d64_u.rxregs_64
#define txd64 dregs.d64_u.txd_64
#define rxd64 dregs.d64_u.rxd_64
/* default dma message level (if input msg_level pointer is null in dma_attach()) */
static uint dma_msg_level;
#define MAXNAMEL 8 /* 8 char names */
#define DI_INFO(dmah) ((dma_info_t *)dmah)
/* dma engine software state */
typedef struct dma_info {
struct hnddma_pub hnddma; /* exported structure, don't use hnddma_t,
* which could be const
*/
uint *msg_level; /* message level pointer */
char name[MAXNAMEL]; /* callers name for diag msgs */
void *osh; /* os handle */
si_t *sih; /* sb handle */
bool dma64; /* this dma engine is operating in 64-bit mode */
bool addrext; /* this dma engine supports DmaExtendedAddrChanges */
union {
struct {
dma32regs_t *txregs_32; /* 32-bit dma tx engine registers */
dma32regs_t *rxregs_32; /* 32-bit dma rx engine registers */
dma32dd_t *txd_32; /* pointer to dma32 tx descriptor ring */
dma32dd_t *rxd_32; /* pointer to dma32 rx descriptor ring */
} d32_u;
struct {
dma64regs_t *txregs_64; /* 64-bit dma tx engine registers */
dma64regs_t *rxregs_64; /* 64-bit dma rx engine registers */
dma64dd_t *txd_64; /* pointer to dma64 tx descriptor ring */
dma64dd_t *rxd_64; /* pointer to dma64 rx descriptor ring */
} d64_u;
} dregs;
u16 dmadesc_align; /* alignment requirement for dma descriptors */
u16 ntxd; /* # tx descriptors tunable */
u16 txin; /* index of next descriptor to reclaim */
u16 txout; /* index of next descriptor to post */
void **txp; /* pointer to parallel array of pointers to packets */
osldma_t *tx_dmah; /* DMA TX descriptor ring handle */
hnddma_seg_map_t *txp_dmah; /* DMA MAP meta-data handle */
dmaaddr_t txdpa; /* Aligned physical address of descriptor ring */
dmaaddr_t txdpaorig; /* Original physical address of descriptor ring */
u16 txdalign; /* #bytes added to alloc'd mem to align txd */
u32 txdalloc; /* #bytes allocated for the ring */
u32 xmtptrbase; /* When using unaligned descriptors, the ptr register
* is not just an index, it needs all 13 bits to be
* an offset from the addr register.
*/
u16 nrxd; /* # rx descriptors tunable */
u16 rxin; /* index of next descriptor to reclaim */
u16 rxout; /* index of next descriptor to post */
void **rxp; /* pointer to parallel array of pointers to packets */
osldma_t *rx_dmah; /* DMA RX descriptor ring handle */
hnddma_seg_map_t *rxp_dmah; /* DMA MAP meta-data handle */
dmaaddr_t rxdpa; /* Aligned physical address of descriptor ring */
dmaaddr_t rxdpaorig; /* Original physical address of descriptor ring */
u16 rxdalign; /* #bytes added to alloc'd mem to align rxd */
u32 rxdalloc; /* #bytes allocated for the ring */
u32 rcvptrbase; /* Base for ptr reg when using unaligned descriptors */
/* tunables */
unsigned int rxbufsize; /* rx buffer size in bytes,
* not including the extra headroom
*/
uint rxextrahdrroom; /* extra rx headroom, reverseved to assist upper stack
* e.g. some rx pkt buffers will be bridged to tx side
* without byte copying. The extra headroom needs to be
* large enough to fit txheader needs.
* Some dongle driver may not need it.
*/
uint nrxpost; /* # rx buffers to keep posted */
unsigned int rxoffset; /* rxcontrol offset */
uint ddoffsetlow; /* add to get dma address of descriptor ring, low 32 bits */
uint ddoffsethigh; /* high 32 bits */
uint dataoffsetlow; /* add to get dma address of data buffer, low 32 bits */
uint dataoffsethigh; /* high 32 bits */
bool aligndesc_4k; /* descriptor base need to be aligned or not */
} dma_info_t;
/*
* If BCMDMA32 is defined, hnddma will support both 32-bit and 64-bit DMA engines.
* Otherwise it will support only 64-bit.
*
* DMA32_ENAB indicates whether hnddma is compiled with support for 32-bit DMA engines.
* DMA64_ENAB indicates whether hnddma is compiled with support for 64-bit DMA engines.
*
* DMA64_MODE indicates whether the current DMA engine is running as 64-bit.
*/
#ifdef BCMDMA32
#define DMA32_ENAB(di) 1
#define DMA64_ENAB(di) 1
#define DMA64_MODE(di) ((di)->dma64)
#else /* !BCMDMA32 */
#define DMA32_ENAB(di) 0
#define DMA64_ENAB(di) 1
#define DMA64_MODE(di) 1
#endif /* !BCMDMA32 */
/* DMA Scatter-gather list is supported. Note this is limited to TX direction only */
#ifdef BCMDMASGLISTOSL
#define DMASGLIST_ENAB true
#else
#define DMASGLIST_ENAB false
#endif /* BCMDMASGLISTOSL */
/* descriptor bumping macros */
#define XXD(x, n) ((x) & ((n) - 1)) /* faster than %, but n must be power of 2 */
#define TXD(x) XXD((x), di->ntxd)
#define RXD(x) XXD((x), di->nrxd)
#define NEXTTXD(i) TXD((i) + 1)
#define PREVTXD(i) TXD((i) - 1)
#define NEXTRXD(i) RXD((i) + 1)
#define PREVRXD(i) RXD((i) - 1)
#define NTXDACTIVE(h, t) TXD((t) - (h))
#define NRXDACTIVE(h, t) RXD((t) - (h))
/* macros to convert between byte offsets and indexes */
#define B2I(bytes, type) ((bytes) / sizeof(type))
#define I2B(index, type) ((index) * sizeof(type))
#define PCI32ADDR_HIGH 0xc0000000 /* address[31:30] */
#define PCI32ADDR_HIGH_SHIFT 30 /* address[31:30] */
#define PCI64ADDR_HIGH 0x80000000 /* address[63] */
#define PCI64ADDR_HIGH_SHIFT 31 /* address[63] */
/* Common prototypes */
static bool _dma_isaddrext(dma_info_t *di);
static bool _dma_descriptor_align(dma_info_t *di);
static bool _dma_alloc(dma_info_t *di, uint direction);
static void _dma_detach(dma_info_t *di);
static void _dma_ddtable_init(dma_info_t *di, uint direction, dmaaddr_t pa);
static void _dma_rxinit(dma_info_t *di);
static void *_dma_rx(dma_info_t *di);
static bool _dma_rxfill(dma_info_t *di);
static void _dma_rxreclaim(dma_info_t *di);
static void _dma_rxenable(dma_info_t *di);
static void *_dma_getnextrxp(dma_info_t *di, bool forceall);
static void _dma_rx_param_get(dma_info_t *di, u16 *rxoffset,
u16 *rxbufsize);
static void _dma_txblock(dma_info_t *di);
static void _dma_txunblock(dma_info_t *di);
static uint _dma_txactive(dma_info_t *di);
static uint _dma_rxactive(dma_info_t *di);
static uint _dma_txpending(dma_info_t *di);
static uint _dma_txcommitted(dma_info_t *di);
static void *_dma_peeknexttxp(dma_info_t *di);
static void *_dma_peeknextrxp(dma_info_t *di);
static unsigned long _dma_getvar(dma_info_t *di, const char *name);
static void _dma_counterreset(dma_info_t *di);
static void _dma_fifoloopbackenable(dma_info_t *di);
static uint _dma_ctrlflags(dma_info_t *di, uint mask, uint flags);
static u8 dma_align_sizetobits(uint size);
static void *dma_ringalloc(osl_t *osh, u32 boundary, uint size,
u16 *alignbits, uint *alloced,
dmaaddr_t *descpa, osldma_t **dmah);
/* Prototypes for 32-bit routines */
static bool dma32_alloc(dma_info_t *di, uint direction);
static bool dma32_txreset(dma_info_t *di);
static bool dma32_rxreset(dma_info_t *di);
static bool dma32_txsuspendedidle(dma_info_t *di);
static int dma32_txfast(dma_info_t *di, void *p0, bool commit);
static void *dma32_getnexttxp(dma_info_t *di, txd_range_t range);
static void *dma32_getnextrxp(dma_info_t *di, bool forceall);
static void dma32_txrotate(dma_info_t *di);
static bool dma32_rxidle(dma_info_t *di);
static void dma32_txinit(dma_info_t *di);
static bool dma32_txenabled(dma_info_t *di);
static void dma32_txsuspend(dma_info_t *di);
static void dma32_txresume(dma_info_t *di);
static bool dma32_txsuspended(dma_info_t *di);
static void dma32_txreclaim(dma_info_t *di, txd_range_t range);
static bool dma32_txstopped(dma_info_t *di);
static bool dma32_rxstopped(dma_info_t *di);
static bool dma32_rxenabled(dma_info_t *di);
static bool _dma32_addrext(osl_t *osh, dma32regs_t *dma32regs);
/* Prototypes for 64-bit routines */
static bool dma64_alloc(dma_info_t *di, uint direction);
static bool dma64_txreset(dma_info_t *di);
static bool dma64_rxreset(dma_info_t *di);
static bool dma64_txsuspendedidle(dma_info_t *di);
static int dma64_txfast(dma_info_t *di, void *p0, bool commit);
static int dma64_txunframed(dma_info_t *di, void *p0, uint len, bool commit);
static void *dma64_getpos(dma_info_t *di, bool direction);
static void *dma64_getnexttxp(dma_info_t *di, txd_range_t range);
static void *dma64_getnextrxp(dma_info_t *di, bool forceall);
static void dma64_txrotate(dma_info_t *di);
static bool dma64_rxidle(dma_info_t *di);
static void dma64_txinit(dma_info_t *di);
static bool dma64_txenabled(dma_info_t *di);
static void dma64_txsuspend(dma_info_t *di);
static void dma64_txresume(dma_info_t *di);
static bool dma64_txsuspended(dma_info_t *di);
static void dma64_txreclaim(dma_info_t *di, txd_range_t range);
static bool dma64_txstopped(dma_info_t *di);
static bool dma64_rxstopped(dma_info_t *di);
static bool dma64_rxenabled(dma_info_t *di);
static bool _dma64_addrext(osl_t *osh, dma64regs_t *dma64regs);
static inline u32 parity32(u32 data);
const di_fcn_t dma64proc = {
(di_detach_t) _dma_detach,
(di_txinit_t) dma64_txinit,
(di_txreset_t) dma64_txreset,
(di_txenabled_t) dma64_txenabled,
(di_txsuspend_t) dma64_txsuspend,
(di_txresume_t) dma64_txresume,
(di_txsuspended_t) dma64_txsuspended,
(di_txsuspendedidle_t) dma64_txsuspendedidle,
(di_txfast_t) dma64_txfast,
(di_txunframed_t) dma64_txunframed,
(di_getpos_t) dma64_getpos,
(di_txstopped_t) dma64_txstopped,
(di_txreclaim_t) dma64_txreclaim,
(di_getnexttxp_t) dma64_getnexttxp,
(di_peeknexttxp_t) _dma_peeknexttxp,
(di_txblock_t) _dma_txblock,
(di_txunblock_t) _dma_txunblock,
(di_txactive_t) _dma_txactive,
(di_txrotate_t) dma64_txrotate,
(di_rxinit_t) _dma_rxinit,
(di_rxreset_t) dma64_rxreset,
(di_rxidle_t) dma64_rxidle,
(di_rxstopped_t) dma64_rxstopped,
(di_rxenable_t) _dma_rxenable,
(di_rxenabled_t) dma64_rxenabled,
(di_rx_t) _dma_rx,
(di_rxfill_t) _dma_rxfill,
(di_rxreclaim_t) _dma_rxreclaim,
(di_getnextrxp_t) _dma_getnextrxp,
(di_peeknextrxp_t) _dma_peeknextrxp,
(di_rxparam_get_t) _dma_rx_param_get,
(di_fifoloopbackenable_t) _dma_fifoloopbackenable,
(di_getvar_t) _dma_getvar,
(di_counterreset_t) _dma_counterreset,
(di_ctrlflags_t) _dma_ctrlflags,
NULL,
NULL,
NULL,
(di_rxactive_t) _dma_rxactive,
(di_txpending_t) _dma_txpending,
(di_txcommitted_t) _dma_txcommitted,
39
};
static const di_fcn_t dma32proc = {
(di_detach_t) _dma_detach,
(di_txinit_t) dma32_txinit,
(di_txreset_t) dma32_txreset,
(di_txenabled_t) dma32_txenabled,
(di_txsuspend_t) dma32_txsuspend,
(di_txresume_t) dma32_txresume,
(di_txsuspended_t) dma32_txsuspended,
(di_txsuspendedidle_t) dma32_txsuspendedidle,
(di_txfast_t) dma32_txfast,
NULL,
NULL,
(di_txstopped_t) dma32_txstopped,
(di_txreclaim_t) dma32_txreclaim,
(di_getnexttxp_t) dma32_getnexttxp,
(di_peeknexttxp_t) _dma_peeknexttxp,
(di_txblock_t) _dma_txblock,
(di_txunblock_t) _dma_txunblock,
(di_txactive_t) _dma_txactive,
(di_txrotate_t) dma32_txrotate,
(di_rxinit_t) _dma_rxinit,
(di_rxreset_t) dma32_rxreset,
(di_rxidle_t) dma32_rxidle,
(di_rxstopped_t) dma32_rxstopped,
(di_rxenable_t) _dma_rxenable,
(di_rxenabled_t) dma32_rxenabled,
(di_rx_t) _dma_rx,
(di_rxfill_t) _dma_rxfill,
(di_rxreclaim_t) _dma_rxreclaim,
(di_getnextrxp_t) _dma_getnextrxp,
(di_peeknextrxp_t) _dma_peeknextrxp,
(di_rxparam_get_t) _dma_rx_param_get,
(di_fifoloopbackenable_t) _dma_fifoloopbackenable,
(di_getvar_t) _dma_getvar,
(di_counterreset_t) _dma_counterreset,
(di_ctrlflags_t) _dma_ctrlflags,
NULL,
NULL,
NULL,
(di_rxactive_t) _dma_rxactive,
(di_txpending_t) _dma_txpending,
(di_txcommitted_t) _dma_txcommitted,
39
};
hnddma_t *dma_attach(osl_t *osh, char *name, si_t *sih, void *dmaregstx,
void *dmaregsrx, uint ntxd, uint nrxd, uint rxbufsize,
int rxextheadroom, uint nrxpost, uint rxoffset,
uint *msg_level)
{
dma_info_t *di;
uint size;
/* allocate private info structure */
di = kzalloc(sizeof(dma_info_t), GFP_ATOMIC);
if (di == NULL) {
#ifdef BCMDBG
printf("dma_attach: out of memory\n");
#endif
return NULL;
}
di->msg_level = msg_level ? msg_level : &dma_msg_level;
/* old chips w/o sb is no longer supported */
ASSERT(sih != NULL);
if (DMA64_ENAB(di))
di->dma64 =
((si_core_sflags(sih, 0, 0) & SISF_DMA64) == SISF_DMA64);
else
di->dma64 = 0;
/* check arguments */
ASSERT(ISPOWEROF2(ntxd));
ASSERT(ISPOWEROF2(nrxd));
if (nrxd == 0)
ASSERT(dmaregsrx == NULL);
if (ntxd == 0)
ASSERT(dmaregstx == NULL);
/* init dma reg pointer */
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
ASSERT(ntxd <= D64MAXDD);
ASSERT(nrxd <= D64MAXDD);
di->d64txregs = (dma64regs_t *) dmaregstx;
di->d64rxregs = (dma64regs_t *) dmaregsrx;
di->hnddma.di_fn = (const di_fcn_t *)&dma64proc;
} else if (DMA32_ENAB(di)) {
ASSERT(ntxd <= D32MAXDD);
ASSERT(nrxd <= D32MAXDD);
di->d32txregs = (dma32regs_t *) dmaregstx;
di->d32rxregs = (dma32regs_t *) dmaregsrx;
di->hnddma.di_fn = (const di_fcn_t *)&dma32proc;
} else {
DMA_ERROR(("dma_attach: driver doesn't support 32-bit DMA\n"));
ASSERT(0);
goto fail;
}
/* Default flags (which can be changed by the driver calling dma_ctrlflags
* before enable): For backwards compatibility both Rx Overflow Continue
* and Parity are DISABLED.
* supports it.
*/
di->hnddma.di_fn->ctrlflags(&di->hnddma, DMA_CTRL_ROC | DMA_CTRL_PEN,
0);
DMA_TRACE(("%s: dma_attach: %s osh %p flags 0x%x ntxd %d nrxd %d rxbufsize %d " "rxextheadroom %d nrxpost %d rxoffset %d dmaregstx %p dmaregsrx %p\n", name, (DMA64_MODE(di) ? "DMA64" : "DMA32"), osh, di->hnddma.dmactrlflags, ntxd, nrxd, rxbufsize, rxextheadroom, nrxpost, rxoffset, dmaregstx, dmaregsrx));
/* make a private copy of our callers name */
strncpy(di->name, name, MAXNAMEL);
di->name[MAXNAMEL - 1] = '\0';
di->osh = osh;
di->sih = sih;
/* save tunables */
di->ntxd = (u16) ntxd;
di->nrxd = (u16) nrxd;
/* the actual dma size doesn't include the extra headroom */
di->rxextrahdrroom =
(rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
if (rxbufsize > BCMEXTRAHDROOM)
di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
else
di->rxbufsize = (u16) rxbufsize;
di->nrxpost = (u16) nrxpost;
di->rxoffset = (u8) rxoffset;
/*
* figure out the DMA physical address offset for dd and data
* PCI/PCIE: they map silicon backplace address to zero based memory, need offset
* Other bus: use zero
* SI_BUS BIGENDIAN kludge: use sdram swapped region for data buffer, not descriptor
*/
di->ddoffsetlow = 0;
di->dataoffsetlow = 0;
/* for pci bus, add offset */
if (sih->bustype == PCI_BUS) {
if ((sih->buscoretype == PCIE_CORE_ID) && DMA64_MODE(di)) {
/* pcie with DMA64 */
di->ddoffsetlow = 0;
di->ddoffsethigh = SI_PCIE_DMA_H32;
} else {
/* pci(DMA32/DMA64) or pcie with DMA32 */
di->ddoffsetlow = SI_PCI_DMA;
di->ddoffsethigh = 0;
}
di->dataoffsetlow = di->ddoffsetlow;
di->dataoffsethigh = di->ddoffsethigh;
}
#if defined(__mips__) && defined(IL_BIGENDIAN)
di->dataoffsetlow = di->dataoffsetlow + SI_SDRAM_SWAPPED;
#endif /* defined(__mips__) && defined(IL_BIGENDIAN) */
/* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
if ((si_coreid(sih) == SDIOD_CORE_ID)
&& ((si_corerev(sih) > 0) && (si_corerev(sih) <= 2)))
di->addrext = 0;
else if ((si_coreid(sih) == I2S_CORE_ID) &&
((si_corerev(sih) == 0) || (si_corerev(sih) == 1)))
di->addrext = 0;
else
di->addrext = _dma_isaddrext(di);
/* does the descriptors need to be aligned and if yes, on 4K/8K or not */
di->aligndesc_4k = _dma_descriptor_align(di);
if (di->aligndesc_4k) {
if (DMA64_MODE(di)) {
di->dmadesc_align = D64RINGALIGN_BITS;
if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2)) {
/* for smaller dd table, HW relax the alignment requirement */
di->dmadesc_align = D64RINGALIGN_BITS - 1;
}
} else
di->dmadesc_align = D32RINGALIGN_BITS;
} else
di->dmadesc_align = 4; /* 16 byte alignment */
DMA_NONE(("DMA descriptor align_needed %d, align %d\n",
di->aligndesc_4k, di->dmadesc_align));
/* allocate tx packet pointer vector */
if (ntxd) {
size = ntxd * sizeof(void *);
di->txp = kzalloc(size, GFP_ATOMIC);
if (di->txp == NULL) {
DMA_ERROR(("%s: dma_attach: out of tx memory\n", di->name));
goto fail;
}
}
/* allocate rx packet pointer vector */
if (nrxd) {
size = nrxd * sizeof(void *);
di->rxp = kzalloc(size, GFP_ATOMIC);
if (di->rxp == NULL) {
DMA_ERROR(("%s: dma_attach: out of rx memory\n", di->name));
goto fail;
}
}
/* allocate transmit descriptor ring, only need ntxd descriptors but it must be aligned */
if (ntxd) {
if (!_dma_alloc(di, DMA_TX))
goto fail;
}
/* allocate receive descriptor ring, only need nrxd descriptors but it must be aligned */
if (nrxd) {
if (!_dma_alloc(di, DMA_RX))
goto fail;
}
if ((di->ddoffsetlow != 0) && !di->addrext) {
if (PHYSADDRLO(di->txdpa) > SI_PCI_DMA_SZ) {
DMA_ERROR(("%s: dma_attach: txdpa 0x%x: addrext not supported\n", di->name, (u32) PHYSADDRLO(di->txdpa)));
goto fail;
}
if (PHYSADDRLO(di->rxdpa) > SI_PCI_DMA_SZ) {
DMA_ERROR(("%s: dma_attach: rxdpa 0x%x: addrext not supported\n", di->name, (u32) PHYSADDRLO(di->rxdpa)));
goto fail;
}
}
DMA_TRACE(("ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh " "0x%x addrext %d\n", di->ddoffsetlow, di->ddoffsethigh, di->dataoffsetlow, di->dataoffsethigh, di->addrext));
/* allocate DMA mapping vectors */
if (DMASGLIST_ENAB) {
if (ntxd) {
size = ntxd * sizeof(hnddma_seg_map_t);
di->txp_dmah = kzalloc(size, GFP_ATOMIC);
if (di->txp_dmah == NULL)
goto fail;
}
if (nrxd) {
size = nrxd * sizeof(hnddma_seg_map_t);
di->rxp_dmah = kzalloc(size, GFP_ATOMIC);
if (di->rxp_dmah == NULL)
goto fail;
}
}
return (hnddma_t *) di;
fail:
_dma_detach(di);
return NULL;
}
/* init the tx or rx descriptor */
static inline void
dma32_dd_upd(dma_info_t *di, dma32dd_t *ddring, dmaaddr_t pa, uint outidx,
u32 *flags, u32 bufcount)
{
/* dma32 uses 32-bit control to fit both flags and bufcounter */
*flags = *flags | (bufcount & CTRL_BC_MASK);
if ((di->dataoffsetlow == 0) || !(PHYSADDRLO(pa) & PCI32ADDR_HIGH)) {
W_SM(&ddring[outidx].addr,
BUS_SWAP32(PHYSADDRLO(pa) + di->dataoffsetlow));
W_SM(&ddring[outidx].ctrl, BUS_SWAP32(*flags));
} else {
/* address extension */
u32 ae;
ASSERT(di->addrext);
ae = (PHYSADDRLO(pa) & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
PHYSADDRLO(pa) &= ~PCI32ADDR_HIGH;
*flags |= (ae << CTRL_AE_SHIFT);
W_SM(&ddring[outidx].addr,
BUS_SWAP32(PHYSADDRLO(pa) + di->dataoffsetlow));
W_SM(&ddring[outidx].ctrl, BUS_SWAP32(*flags));
}
}
/* Check for odd number of 1's */
static inline u32 parity32(u32 data)
{
data ^= data >> 16;
data ^= data >> 8;
data ^= data >> 4;
data ^= data >> 2;
data ^= data >> 1;
return data & 1;
}
#define DMA64_DD_PARITY(dd) parity32((dd)->addrlow ^ (dd)->addrhigh ^ (dd)->ctrl1 ^ (dd)->ctrl2)
static inline void
dma64_dd_upd(dma_info_t *di, dma64dd_t *ddring, dmaaddr_t pa, uint outidx,
u32 *flags, u32 bufcount)
{
u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
/* PCI bus with big(>1G) physical address, use address extension */
#if defined(__mips__) && defined(IL_BIGENDIAN)
if ((di->dataoffsetlow == SI_SDRAM_SWAPPED)
|| !(PHYSADDRLO(pa) & PCI32ADDR_HIGH)) {
#else
if ((di->dataoffsetlow == 0) || !(PHYSADDRLO(pa) & PCI32ADDR_HIGH)) {
#endif /* defined(__mips__) && defined(IL_BIGENDIAN) */
ASSERT((PHYSADDRHI(pa) & PCI64ADDR_HIGH) == 0);
W_SM(&ddring[outidx].addrlow,
BUS_SWAP32(PHYSADDRLO(pa) + di->dataoffsetlow));
W_SM(&ddring[outidx].addrhigh,
BUS_SWAP32(PHYSADDRHI(pa) + di->dataoffsethigh));
W_SM(&ddring[outidx].ctrl1, BUS_SWAP32(*flags));
W_SM(&ddring[outidx].ctrl2, BUS_SWAP32(ctrl2));
} else {
/* address extension for 32-bit PCI */
u32 ae;
ASSERT(di->addrext);
ae = (PHYSADDRLO(pa) & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
PHYSADDRLO(pa) &= ~PCI32ADDR_HIGH;
ASSERT(PHYSADDRHI(pa) == 0);
ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
W_SM(&ddring[outidx].addrlow,
BUS_SWAP32(PHYSADDRLO(pa) + di->dataoffsetlow));
W_SM(&ddring[outidx].addrhigh,
BUS_SWAP32(0 + di->dataoffsethigh));
W_SM(&ddring[outidx].ctrl1, BUS_SWAP32(*flags));
W_SM(&ddring[outidx].ctrl2, BUS_SWAP32(ctrl2));
}
if (di->hnddma.dmactrlflags & DMA_CTRL_PEN) {
if (DMA64_DD_PARITY(&ddring[outidx])) {
W_SM(&ddring[outidx].ctrl2,
BUS_SWAP32(ctrl2 | D64_CTRL2_PARITY));
}
}
}
static bool _dma32_addrext(osl_t *osh, dma32regs_t *dma32regs)
{
u32 w;
OR_REG(osh, &dma32regs->control, XC_AE);
w = R_REG(osh, &dma32regs->control);
AND_REG(osh, &dma32regs->control, ~XC_AE);
return (w & XC_AE) == XC_AE;
}
static bool _dma_alloc(dma_info_t *di, uint direction)
{
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
return dma64_alloc(di, direction);
} else if (DMA32_ENAB(di)) {
return dma32_alloc(di, direction);
} else
ASSERT(0);
}
/* !! may be called with core in reset */
static void _dma_detach(dma_info_t *di)
{
DMA_TRACE(("%s: dma_detach\n", di->name));
/* shouldn't be here if descriptors are unreclaimed */
ASSERT(di->txin == di->txout);
ASSERT(di->rxin == di->rxout);
/* free dma descriptor rings */
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
if (di->txd64)
DMA_FREE_CONSISTENT(di->osh,
((s8 *)di->txd64 -
di->txdalign), di->txdalloc,
(di->txdpaorig), &di->tx_dmah);
if (di->rxd64)
DMA_FREE_CONSISTENT(di->osh,
((s8 *)di->rxd64 -
di->rxdalign), di->rxdalloc,
(di->rxdpaorig), &di->rx_dmah);
} else if (DMA32_ENAB(di)) {
if (di->txd32)
DMA_FREE_CONSISTENT(di->osh,
((s8 *)di->txd32 -
di->txdalign), di->txdalloc,
(di->txdpaorig), &di->tx_dmah);
if (di->rxd32)
DMA_FREE_CONSISTENT(di->osh,
((s8 *)di->rxd32 -
di->rxdalign), di->rxdalloc,
(di->rxdpaorig), &di->rx_dmah);
} else
ASSERT(0);
/* free packet pointer vectors */
if (di->txp)
kfree((void *)di->txp);
if (di->rxp)
kfree((void *)di->rxp);
/* free tx packet DMA handles */
if (di->txp_dmah)
kfree(di->txp_dmah);
/* free rx packet DMA handles */
if (di->rxp_dmah)
kfree(di->rxp_dmah);
/* free our private info structure */
kfree((void *)di);
}
static bool _dma_descriptor_align(dma_info_t *di)
{
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
u32 addrl;
/* Check to see if the descriptors need to be aligned on 4K/8K or not */
if (di->d64txregs != NULL) {
W_REG(di->osh, &di->d64txregs->addrlow, 0xff0);
addrl = R_REG(di->osh, &di->d64txregs->addrlow);
if (addrl != 0)
return false;
} else if (di->d64rxregs != NULL) {
W_REG(di->osh, &di->d64rxregs->addrlow, 0xff0);
addrl = R_REG(di->osh, &di->d64rxregs->addrlow);
if (addrl != 0)
return false;
}
}
return true;
}
/* return true if this dma engine supports DmaExtendedAddrChanges, otherwise false */
static bool _dma_isaddrext(dma_info_t *di)
{
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
/* DMA64 supports full 32- or 64-bit operation. AE is always valid */
/* not all tx or rx channel are available */
if (di->d64txregs != NULL) {
if (!_dma64_addrext(di->osh, di->d64txregs)) {
DMA_ERROR(("%s: _dma_isaddrext: DMA64 tx doesn't have AE set\n", di->name));
ASSERT(0);
}
return true;
} else if (di->d64rxregs != NULL) {
if (!_dma64_addrext(di->osh, di->d64rxregs)) {
DMA_ERROR(("%s: _dma_isaddrext: DMA64 rx doesn't have AE set\n", di->name));
ASSERT(0);
}
return true;
}
return false;
} else if (DMA32_ENAB(di)) {
if (di->d32txregs)
return _dma32_addrext(di->osh, di->d32txregs);
else if (di->d32rxregs)
return _dma32_addrext(di->osh, di->d32rxregs);
} else
ASSERT(0);
return false;
}
/* initialize descriptor table base address */
static void _dma_ddtable_init(dma_info_t *di, uint direction, dmaaddr_t pa)
{
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
if (!di->aligndesc_4k) {
if (direction == DMA_TX)
di->xmtptrbase = PHYSADDRLO(pa);
else
di->rcvptrbase = PHYSADDRLO(pa);
}
if ((di->ddoffsetlow == 0)
|| !(PHYSADDRLO(pa) & PCI32ADDR_HIGH)) {
if (direction == DMA_TX) {
W_REG(di->osh, &di->d64txregs->addrlow,
(PHYSADDRLO(pa) + di->ddoffsetlow));
W_REG(di->osh, &di->d64txregs->addrhigh,
(PHYSADDRHI(pa) + di->ddoffsethigh));
} else {
W_REG(di->osh, &di->d64rxregs->addrlow,
(PHYSADDRLO(pa) + di->ddoffsetlow));
W_REG(di->osh, &di->d64rxregs->addrhigh,
(PHYSADDRHI(pa) + di->ddoffsethigh));
}
} else {
/* DMA64 32bits address extension */
u32 ae;
ASSERT(di->addrext);
ASSERT(PHYSADDRHI(pa) == 0);
/* shift the high bit(s) from pa to ae */
ae = (PHYSADDRLO(pa) & PCI32ADDR_HIGH) >>
PCI32ADDR_HIGH_SHIFT;
PHYSADDRLO(pa) &= ~PCI32ADDR_HIGH;
if (direction == DMA_TX) {
W_REG(di->osh, &di->d64txregs->addrlow,
(PHYSADDRLO(pa) + di->ddoffsetlow));
W_REG(di->osh, &di->d64txregs->addrhigh,
di->ddoffsethigh);
SET_REG(di->osh, &di->d64txregs->control,
D64_XC_AE, (ae << D64_XC_AE_SHIFT));
} else {
W_REG(di->osh, &di->d64rxregs->addrlow,
(PHYSADDRLO(pa) + di->ddoffsetlow));
W_REG(di->osh, &di->d64rxregs->addrhigh,
di->ddoffsethigh);
SET_REG(di->osh, &di->d64rxregs->control,
D64_RC_AE, (ae << D64_RC_AE_SHIFT));
}
}
} else if (DMA32_ENAB(di)) {
ASSERT(PHYSADDRHI(pa) == 0);
if ((di->ddoffsetlow == 0)
|| !(PHYSADDRLO(pa) & PCI32ADDR_HIGH)) {
if (direction == DMA_TX)
W_REG(di->osh, &di->d32txregs->addr,
(PHYSADDRLO(pa) + di->ddoffsetlow));
else
W_REG(di->osh, &di->d32rxregs->addr,
(PHYSADDRLO(pa) + di->ddoffsetlow));
} else {
/* dma32 address extension */
u32 ae;
ASSERT(di->addrext);
/* shift the high bit(s) from pa to ae */
ae = (PHYSADDRLO(pa) & PCI32ADDR_HIGH) >>
PCI32ADDR_HIGH_SHIFT;
PHYSADDRLO(pa) &= ~PCI32ADDR_HIGH;
if (direction == DMA_TX) {
W_REG(di->osh, &di->d32txregs->addr,
(PHYSADDRLO(pa) + di->ddoffsetlow));
SET_REG(di->osh, &di->d32txregs->control, XC_AE,
ae << XC_AE_SHIFT);
} else {
W_REG(di->osh, &di->d32rxregs->addr,
(PHYSADDRLO(pa) + di->ddoffsetlow));
SET_REG(di->osh, &di->d32rxregs->control, RC_AE,
ae << RC_AE_SHIFT);
}
}
} else
ASSERT(0);
}
static void _dma_fifoloopbackenable(dma_info_t *di)
{
DMA_TRACE(("%s: dma_fifoloopbackenable\n", di->name));
if (DMA64_ENAB(di) && DMA64_MODE(di))
OR_REG(di->osh, &di->d64txregs->control, D64_XC_LE);
else if (DMA32_ENAB(di))
OR_REG(di->osh, &di->d32txregs->control, XC_LE);
else
ASSERT(0);
}
static void _dma_rxinit(dma_info_t *di)
{
DMA_TRACE(("%s: dma_rxinit\n", di->name));
if (di->nrxd == 0)
return;
di->rxin = di->rxout = 0;
/* clear rx descriptor ring */
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
BZERO_SM((void *)di->rxd64,
(di->nrxd * sizeof(dma64dd_t)));
/* DMA engine with out alignment requirement requires table to be inited
* before enabling the engine
*/
if (!di->aligndesc_4k)
_dma_ddtable_init(di, DMA_RX, di->rxdpa);
_dma_rxenable(di);
if (di->aligndesc_4k)
_dma_ddtable_init(di, DMA_RX, di->rxdpa);
} else if (DMA32_ENAB(di)) {
BZERO_SM((void *)di->rxd32,
(di->nrxd * sizeof(dma32dd_t)));
_dma_rxenable(di);
_dma_ddtable_init(di, DMA_RX, di->rxdpa);
} else
ASSERT(0);
}
static void _dma_rxenable(dma_info_t *di)
{
uint dmactrlflags = di->hnddma.dmactrlflags;
DMA_TRACE(("%s: dma_rxenable\n", di->name));
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
u32 control =
(R_REG(di->osh, &di->d64rxregs->control) & D64_RC_AE) |
D64_RC_RE;
if ((dmactrlflags & DMA_CTRL_PEN) == 0)
control |= D64_RC_PD;
if (dmactrlflags & DMA_CTRL_ROC)
control |= D64_RC_OC;
W_REG(di->osh, &di->d64rxregs->control,
((di->rxoffset << D64_RC_RO_SHIFT) | control));
} else if (DMA32_ENAB(di)) {
u32 control =
(R_REG(di->osh, &di->d32rxregs->control) & RC_AE) | RC_RE;
if ((dmactrlflags & DMA_CTRL_PEN) == 0)
control |= RC_PD;
if (dmactrlflags & DMA_CTRL_ROC)
control |= RC_OC;
W_REG(di->osh, &di->d32rxregs->control,
((di->rxoffset << RC_RO_SHIFT) | control));
} else
ASSERT(0);
}
static void
_dma_rx_param_get(dma_info_t *di, u16 *rxoffset, u16 *rxbufsize)
{
/* the normal values fit into 16 bits */
*rxoffset = (u16) di->rxoffset;
*rxbufsize = (u16) di->rxbufsize;
}
/* !! rx entry routine
* returns a pointer to the next frame received, or NULL if there are no more
* if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is supported
* with pkts chain
* otherwise, it's treated as giant pkt and will be tossed.
* The DMA scattering starts with normal DMA header, followed by first buffer data.
* After it reaches the max size of buffer, the data continues in next DMA descriptor
* buffer WITHOUT DMA header
*/
static void *BCMFASTPATH _dma_rx(dma_info_t *di)
{
void *p, *head, *tail;
uint len;
uint pkt_len;
int resid = 0;
next_frame:
head = _dma_getnextrxp(di, false);
if (head == NULL)
return NULL;
len = ltoh16(*(u16 *) (PKTDATA(head)));
DMA_TRACE(("%s: dma_rx len %d\n", di->name, len));
#if defined(__mips__)
if (!len) {
while (!(len = *(u16 *) OSL_UNCACHED(PKTDATA(head))))
udelay(1);
*(u16 *) PKTDATA(head) = htol16((u16) len);
}
#endif /* defined(__mips__) */
/* set actual length */
pkt_len = min((di->rxoffset + len), di->rxbufsize);
PKTSETLEN(head, pkt_len);
resid = len - (di->rxbufsize - di->rxoffset);
/* check for single or multi-buffer rx */
if (resid > 0) {
tail = head;
while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
PKTSETNEXT(tail, p);
pkt_len = min(resid, (int)di->rxbufsize);
PKTSETLEN(p, pkt_len);
tail = p;
resid -= di->rxbufsize;
}
#ifdef BCMDBG
if (resid > 0) {
uint cur;
ASSERT(p == NULL);
cur = (DMA64_ENAB(di) && DMA64_MODE(di)) ?
B2I(((R_REG(di->osh, &di->d64rxregs->status0) &
D64_RS0_CD_MASK) -
di->rcvptrbase) & D64_RS0_CD_MASK,
dma64dd_t) : B2I(R_REG(di->osh,
&di->d32rxregs->
status) & RS_CD_MASK,
dma32dd_t);
DMA_ERROR(("_dma_rx, rxin %d rxout %d, hw_curr %d\n",
di->rxin, di->rxout, cur));
}
#endif /* BCMDBG */
if ((di->hnddma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
DMA_ERROR(("%s: dma_rx: bad frame length (%d)\n",
di->name, len));
PKTFREE(di->osh, head, false);
di->hnddma.rxgiants++;
goto next_frame;
}
}
return head;
}
/* post receive buffers
* return false is refill failed completely and ring is empty
* this will stall the rx dma and user might want to call rxfill again asap
* This unlikely happens on memory-rich NIC, but often on memory-constrained dongle
*/
static bool BCMFASTPATH _dma_rxfill(dma_info_t *di)
{
void *p;
u16 rxin, rxout;
u32 flags = 0;
uint n;
uint i;
dmaaddr_t pa;
uint extra_offset = 0;
bool ring_empty;
ring_empty = false;
/*
* Determine how many receive buffers we're lacking
* from the full complement, allocate, initialize,
* and post them, then update the chip rx lastdscr.
*/
rxin = di->rxin;
rxout = di->rxout;
n = di->nrxpost - NRXDACTIVE(rxin, rxout);
DMA_TRACE(("%s: dma_rxfill: post %d\n", di->name, n));
if (di->rxbufsize > BCMEXTRAHDROOM)
extra_offset = di->rxextrahdrroom;
for (i = 0; i < n; i++) {
/* the di->rxbufsize doesn't include the extra headroom, we need to add it to the
size to be allocated
*/
p = osl_pktget(di->osh, di->rxbufsize + extra_offset);
if (p == NULL) {
DMA_ERROR(("%s: dma_rxfill: out of rxbufs\n",
di->name));
if (i == 0) {
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
if (dma64_rxidle(di)) {
DMA_ERROR(("%s: rxfill64: ring is empty !\n", di->name));
ring_empty = true;
}
} else if (DMA32_ENAB(di)) {
if (dma32_rxidle(di)) {
DMA_ERROR(("%s: rxfill32: ring is empty !\n", di->name));
ring_empty = true;
}
} else
ASSERT(0);
}
di->hnddma.rxnobuf++;
break;
}
/* reserve an extra headroom, if applicable */
if (extra_offset)
PKTPULL(p, extra_offset);
/* Do a cached write instead of uncached write since DMA_MAP
* will flush the cache.
*/
*(u32 *) (PKTDATA(p)) = 0;
if (DMASGLIST_ENAB)
bzero(&di->rxp_dmah[rxout], sizeof(hnddma_seg_map_t));
pa = DMA_MAP(di->osh, PKTDATA(p),
di->rxbufsize, DMA_RX, p, &di->rxp_dmah[rxout]);
ASSERT(IS_ALIGNED(PHYSADDRLO(pa), 4));
/* save the free packet pointer */
ASSERT(di->rxp[rxout] == NULL);
di->rxp[rxout] = p;
/* reset flags for each descriptor */
flags = 0;
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
if (rxout == (di->nrxd - 1))
flags = D64_CTRL1_EOT;
dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
di->rxbufsize);
} else if (DMA32_ENAB(di)) {
if (rxout == (di->nrxd - 1))
flags = CTRL_EOT;
ASSERT(PHYSADDRHI(pa) == 0);
dma32_dd_upd(di, di->rxd32, pa, rxout, &flags,
di->rxbufsize);
} else
ASSERT(0);
rxout = NEXTRXD(rxout);
}
di->rxout = rxout;
/* update the chip lastdscr pointer */
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
W_REG(di->osh, &di->d64rxregs->ptr,
di->rcvptrbase + I2B(rxout, dma64dd_t));
} else if (DMA32_ENAB(di)) {
W_REG(di->osh, &di->d32rxregs->ptr, I2B(rxout, dma32dd_t));
} else
ASSERT(0);
return ring_empty;
}
/* like getnexttxp but no reclaim */
static void *_dma_peeknexttxp(dma_info_t *di)
{
uint end, i;
if (di->ntxd == 0)
return NULL;
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
end =
B2I(((R_REG(di->osh, &di->d64txregs->status0) &
D64_XS0_CD_MASK) - di->xmtptrbase) & D64_XS0_CD_MASK,
dma64dd_t);
} else if (DMA32_ENAB(di)) {
end =
B2I(R_REG(di->osh, &di->d32txregs->status) & XS_CD_MASK,
dma32dd_t);
} else
ASSERT(0);
for (i = di->txin; i != end; i = NEXTTXD(i))
if (di->txp[i])
return di->txp[i];
return NULL;
}
/* like getnextrxp but not take off the ring */
static void *_dma_peeknextrxp(dma_info_t *di)
{
uint end, i;
if (di->nrxd == 0)
return NULL;
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
end =
B2I(((R_REG(di->osh, &di->d64rxregs->status0) &
D64_RS0_CD_MASK) - di->rcvptrbase) & D64_RS0_CD_MASK,
dma64dd_t);
} else if (DMA32_ENAB(di)) {
end =
B2I(R_REG(di->osh, &di->d32rxregs->status) & RS_CD_MASK,
dma32dd_t);
} else
ASSERT(0);
for (i = di->rxin; i != end; i = NEXTRXD(i))
if (di->rxp[i])
return di->rxp[i];
return NULL;
}
static void _dma_rxreclaim(dma_info_t *di)
{
void *p;
/* "unused local" warning suppression for OSLs that
* define PKTFREE() without using the di->osh arg
*/
di = di;
DMA_TRACE(("%s: dma_rxreclaim\n", di->name));
while ((p = _dma_getnextrxp(di, true)))
PKTFREE(di->osh, p, false);
}
static void *BCMFASTPATH _dma_getnextrxp(dma_info_t *di, bool forceall)
{
if (di->nrxd == 0)
return NULL;
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
return dma64_getnextrxp(di, forceall);
} else if (DMA32_ENAB(di)) {
return dma32_getnextrxp(di, forceall);
} else
ASSERT(0);
}
static void _dma_txblock(dma_info_t *di)
{
di->hnddma.txavail = 0;
}
static void _dma_txunblock(dma_info_t *di)
{
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
}
static uint _dma_txactive(dma_info_t *di)
{
return NTXDACTIVE(di->txin, di->txout);
}
static uint _dma_txpending(dma_info_t *di)
{
uint curr;
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
curr =
B2I(((R_REG(di->osh, &di->d64txregs->status0) &
D64_XS0_CD_MASK) - di->xmtptrbase) & D64_XS0_CD_MASK,
dma64dd_t);
} else if (DMA32_ENAB(di)) {
curr =
B2I(R_REG(di->osh, &di->d32txregs->status) & XS_CD_MASK,
dma32dd_t);
} else
ASSERT(0);
return NTXDACTIVE(curr, di->txout);
}
static uint _dma_txcommitted(dma_info_t *di)
{
uint ptr;
uint txin = di->txin;
if (txin == di->txout)
return 0;
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
ptr = B2I(R_REG(di->osh, &di->d64txregs->ptr), dma64dd_t);
} else if (DMA32_ENAB(di)) {
ptr = B2I(R_REG(di->osh, &di->d32txregs->ptr), dma32dd_t);
} else
ASSERT(0);
return NTXDACTIVE(di->txin, ptr);
}
static uint _dma_rxactive(dma_info_t *di)
{
return NRXDACTIVE(di->rxin, di->rxout);
}
static void _dma_counterreset(dma_info_t *di)
{
/* reset all software counter */
di->hnddma.rxgiants = 0;
di->hnddma.rxnobuf = 0;
di->hnddma.txnobuf = 0;
}
static uint _dma_ctrlflags(dma_info_t *di, uint mask, uint flags)
{
uint dmactrlflags = di->hnddma.dmactrlflags;
if (di == NULL) {
DMA_ERROR(("%s: _dma_ctrlflags: NULL dma handle\n", di->name));
return 0;
}
ASSERT((flags & ~mask) == 0);
dmactrlflags &= ~mask;
dmactrlflags |= flags;
/* If trying to enable parity, check if parity is actually supported */
if (dmactrlflags & DMA_CTRL_PEN) {
u32 control;
if (DMA64_ENAB(di) && DMA64_MODE(di)) {
control = R_REG(di->osh, &di->d64txregs->control);
W_REG(di->osh, &di->d64txregs->control,
control | D64_XC_PD);
if (R_REG(di->osh, &di->d64txregs->control) & D64_XC_PD) {
/* We *can* disable it so it is supported,
* restore control register
*/
W_REG(di->osh, &di->d64txregs->control,
control);
} else {
/* Not supported, don't allow it to be enabled */
dmactrlflags &= ~DMA_CTRL_PEN;
}
} else if (DMA32_ENAB(di)) {
control = R_REG(di->osh, &di->d32txregs->control);
W_REG(di->osh, &di->d32txregs->control,
control | XC_PD);
if (R_REG(di->osh, &di->d32txregs->control) & XC_PD) {
W_REG(di->osh, &di->d32txregs->control,
control);
} else {
/* Not supported, don't allow it to be enabled */
dmactrlflags &= ~DMA_CTRL_PEN;
}
} else
ASSERT(0);
}
di->hnddma.dmactrlflags = dmactrlflags;
return dmactrlflags;
}
/* get the address of the var in order to change later */
static unsigned long _dma_getvar(dma_info_t *di, const char *name)
{
if (!strcmp(name, "&txavail"))
return (unsigned long)&(di->hnddma.txavail);
else {
ASSERT(0);
}
return 0;
}
void dma_txpioloopback(osl_t *osh, dma32regs_t *regs)
{
OR_REG(osh, &regs->control, XC_LE);
}
static
u8 dma_align_sizetobits(uint size)
{
u8 bitpos = 0;
ASSERT(size);
ASSERT(!(size & (size - 1)));
while (size >>= 1) {
bitpos++;
}
return bitpos;
}
/* This function ensures that the DMA descriptor ring will not get allocated
* across Page boundary. If the allocation is done across the page boundary
* at the first time, then it is freed and the allocation is done at
* descriptor ring size aligned location. This will ensure that the ring will
* not cross page boundary
*/
static void *dma_ringalloc(osl_t *osh, u32 boundary, uint size,
u16 *alignbits, uint *alloced,
dmaaddr_t *descpa, osldma_t **dmah)
{
void *va;
u32 desc_strtaddr;
u32 alignbytes = 1 << *alignbits;
va = DMA_ALLOC_CONSISTENT(osh, size, *alignbits, alloced, descpa,
dmah);
if (NULL == va)
return NULL;
desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
& boundary)) {
*alignbits = dma_align_sizetobits(size);
DMA_FREE_CONSISTENT(osh, va, size, *descpa, dmah);
va = DMA_ALLOC_CONSISTENT(osh, size, *alignbits, alloced,
descpa, dmah);
}
return va;
}
/* 32-bit DMA functions */
static void dma32_txinit(dma_info_t *di)
{
u32 control = XC_XE;
DMA_TRACE(("%s: dma_txinit\n", di->name));
if (di->ntxd == 0)
return;
di->txin = di->txout = 0;
di->hnddma.txavail = di->ntxd - 1;
/* clear tx descriptor ring */
BZERO_SM((void *)di->txd32, (di->ntxd * sizeof(dma32dd_t)));
if ((di->hnddma.dmactrlflags & DMA_CTRL_PEN) == 0)
control |= XC_PD;
W_REG(di->osh, &di->d32txregs->control, control);
_dma_ddtable_init(di, DMA_TX, di->txdpa);
}
static bool dma32_txenabled(dma_info_t *di)
{
u32 xc;
/* If the chip is dead, it is not enabled :-) */
xc = R_REG(di->osh, &di->d32txregs->control);
return (xc != 0xffffffff) && (xc & XC_XE);
}
static void dma32_txsuspend(dma_info_t *di)
{
DMA_TRACE(("%s: dma_txsuspend\n", di->name));
if (di->ntxd == 0)
return;
OR_REG(di->osh, &di->d32txregs->control, XC_SE);
}
static void dma32_txresume(dma_info_t *di)
{
DMA_TRACE(("%s: dma_txresume\n", di->name));
if (di->ntxd == 0)
return;
AND_REG(di->osh, &di->d32txregs->control, ~XC_SE);
}
static bool dma32_txsuspended(dma_info_t *di)
{
return (di->ntxd == 0)
|| ((R_REG(di->osh, &di->d32txregs->control) & XC_SE) == XC_SE);
}
static void dma32_txreclaim(dma_info_t *di, txd_range_t range)
{
void *p;
DMA_TRACE(("%s: dma_txreclaim %s\n", di->name,
(range == HNDDMA_RANGE_ALL) ? "all" :
((range ==
HNDDMA_RANGE_TRANSMITTED) ? "transmitted" :
"transfered")));
if (di->txin == di->txout)
return;
while ((p = dma32_getnexttxp(di, range)))
PKTFREE(di->osh, p, true);
}
static bool dma32_txstopped(dma_info_t *di)
{
return ((R_REG(di->osh, &di->d32txregs->status) & XS_XS_MASK) ==
XS_XS_STOPPED);
}
static bool dma32_rxstopped(dma_info_t *di)
{
return ((R_REG(di->osh, &di->d32rxregs->status) & RS_RS_MASK) ==
RS_RS_STOPPED);
}
static bool dma32_alloc(dma_info_t *di, uint direction)
{
uint size;
uint ddlen;
void *va;
uint alloced;
u16 align;
u16 align_bits;
ddlen = sizeof(dma32dd_t);
size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
alloced = 0;
align_bits = di->dmadesc_align;
align = (1 << align_bits);
if (direction == DMA_TX) {
va = dma_ringalloc(di->osh, D32RINGALIGN, size, &align_bits,
&alloced, &di->txdpaorig, &di->tx_dmah);
if (va == NULL) {
DMA_ERROR(("%s: dma_alloc: DMA_ALLOC_CONSISTENT(ntxd) failed\n", di->name));
return false;
}
PHYSADDRHISET(di->txdpa, 0);
ASSERT(PHYSADDRHI(di->txdpaorig) == 0);
di->txd32 = (dma32dd_t *) roundup((unsigned long)va, align);
di->txdalign =
(uint) ((s8 *)di->txd32 - (s8 *) va);
PHYSADDRLOSET(di->txdpa,
PHYSADDRLO(di->txdpaorig) + di->txdalign);
/* Make sure that alignment didn't overflow */
ASSERT(PHYSADDRLO(di->txdpa) >= PHYSADDRLO(di->txdpaorig));
di->txdalloc = alloced;
ASSERT(IS_ALIGNED((unsigned long)di->txd32, align));
} else {
va = dma_ringalloc(di->osh, D32RINGALIGN, size, &align_bits,
&alloced, &di->rxdpaorig, &di->rx_dmah);
if (va == NULL) {
DMA_ERROR(("%s: dma_alloc: DMA_ALLOC_CONSISTENT(nrxd) failed\n", di->name));
return false;
}
PHYSADDRHISET(di->rxdpa, 0);
ASSERT(PHYSADDRHI(di->rxdpaorig) == 0);
di->rxd32 = (dma32dd_t *) roundup((unsigned long)va, align);
di->rxdalign =
(uint) ((s8 *)di->rxd32 - (s8 *) va);
PHYSADDRLOSET(di->rxdpa,
PHYSADDRLO(di->rxdpaorig) + di->rxdalign);
/* Make sure that alignment didn't overflow */
ASSERT(PHYSADDRLO(di->rxdpa) >= PHYSADDRLO(di->rxdpaorig));
di->rxdalloc = alloced;
ASSERT(IS_ALIGNED((unsigned long)di->rxd32, align));
}
return true;
}
static bool dma32_txreset(dma_info_t *di)
{
u32 status;
if (di->ntxd == 0)
return true;
/* suspend tx DMA first */
W_REG(di->osh, &di->d32txregs->control, XC_SE);
SPINWAIT(((status =
(R_REG(di->osh, &di->d32txregs->status) & XS_XS_MASK))
!= XS_XS_DISABLED) && (status != XS_XS_IDLE)
&& (status != XS_XS_STOPPED), (10000));
W_REG(di->osh, &di->d32txregs->control, 0);
SPINWAIT(((status = (R_REG(di->osh,
&di->d32txregs->status) & XS_XS_MASK)) !=
XS_XS_DISABLED), 10000);
/* wait for the last transaction to complete */
udelay(300);
return status == XS_XS_DISABLED;
}
static bool dma32_rxidle(dma_info_t *di)
{
DMA_TRACE(("%s: dma_rxidle\n", di->name));
if (di->nrxd == 0)
return true;
return ((R_REG(di->osh, &di->d32rxregs->status) & RS_CD_MASK) ==
R_REG(di->osh, &di->d32rxregs->ptr));
}
static bool dma32_rxreset(dma_info_t *di)
{
u32 status;
if (di->nrxd == 0)
return true;
W_REG(di->osh, &di->d32rxregs->control, 0);
SPINWAIT(((status = (R_REG(di->osh,
&di->d32rxregs->status) & RS_RS_MASK)) !=
RS_RS_DISABLED), 10000);
return status == RS_RS_DISABLED;
}
static bool dma32_rxenabled(dma_info_t *di)
{
u32 rc;
rc = R_REG(di->osh, &di->d32rxregs->control);
return (rc != 0xffffffff) && (rc & RC_RE);
}
static bool dma32_txsuspendedidle(dma_info_t *di)
{
if (di->ntxd == 0)
return true;
if (!(R_REG(di->osh, &di->d32txregs->control) & XC_SE))
return 0;
if ((R_REG(di->osh, &di->d32txregs->status) & XS_XS_MASK) != XS_XS_IDLE)
return 0;
udelay(2);
return ((R_REG(di->osh, &di->d32txregs->status) & XS_XS_MASK) ==
XS_XS_IDLE);
}
/* !! tx entry routine
* supports full 32bit dma engine buffer addressing so
* dma buffers can cross 4 Kbyte page boundaries.
*
* WARNING: call must check the return value for error.
* the error(toss frames) could be fatal and cause many subsequent hard to debug problems
*/
static int dma32_txfast(dma_info_t *di, void *p0, bool commit)
{
void *p, *next;
unsigned char *data;
uint len;
u16 txout;
u32 flags = 0;
dmaaddr_t pa;
DMA_TRACE(("%s: dma_txfast\n", di->name));
txout = di->txout;
/*
* Walk the chain of packet buffers
* allocating and initializing transmit descriptor entries.
*/
for (p = p0; p; p = next) {
uint nsegs, j;
hnddma_seg_map_t *map;
data = PKTDATA(p);
len = PKTLEN(p);
#ifdef BCM_DMAPAD
len += PKTDMAPAD(di->osh, p);
#endif
next = PKTNEXT(p);
/* return nonzero if out of tx descriptors */
if (NEXTTXD(txout) == di->txin)
goto outoftxd;
if (len == 0)
continue;
if (DMASGLIST_ENAB)
bzero(&di->txp_dmah[txout], sizeof(hnddma_seg_map_t));
/* get physical address of buffer start */
pa = DMA_MAP(di->osh, data, len, DMA_TX, p,
&di->txp_dmah[txout]);
if (DMASGLIST_ENAB) {
map = &di->txp_dmah[txout];
/* See if all the segments can be accounted for */
if (map->nsegs >
(uint) (di->ntxd - NTXDACTIVE(di->txin, di->txout) -
1))
goto outoftxd;
nsegs = map->nsegs;
} else
nsegs = 1;
for (j = 1; j <= nsegs; j++) {
flags = 0;
if (p == p0 && j == 1)
flags |= CTRL_SOF;
/* With a DMA segment list, Descriptor table is filled
* using the segment list instead of looping over
* buffers in multi-chain DMA. Therefore, EOF for SGLIST is when
* end of segment list is reached.
*/
if ((!DMASGLIST_ENAB && next == NULL) ||
(DMASGLIST_ENAB && j == nsegs))
flags |= (CTRL_IOC | CTRL_EOF);
if (txout == (di->ntxd - 1))
flags |= CTRL_EOT;
if (DMASGLIST_ENAB) {
len = map->segs[j - 1].length;
pa = map->segs[j - 1].addr;
}
ASSERT(PHYSADDRHI(pa) == 0);
dma32_dd_upd(di, di->txd32, pa, txout, &flags, len);
ASSERT(di->txp[txout] == NULL);
txout = NEXTTXD(txout);
}
/* See above. No need to loop over individual buffers */
if (DMASGLIST_ENAB)
break;
}
/* if last txd eof not set, fix it */
if (!(flags & CTRL_EOF))
W_SM(&di->txd32[PREVTXD(txout)].ctrl,
BUS_SWAP32(flags | CTRL_IOC | CTRL_EOF));
/* save the packet */
di->txp[PREVTXD(txout)] = p0;
/* bump the tx descriptor index */
di->txout = txout;
/* kick the chip */
if (commit)
W_REG(di->osh, &di->d32txregs->ptr, I2B(txout, dma32dd_t));
/* tx flow control */
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
return 0;
outoftxd:
DMA_ERROR(("%s: dma_txfast: out of txds\n", di->name));
PKTFREE(di->osh, p0, true);
di->hnddma.txavail = 0;
di->hnddma.txnobuf++;
return -1;
}
/*
* Reclaim next completed txd (txds if using chained buffers) in the range
* specified and return associated packet.
* If range is HNDDMA_RANGE_TRANSMITTED, reclaim descriptors that have be
* transmitted as noted by the hardware "CurrDescr" pointer.
* If range is HNDDMA_RANGE_TRANSFERED, reclaim descriptors that have be
* transfered by the DMA as noted by the hardware "ActiveDescr" pointer.
* If range is HNDDMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
* return associated packet regardless of the value of hardware pointers.
*/
static void *dma32_getnexttxp(dma_info_t *di, txd_range_t range)
{
u16 start, end, i;
u16 active_desc;
void *txp;
DMA_TRACE(("%s: dma_getnexttxp %s\n", di->name,
(range == HNDDMA_RANGE_ALL) ? "all" :
((range ==
HNDDMA_RANGE_TRANSMITTED) ? "transmitted" :
"transfered")));
if (di->ntxd == 0)
return NULL;
txp = NULL;
start = di->txin;
if (range == HNDDMA_RANGE_ALL)
end = di->txout;
else {
dma32regs_t *dregs = di->d32txregs;
end =
(u16) B2I(R_REG(di->osh, &dregs->status) & XS_CD_MASK,
dma32dd_t);
if (range == HNDDMA_RANGE_TRANSFERED) {
active_desc =
(u16) ((R_REG(di->osh, &dregs->status) &
XS_AD_MASK) >> XS_AD_SHIFT);
active_desc = (u16) B2I(active_desc, dma32dd_t);
if (end != active_desc)
end = PREVTXD(active_desc);
}
}
if ((start == 0) && (end > di->txout))
goto bogus;
for (i = start; i != end && !txp; i = NEXTTXD(i)) {
dmaaddr_t pa;
hnddma_seg_map_t *map = NULL;
uint size, j, nsegs;
PHYSADDRLOSET(pa,
(BUS_SWAP32(R_SM(&di->txd32[i].addr)) -
di->dataoffsetlow));
PHYSADDRHISET(pa, 0);
if (DMASGLIST_ENAB) {
map = &di->txp_dmah[i];
size = map->origsize;
nsegs = map->nsegs;
} else {
size =
(BUS_SWAP32(R_SM(&di->txd32[i].ctrl)) &
CTRL_BC_MASK);
nsegs = 1;
}
for (j = nsegs; j > 0; j--) {
W_SM(&di->txd32[i].addr, 0xdeadbeef);
txp = di->txp[i];
di->txp[i] = NULL;
if (j > 1)
i = NEXTTXD(i);
}
DMA_UNMAP(di->osh, pa, size, DMA_TX, txp, map);
}
di->txin = i;
/* tx flow control */
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
return txp;
bogus:
DMA_NONE(("dma_getnexttxp: bogus curr: start %d end %d txout %d force %d\n", start, end, di->txout, forceall));
return NULL;
}
static void *dma32_getnextrxp(dma_info_t *di, bool forceall)
{
uint i, curr;
void *rxp;
dmaaddr_t pa;
/* if forcing, dma engine must be disabled */
ASSERT(!forceall || !dma32_rxenabled(di));
i = di->rxin;
/* return if no packets posted */
if (i == di->rxout)
return NULL;
curr =
B2I(R_REG(di->osh, &di->d32rxregs->status) & RS_CD_MASK, dma32dd_t);
/* ignore curr if forceall */
if (!forceall && (i == curr))
return NULL;
/* get the packet pointer that corresponds to the rx descriptor */
rxp = di->rxp[i];
ASSERT(rxp);
di->rxp[i] = NULL;
PHYSADDRLOSET(pa,
(BUS_SWAP32(R_SM(&di->rxd32[i].addr)) -
di->dataoffsetlow));
PHYSADDRHISET(pa, 0);
/* clear this packet from the descriptor ring */
DMA_UNMAP(di->osh, pa, di->rxbufsize, DMA_RX, rxp, &di->rxp_dmah[i]);
W_SM(&di->rxd32[i].addr, 0xdeadbeef);
di->rxin = NEXTRXD(i);
return rxp;
}
/*
* Rotate all active tx dma ring entries "forward" by (ActiveDescriptor - txin).
*/
static void dma32_txrotate(dma_info_t *di)
{
u16 ad;
uint nactive;
uint rot;
u16 old, new;
u32 w;
u16 first, last;
ASSERT(dma32_txsuspendedidle(di));
nactive = _dma_txactive(di);
ad = (u16) (B2I
(((R_REG(di->osh, &di->d32txregs->status) & XS_AD_MASK)
>> XS_AD_SHIFT), dma32dd_t));
rot = TXD(ad - di->txin);
ASSERT(rot < di->ntxd);
/* full-ring case is a lot harder - don't worry about this */
if (rot >= (di->ntxd - nactive)) {
DMA_ERROR(("%s: dma_txrotate: ring full - punt\n", di->name));
return;
}
first = di->txin;
last = PREVTXD(di->txout);
/* move entries starting at last and moving backwards to first */
for (old = last; old != PREVTXD(first); old = PREVTXD(old)) {
new = TXD(old + rot);
/*
* Move the tx dma descriptor.
* EOT is set only in the last entry in the ring.
*/
w = BUS_SWAP32(R_SM(&di->txd32[old].ctrl)) & ~CTRL_EOT;
if (new == (di->ntxd - 1))
w |= CTRL_EOT;
W_SM(&di->txd32[new].ctrl, BUS_SWAP32(w));
W_SM(&di->txd32[new].addr, R_SM(&di->txd32[old].addr));
/* zap the old tx dma descriptor address field */
W_SM(&di->txd32[old].addr, BUS_SWAP32(0xdeadbeef));
/* move the corresponding txp[] entry */
ASSERT(di->txp[new] == NULL);
di->txp[new] = di->txp[old];
/* Move the segment map as well */
if (DMASGLIST_ENAB) {
bcopy(&di->txp_dmah[old], &di->txp_dmah[new],
sizeof(hnddma_seg_map_t));
bzero(&di->txp_dmah[old], sizeof(hnddma_seg_map_t));
}
di->txp[old] = NULL;
}
/* update txin and txout */
di->txin = ad;
di->txout = TXD(di->txout + rot);
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
/* kick the chip */
W_REG(di->osh, &di->d32txregs->ptr, I2B(di->txout, dma32dd_t));
}
/* 64-bit DMA functions */
static void dma64_txinit(dma_info_t *di)
{
u32 control = D64_XC_XE;
DMA_TRACE(("%s: dma_txinit\n", di->name));
if (di->ntxd == 0)
return;
di->txin = di->txout = 0;
di->hnddma.txavail = di->ntxd - 1;
/* clear tx descriptor ring */
BZERO_SM((void *)di->txd64, (di->ntxd * sizeof(dma64dd_t)));
/* DMA engine with out alignment requirement requires table to be inited
* before enabling the engine
*/
if (!di->aligndesc_4k)
_dma_ddtable_init(di, DMA_TX, di->txdpa);
if ((di->hnddma.dmactrlflags & DMA_CTRL_PEN) == 0)
control |= D64_XC_PD;
OR_REG(di->osh, &di->d64txregs->control, control);
/* DMA engine with alignment requirement requires table to be inited
* before enabling the engine
*/
if (di->aligndesc_4k)
_dma_ddtable_init(di, DMA_TX, di->txdpa);
}
static bool dma64_txenabled(dma_info_t *di)
{
u32 xc;
/* If the chip is dead, it is not enabled :-) */
xc = R_REG(di->osh, &di->d64txregs->control);
return (xc != 0xffffffff) && (xc & D64_XC_XE);
}
static void dma64_txsuspend(dma_info_t *di)
{
DMA_TRACE(("%s: dma_txsuspend\n", di->name));
if (di->ntxd == 0)
return;
OR_REG(di->osh, &di->d64txregs->control, D64_XC_SE);
}
static void dma64_txresume(dma_info_t *di)
{
DMA_TRACE(("%s: dma_txresume\n", di->name));
if (di->ntxd == 0)
return;
AND_REG(di->osh, &di->d64txregs->control, ~D64_XC_SE);
}
static bool dma64_txsuspended(dma_info_t *di)
{
return (di->ntxd == 0) ||
((R_REG(di->osh, &di->d64txregs->control) & D64_XC_SE) ==
D64_XC_SE);
}
static void BCMFASTPATH dma64_txreclaim(dma_info_t *di, txd_range_t range)
{
void *p;
DMA_TRACE(("%s: dma_txreclaim %s\n", di->name,
(range == HNDDMA_RANGE_ALL) ? "all" :
((range ==
HNDDMA_RANGE_TRANSMITTED) ? "transmitted" :
"transfered")));
if (di->txin == di->txout)
return;
while ((p = dma64_getnexttxp(di, range))) {
/* For unframed data, we don't have any packets to free */
if (!(di->hnddma.dmactrlflags & DMA_CTRL_UNFRAMED))
PKTFREE(di->osh, p, true);
}
}
static bool dma64_txstopped(dma_info_t *di)
{
return ((R_REG(di->osh, &di->d64txregs->status0) & D64_XS0_XS_MASK) ==
D64_XS0_XS_STOPPED);
}
static bool dma64_rxstopped(dma_info_t *di)
{
return ((R_REG(di->osh, &di->d64rxregs->status0) & D64_RS0_RS_MASK) ==
D64_RS0_RS_STOPPED);
}
static bool dma64_alloc(dma_info_t *di, uint direction)
{
u16 size;
uint ddlen;
void *va;
uint alloced = 0;
u16 align;
u16 align_bits;
ddlen = sizeof(dma64dd_t);
size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
align_bits = di->dmadesc_align;
align = (1 << align_bits);
if (direction == DMA_TX) {
va = dma_ringalloc(di->osh, D64RINGALIGN, size, &align_bits,
&alloced, &di->txdpaorig, &di->tx_dmah);
if (va == NULL) {
DMA_ERROR(("%s: dma64_alloc: DMA_ALLOC_CONSISTENT(ntxd) failed\n", di->name));
return false;
}
align = (1 << align_bits);
di->txd64 = (dma64dd_t *) roundup((unsigned long)va, align);
di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
PHYSADDRLOSET(di->txdpa,
PHYSADDRLO(di->txdpaorig) + di->txdalign);
/* Make sure that alignment didn't overflow */
ASSERT(PHYSADDRLO(di->txdpa) >= PHYSADDRLO(di->txdpaorig));
PHYSADDRHISET(di->txdpa, PHYSADDRHI(di->txdpaorig));
di->txdalloc = alloced;
ASSERT(IS_ALIGNED((unsigned long)di->txd64, align));
} else {
va = dma_ringalloc(di->osh, D64RINGALIGN, size, &align_bits,
&alloced, &di->rxdpaorig, &di->rx_dmah);
if (va == NULL) {
DMA_ERROR(("%s: dma64_alloc: DMA_ALLOC_CONSISTENT(nrxd) failed\n", di->name));
return false;
}
align = (1 << align_bits);
di->rxd64 = (dma64dd_t *) roundup((unsigned long)va, align);
di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
PHYSADDRLOSET(di->rxdpa,
PHYSADDRLO(di->rxdpaorig) + di->rxdalign);
/* Make sure that alignment didn't overflow */
ASSERT(PHYSADDRLO(di->rxdpa) >= PHYSADDRLO(di->rxdpaorig));
PHYSADDRHISET(di->rxdpa, PHYSADDRHI(di->rxdpaorig));
di->rxdalloc = alloced;
ASSERT(IS_ALIGNED((unsigned long)di->rxd64, align));
}
return true;
}
static bool dma64_txreset(dma_info_t *di)
{
u32 status;
if (di->ntxd == 0)
return true;
/* suspend tx DMA first */
W_REG(di->osh, &di->d64txregs->control, D64_XC_SE);
SPINWAIT(((status =
(R_REG(di->osh, &di->d64txregs->status0) & D64_XS0_XS_MASK))
!= D64_XS0_XS_DISABLED) && (status != D64_XS0_XS_IDLE)
&& (status != D64_XS0_XS_STOPPED), 10000);
W_REG(di->osh, &di->d64txregs->control, 0);
SPINWAIT(((status =
(R_REG(di->osh, &di->d64txregs->status0) & D64_XS0_XS_MASK))
!= D64_XS0_XS_DISABLED), 10000);
/* wait for the last transaction to complete */
udelay(300);
return status == D64_XS0_XS_DISABLED;
}
static bool dma64_rxidle(dma_info_t *di)
{
DMA_TRACE(("%s: dma_rxidle\n", di->name));
if (di->nrxd == 0)
return true;
return ((R_REG(di->osh, &di->d64rxregs->status0) & D64_RS0_CD_MASK) ==
(R_REG(di->osh, &di->d64rxregs->ptr) & D64_RS0_CD_MASK));
}
static bool dma64_rxreset(dma_info_t *di)
{
u32 status;
if (di->nrxd == 0)
return true;
W_REG(di->osh, &di->d64rxregs->control, 0);
SPINWAIT(((status =
(R_REG(di->osh, &di->d64rxregs->status0) & D64_RS0_RS_MASK))
!= D64_RS0_RS_DISABLED), 10000);
return status == D64_RS0_RS_DISABLED;
}
static bool dma64_rxenabled(dma_info_t *di)
{
u32 rc;
rc = R_REG(di->osh, &di->d64rxregs->control);
return (rc != 0xffffffff) && (rc & D64_RC_RE);
}
static bool dma64_txsuspendedidle(dma_info_t *di)
{
if (di->ntxd == 0)
return true;
if (!(R_REG(di->osh, &di->d64txregs->control) & D64_XC_SE))
return 0;
if ((R_REG(di->osh, &di->d64txregs->status0) & D64_XS0_XS_MASK) ==
D64_XS0_XS_IDLE)
return 1;
return 0;
}
/* Useful when sending unframed data. This allows us to get a progress report from the DMA.
* We return a pointer to the beginning of the DATA buffer of the current descriptor.
* If DMA is idle, we return NULL.
*/
static void *dma64_getpos(dma_info_t *di, bool direction)
{
void *va;
bool idle;
u32 cd_offset;
if (direction == DMA_TX) {
cd_offset =
R_REG(di->osh, &di->d64txregs->status0) & D64_XS0_CD_MASK;
idle = !NTXDACTIVE(di->txin, di->txout);
va = di->txp[B2I(cd_offset, dma64dd_t)];
} else {
cd_offset =
R_REG(di->osh, &di->d64rxregs->status0) & D64_XS0_CD_MASK;
idle = !NRXDACTIVE(di->rxin, di->rxout);
va = di->rxp[B2I(cd_offset, dma64dd_t)];
}
/* If DMA is IDLE, return NULL */
if (idle) {
DMA_TRACE(("%s: DMA idle, return NULL\n", __func__));
va = NULL;
}
return va;
}
/* TX of unframed data
*
* Adds a DMA ring descriptor for the data pointed to by "buf".
* This is for DMA of a buffer of data and is unlike other hnddma TX functions
* that take a pointer to a "packet"
* Each call to this is results in a single descriptor being added for "len" bytes of
* data starting at "buf", it doesn't handle chained buffers.
*/
static int dma64_txunframed(dma_info_t *di, void *buf, uint len, bool commit)
{
u16 txout;
u32 flags = 0;
dmaaddr_t pa; /* phys addr */
txout = di->txout;
/* return nonzero if out of tx descriptors */
if (NEXTTXD(txout) == di->txin)
goto outoftxd;
if (len == 0)
return 0;
pa = DMA_MAP(di->osh, buf, len, DMA_TX, NULL, &di->txp_dmah[txout]);
flags = (D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF);
if (txout == (di->ntxd - 1))
flags |= D64_CTRL1_EOT;
dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
ASSERT(di->txp[txout] == NULL);
/* save the buffer pointer - used by dma_getpos */
di->txp[txout] = buf;
txout = NEXTTXD(txout);
/* bump the tx descriptor index */
di->txout = txout;
/* kick the chip */
if (commit) {
W_REG(di->osh, &di->d64txregs->ptr,
di->xmtptrbase + I2B(txout, dma64dd_t));
}
/* tx flow control */
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
return 0;
outoftxd:
DMA_ERROR(("%s: %s: out of txds !!!\n", di->name, __func__));
di->hnddma.txavail = 0;
di->hnddma.txnobuf++;
return -1;
}
/* !! tx entry routine
* WARNING: call must check the return value for error.
* the error(toss frames) could be fatal and cause many subsequent hard to debug problems
*/
static int BCMFASTPATH dma64_txfast(dma_info_t *di, void *p0, bool commit)
{
void *p, *next;
unsigned char *data;
uint len;
u16 txout;
u32 flags = 0;
dmaaddr_t pa;
DMA_TRACE(("%s: dma_txfast\n", di->name));
txout = di->txout;
/*
* Walk the chain of packet buffers
* allocating and initializing transmit descriptor entries.
*/
for (p = p0; p; p = next) {
uint nsegs, j;
hnddma_seg_map_t *map;
data = PKTDATA(p);
len = PKTLEN(p);
#ifdef BCM_DMAPAD
len += PKTDMAPAD(di->osh, p);
#endif /* BCM_DMAPAD */
next = PKTNEXT(p);
/* return nonzero if out of tx descriptors */
if (NEXTTXD(txout) == di->txin)
goto outoftxd;
if (len == 0)
continue;
/* get physical address of buffer start */
if (DMASGLIST_ENAB)
bzero(&di->txp_dmah[txout], sizeof(hnddma_seg_map_t));
pa = DMA_MAP(di->osh, data, len, DMA_TX, p,
&di->txp_dmah[txout]);
if (DMASGLIST_ENAB) {
map = &di->txp_dmah[txout];
/* See if all the segments can be accounted for */
if (map->nsegs >
(uint) (di->ntxd - NTXDACTIVE(di->txin, di->txout) -
1))
goto outoftxd;
nsegs = map->nsegs;
} else
nsegs = 1;
for (j = 1; j <= nsegs; j++) {
flags = 0;
if (p == p0 && j == 1)
flags |= D64_CTRL1_SOF;
/* With a DMA segment list, Descriptor table is filled
* using the segment list instead of looping over
* buffers in multi-chain DMA. Therefore, EOF for SGLIST is when
* end of segment list is reached.
*/
if ((!DMASGLIST_ENAB && next == NULL) ||
(DMASGLIST_ENAB && j == nsegs))
flags |= (D64_CTRL1_IOC | D64_CTRL1_EOF);
if (txout == (di->ntxd - 1))
flags |= D64_CTRL1_EOT;
if (DMASGLIST_ENAB) {
len = map->segs[j - 1].length;
pa = map->segs[j - 1].addr;
}
dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
ASSERT(di->txp[txout] == NULL);
txout = NEXTTXD(txout);
}
/* See above. No need to loop over individual buffers */
if (DMASGLIST_ENAB)
break;
}
/* if last txd eof not set, fix it */
if (!(flags & D64_CTRL1_EOF))
W_SM(&di->txd64[PREVTXD(txout)].ctrl1,
BUS_SWAP32(flags | D64_CTRL1_IOC | D64_CTRL1_EOF));
/* save the packet */
di->txp[PREVTXD(txout)] = p0;
/* bump the tx descriptor index */
di->txout = txout;
/* kick the chip */
if (commit)
W_REG(di->osh, &di->d64txregs->ptr,
di->xmtptrbase + I2B(txout, dma64dd_t));
/* tx flow control */
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
return 0;
outoftxd:
DMA_ERROR(("%s: dma_txfast: out of txds !!!\n", di->name));
PKTFREE(di->osh, p0, true);
di->hnddma.txavail = 0;
di->hnddma.txnobuf++;
return -1;
}
/*
* Reclaim next completed txd (txds if using chained buffers) in the range
* specified and return associated packet.
* If range is HNDDMA_RANGE_TRANSMITTED, reclaim descriptors that have be
* transmitted as noted by the hardware "CurrDescr" pointer.
* If range is HNDDMA_RANGE_TRANSFERED, reclaim descriptors that have be
* transfered by the DMA as noted by the hardware "ActiveDescr" pointer.
* If range is HNDDMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
* return associated packet regardless of the value of hardware pointers.
*/
static void *BCMFASTPATH dma64_getnexttxp(dma_info_t *di, txd_range_t range)
{
u16 start, end, i;
u16 active_desc;
void *txp;
DMA_TRACE(("%s: dma_getnexttxp %s\n", di->name,
(range == HNDDMA_RANGE_ALL) ? "all" :
((range ==
HNDDMA_RANGE_TRANSMITTED) ? "transmitted" :
"transfered")));
if (di->ntxd == 0)
return NULL;
txp = NULL;
start = di->txin;
if (range == HNDDMA_RANGE_ALL)
end = di->txout;
else {
dma64regs_t *dregs = di->d64txregs;
end =
(u16) (B2I
(((R_REG(di->osh, &dregs->status0) &
D64_XS0_CD_MASK) -
di->xmtptrbase) & D64_XS0_CD_MASK, dma64dd_t));
if (range == HNDDMA_RANGE_TRANSFERED) {
active_desc =
(u16) (R_REG(di->osh, &dregs->status1) &
D64_XS1_AD_MASK);
active_desc =
(active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
active_desc = B2I(active_desc, dma64dd_t);
if (end != active_desc)
end = PREVTXD(active_desc);
}
}
if ((start == 0) && (end > di->txout))
goto bogus;
for (i = start; i != end && !txp; i = NEXTTXD(i)) {
dmaaddr_t pa;
hnddma_seg_map_t *map = NULL;
uint size, j, nsegs;
PHYSADDRLOSET(pa,
(BUS_SWAP32(R_SM(&di->txd64[i].addrlow)) -
di->dataoffsetlow));
PHYSADDRHISET(pa,
(BUS_SWAP32(R_SM(&di->txd64[i].addrhigh)) -
di->dataoffsethigh));
if (DMASGLIST_ENAB) {
map = &di->txp_dmah[i];
size = map->origsize;
nsegs = map->nsegs;
} else {
size =
(BUS_SWAP32(R_SM(&di->txd64[i].ctrl2)) &
D64_CTRL2_BC_MASK);
nsegs = 1;
}
for (j = nsegs; j > 0; j--) {
W_SM(&di->txd64[i].addrlow, 0xdeadbeef);
W_SM(&di->txd64[i].addrhigh, 0xdeadbeef);
txp = di->txp[i];
di->txp[i] = NULL;
if (j > 1)
i = NEXTTXD(i);
}
DMA_UNMAP(di->osh, pa, size, DMA_TX, txp, map);
}
di->txin = i;
/* tx flow control */
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
return txp;
bogus:
DMA_NONE(("dma_getnexttxp: bogus curr: start %d end %d txout %d force %d\n", start, end, di->txout, forceall));
return NULL;
}
static void *BCMFASTPATH dma64_getnextrxp(dma_info_t *di, bool forceall)
{
uint i, curr;
void *rxp;
dmaaddr_t pa;
/* if forcing, dma engine must be disabled */
ASSERT(!forceall || !dma64_rxenabled(di));
i = di->rxin;
/* return if no packets posted */
if (i == di->rxout)
return NULL;
curr =
B2I(((R_REG(di->osh, &di->d64rxregs->status0) & D64_RS0_CD_MASK) -
di->rcvptrbase) & D64_RS0_CD_MASK, dma64dd_t);
/* ignore curr if forceall */
if (!forceall && (i == curr))
return NULL;
/* get the packet pointer that corresponds to the rx descriptor */
rxp = di->rxp[i];
ASSERT(rxp);
di->rxp[i] = NULL;
PHYSADDRLOSET(pa,
(BUS_SWAP32(R_SM(&di->rxd64[i].addrlow)) -
di->dataoffsetlow));
PHYSADDRHISET(pa,
(BUS_SWAP32(R_SM(&di->rxd64[i].addrhigh)) -
di->dataoffsethigh));
/* clear this packet from the descriptor ring */
DMA_UNMAP(di->osh, pa, di->rxbufsize, DMA_RX, rxp, &di->rxp_dmah[i]);
W_SM(&di->rxd64[i].addrlow, 0xdeadbeef);
W_SM(&di->rxd64[i].addrhigh, 0xdeadbeef);
di->rxin = NEXTRXD(i);
return rxp;
}
static bool _dma64_addrext(osl_t *osh, dma64regs_t * dma64regs)
{
u32 w;
OR_REG(osh, &dma64regs->control, D64_XC_AE);
w = R_REG(osh, &dma64regs->control);
AND_REG(osh, &dma64regs->control, ~D64_XC_AE);
return (w & D64_XC_AE) == D64_XC_AE;
}
/*
* Rotate all active tx dma ring entries "forward" by (ActiveDescriptor - txin).
*/
static void dma64_txrotate(dma_info_t *di)
{
u16 ad;
uint nactive;
uint rot;
u16 old, new;
u32 w;
u16 first, last;
ASSERT(dma64_txsuspendedidle(di));
nactive = _dma_txactive(di);
ad = (u16) (B2I
((((R_REG(di->osh, &di->d64txregs->status1) &
D64_XS1_AD_MASK)
- di->xmtptrbase) & D64_XS1_AD_MASK), dma64dd_t));
rot = TXD(ad - di->txin);
ASSERT(rot < di->ntxd);
/* full-ring case is a lot harder - don't worry about this */
if (rot >= (di->ntxd - nactive)) {
DMA_ERROR(("%s: dma_txrotate: ring full - punt\n", di->name));
return;
}
first = di->txin;
last = PREVTXD(di->txout);
/* move entries starting at last and moving backwards to first */
for (old = last; old != PREVTXD(first); old = PREVTXD(old)) {
new = TXD(old + rot);
/*
* Move the tx dma descriptor.
* EOT is set only in the last entry in the ring.
*/
w = BUS_SWAP32(R_SM(&di->txd64[old].ctrl1)) & ~D64_CTRL1_EOT;
if (new == (di->ntxd - 1))
w |= D64_CTRL1_EOT;
W_SM(&di->txd64[new].ctrl1, BUS_SWAP32(w));
w = BUS_SWAP32(R_SM(&di->txd64[old].ctrl2));
W_SM(&di->txd64[new].ctrl2, BUS_SWAP32(w));
W_SM(&di->txd64[new].addrlow, R_SM(&di->txd64[old].addrlow));
W_SM(&di->txd64[new].addrhigh, R_SM(&di->txd64[old].addrhigh));
/* zap the old tx dma descriptor address field */
W_SM(&di->txd64[old].addrlow, BUS_SWAP32(0xdeadbeef));
W_SM(&di->txd64[old].addrhigh, BUS_SWAP32(0xdeadbeef));
/* move the corresponding txp[] entry */
ASSERT(di->txp[new] == NULL);
di->txp[new] = di->txp[old];
/* Move the map */
if (DMASGLIST_ENAB) {
bcopy(&di->txp_dmah[old], &di->txp_dmah[new],
sizeof(hnddma_seg_map_t));
bzero(&di->txp_dmah[old], sizeof(hnddma_seg_map_t));
}
di->txp[old] = NULL;
}
/* update txin and txout */
di->txin = ad;
di->txout = TXD(di->txout + rot);
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
/* kick the chip */
W_REG(di->osh, &di->d64txregs->ptr,
di->xmtptrbase + I2B(di->txout, dma64dd_t));
}
uint dma_addrwidth(si_t *sih, void *dmaregs)
{
dma32regs_t *dma32regs;
osl_t *osh;
osh = si_osh(sih);
/* Perform 64-bit checks only if we want to advertise 64-bit (> 32bit) capability) */
/* DMA engine is 64-bit capable */
if ((si_core_sflags(sih, 0, 0) & SISF_DMA64) == SISF_DMA64) {
/* backplane are 64-bit capable */
if (si_backplane64(sih))
/* If bus is System Backplane or PCIE then we can access 64-bits */
if ((BUSTYPE(sih->bustype) == SI_BUS) ||
((BUSTYPE(sih->bustype) == PCI_BUS) &&
(sih->buscoretype == PCIE_CORE_ID)))
return DMADDRWIDTH_64;
/* DMA64 is always 32-bit capable, AE is always true */
ASSERT(_dma64_addrext(osh, (dma64regs_t *) dmaregs));
return DMADDRWIDTH_32;
}
/* Start checking for 32-bit / 30-bit addressing */
dma32regs = (dma32regs_t *) dmaregs;
/* For System Backplane, PCIE bus or addrext feature, 32-bits ok */
if ((BUSTYPE(sih->bustype) == SI_BUS) ||
((BUSTYPE(sih->bustype) == PCI_BUS)
&& sih->buscoretype == PCIE_CORE_ID)
|| (_dma32_addrext(osh, dma32regs)))
return DMADDRWIDTH_32;
/* Fallthru */
return DMADDRWIDTH_30;
}