blob: 420f206cf517618495f0c0885f4634bd0aa77203 [file] [log] [blame]
/*
* A sensor driver for the magnetometer AK8975.
*
* Magnetic compass sensor driver for monitoring magnetic flux information.
*
* Copyright (c) 2010, NVIDIA Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include "../iio.h"
#include "magnet.h"
/*
* Register definitions, as well as various shifts and masks to get at the
* individual fields of the registers.
*/
#define AK8975_REG_WIA 0x00
#define AK8975_DEVICE_ID 0x48
#define AK8975_REG_INFO 0x01
#define AK8975_REG_ST1 0x02
#define AK8975_REG_ST1_DRDY_SHIFT 0
#define AK8975_REG_ST1_DRDY_MASK (1 << AK8975_REG_ST1_DRDY_SHIFT)
#define AK8975_REG_HXL 0x03
#define AK8975_REG_HXH 0x04
#define AK8975_REG_HYL 0x05
#define AK8975_REG_HYH 0x06
#define AK8975_REG_HZL 0x07
#define AK8975_REG_HZH 0x08
#define AK8975_REG_ST2 0x09
#define AK8975_REG_ST2_DERR_SHIFT 2
#define AK8975_REG_ST2_DERR_MASK (1 << AK8975_REG_ST2_DERR_SHIFT)
#define AK8975_REG_ST2_HOFL_SHIFT 3
#define AK8975_REG_ST2_HOFL_MASK (1 << AK8975_REG_ST2_HOFL_SHIFT)
#define AK8975_REG_CNTL 0x0A
#define AK8975_REG_CNTL_MODE_SHIFT 0
#define AK8975_REG_CNTL_MODE_MASK (0xF << AK8975_REG_CNTL_MODE_SHIFT)
#define AK8975_REG_CNTL_MODE_POWER_DOWN 0
#define AK8975_REG_CNTL_MODE_ONCE 1
#define AK8975_REG_CNTL_MODE_SELF_TEST 8
#define AK8975_REG_CNTL_MODE_FUSE_ROM 0xF
#define AK8975_REG_RSVC 0x0B
#define AK8975_REG_ASTC 0x0C
#define AK8975_REG_TS1 0x0D
#define AK8975_REG_TS2 0x0E
#define AK8975_REG_I2CDIS 0x0F
#define AK8975_REG_ASAX 0x10
#define AK8975_REG_ASAY 0x11
#define AK8975_REG_ASAZ 0x12
#define AK8975_MAX_REGS AK8975_REG_ASAZ
/*
* Miscellaneous values.
*/
#define AK8975_MAX_CONVERSION_TIMEOUT 500
#define AK8975_CONVERSION_DONE_POLL_TIME 10
/*
* Per-instance context data for the device.
*/
struct ak8975_data {
struct i2c_client *client;
struct iio_dev *indio_dev;
struct attribute_group attrs;
struct mutex lock;
u8 asa[3];
long raw_to_gauss[3];
unsigned long mode;
u8 reg_cache[AK8975_MAX_REGS];
int eoc_gpio;
int eoc_irq;
};
/*
* Helper function to write to the I2C device's registers.
*/
static int ak8975_write_data(struct i2c_client *client,
u8 reg, u8 val, u8 mask, u8 shift)
{
u8 regval;
struct i2c_msg msg;
u8 w_data[2];
int ret = 0;
struct ak8975_data *data = i2c_get_clientdata(client);
regval = data->reg_cache[reg];
regval &= ~mask;
regval |= val << shift;
w_data[0] = reg;
w_data[1] = regval;
msg.addr = client->addr;
msg.flags = 0;
msg.len = 2;
msg.buf = w_data;
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret < 0) {
dev_err(&client->dev, "Write to device fails status %x\n", ret);
return ret;
}
data->reg_cache[reg] = regval;
return 0;
}
/*
* Helper function to read a contiguous set of the I2C device's registers.
*/
static int ak8975_read_data(struct i2c_client *client,
u8 reg, u8 length, u8 *buffer)
{
struct i2c_msg msg[2];
u8 w_data[2];
int ret;
w_data[0] = reg;
msg[0].addr = client->addr;
msg[0].flags = I2C_M_NOSTART; /* set repeated start and write */
msg[0].len = 1;
msg[0].buf = w_data;
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].len = length;
msg[1].buf = buffer;
ret = i2c_transfer(client->adapter, msg, 2);
if (ret < 0) {
dev_err(&client->dev, "Read from device fails\n");
return ret;
}
return 0;
}
/*
* Perform some start-of-day setup, including reading the asa calibration
* values and caching them.
*/
static int ak8975_setup(struct i2c_client *client)
{
struct ak8975_data *data = i2c_get_clientdata(client);
u8 device_id;
int ret;
/* Confirm that the device we're talking to is really an AK8975. */
ret = ak8975_read_data(client, AK8975_REG_WIA, 1, &device_id);
if (ret < 0) {
dev_err(&client->dev, "Error reading WIA\n");
return ret;
}
if (device_id != AK8975_DEVICE_ID) {
dev_err(&client->dev, "Device ak8975 not found\n");
return -ENODEV;
}
/* Write the fused rom access mode. */
ret = ak8975_write_data(client,
AK8975_REG_CNTL,
AK8975_REG_CNTL_MODE_FUSE_ROM,
AK8975_REG_CNTL_MODE_MASK,
AK8975_REG_CNTL_MODE_SHIFT);
if (ret < 0) {
dev_err(&client->dev, "Error in setting fuse access mode\n");
return ret;
}
/* Get asa data and store in the device data. */
ret = ak8975_read_data(client, AK8975_REG_ASAX, 3, data->asa);
if (ret < 0) {
dev_err(&client->dev, "Not able to read asa data\n");
return ret;
}
/* Precalculate scale factor for each axis and
store in the device data. */
data->raw_to_gauss[0] = ((data->asa[0] + 128) * 30) >> 8;
data->raw_to_gauss[1] = ((data->asa[1] + 128) * 30) >> 8;
data->raw_to_gauss[2] = ((data->asa[2] + 128) * 30) >> 8;
return 0;
}
/*
* Shows the device's mode. 0 = off, 1 = on.
*/
static ssize_t show_mode(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct ak8975_data *data = indio_dev->dev_data;
return sprintf(buf, "%lu\n", data->mode);
}
/*
* Sets the device's mode. 0 = off, 1 = on. The device's mode must be on
* for the magn raw attributes to be available.
*/
static ssize_t store_mode(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct ak8975_data *data = indio_dev->dev_data;
struct i2c_client *client = data->client;
unsigned long oval;
int ret;
/* Convert mode string and do some basic sanity checking on it.
only 0 or 1 are valid. */
if (strict_strtoul(buf, 10, &oval))
return -EINVAL;
if (oval > 1) {
dev_err(dev, "mode value is not supported\n");
return -EINVAL;
}
mutex_lock(&data->lock);
/* Write the mode to the device. */
if (data->mode != oval) {
ret = ak8975_write_data(client,
AK8975_REG_CNTL,
(u8)oval,
AK8975_REG_CNTL_MODE_MASK,
AK8975_REG_CNTL_MODE_SHIFT);
if (ret < 0) {
dev_err(&client->dev, "Error in setting mode\n");
mutex_unlock(&data->lock);
return ret;
}
data->mode = oval;
}
mutex_unlock(&data->lock);
return count;
}
/*
* Emits the scale factor to bring the raw value into Gauss units.
*
* This scale factor is axis-dependent, and is derived from 3 calibration
* factors ASA(x), ASA(y), and ASA(z).
*
* These ASA values are read from the sensor device at start of day, and
* cached in the device context struct.
*
* Adjusting the flux value with the sensitivity adjustment value should be
* done via the following formula:
*
* Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
*
* where H is the raw value, ASA is the sensitivity adjustment, and Hadj
* is the resultant adjusted value.
*
* We reduce the formula to:
*
* Hadj = H * (ASA + 128) / 256
*
* H is in the range of -4096 to 4095. The magnetometer has a range of
* +-1229uT. To go from the raw value to uT is:
*
* HuT = H * 1229/4096, or roughly, 3/10.
*
* Since 1uT = 100 gauss, our final scale factor becomes:
*
* Hadj = H * ((ASA + 128) / 256) * 3/10 * 100
* Hadj = H * ((ASA + 128) * 30 / 256
*
* Since ASA doesn't change, we cache the resultant scale factor into the
* device context in ak8975_setup().
*/
static ssize_t show_scale(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct ak8975_data *data = indio_dev->dev_data;
struct iio_dev_attr *this_attr = to_iio_dev_attr(devattr);
return sprintf(buf, "%ld\n", data->raw_to_gauss[this_attr->address]);
}
/*
* Emits the raw flux value for the x, y, or z axis.
*/
static ssize_t show_raw(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct ak8975_data *data = indio_dev->dev_data;
struct i2c_client *client = data->client;
struct iio_dev_attr *this_attr = to_iio_dev_attr(devattr);
u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
u16 meas_reg;
s16 raw;
u8 read_status;
int ret;
mutex_lock(&data->lock);
if (data->mode == 0) {
dev_err(&client->dev, "Operating mode is in power down mode\n");
ret = -EBUSY;
goto exit;
}
/* Set up the device for taking a sample. */
ret = ak8975_write_data(client,
AK8975_REG_CNTL,
AK8975_REG_CNTL_MODE_ONCE,
AK8975_REG_CNTL_MODE_MASK,
AK8975_REG_CNTL_MODE_SHIFT);
if (ret < 0) {
dev_err(&client->dev, "Error in setting operating mode\n");
goto exit;
}
/* Wait for the conversion to complete. */
while (timeout_ms) {
msleep(AK8975_CONVERSION_DONE_POLL_TIME);
if (gpio_get_value(data->eoc_gpio))
break;
timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
}
if (!timeout_ms) {
dev_err(&client->dev, "Conversion timeout happened\n");
ret = -EINVAL;
goto exit;
}
ret = ak8975_read_data(client, AK8975_REG_ST1, 1, &read_status);
if (ret < 0) {
dev_err(&client->dev, "Error in reading ST1\n");
goto exit;
}
if (read_status & AK8975_REG_ST1_DRDY_MASK) {
ret = ak8975_read_data(client, AK8975_REG_ST2, 1, &read_status);
if (ret < 0) {
dev_err(&client->dev, "Error in reading ST2\n");
goto exit;
}
if (read_status & (AK8975_REG_ST2_DERR_MASK |
AK8975_REG_ST2_HOFL_MASK)) {
dev_err(&client->dev, "ST2 status error 0x%x\n",
read_status);
ret = -EINVAL;
goto exit;
}
}
/* Read the flux value from the appropriate register
(the register is specified in the iio device attributes). */
ret = ak8975_read_data(client, this_attr->address, 2, (u8 *)&meas_reg);
if (ret < 0) {
dev_err(&client->dev, "Read axis data fails\n");
goto exit;
}
mutex_unlock(&data->lock);
/* Endian conversion of the measured values. */
raw = (s16) (le16_to_cpu(meas_reg));
/* Clamp to valid range. */
raw = clamp_t(s16, raw, -4096, 4095);
return sprintf(buf, "%d\n", raw);
exit:
mutex_unlock(&data->lock);
return ret;
}
static IIO_DEVICE_ATTR(mode, S_IRUGO | S_IWUSR, show_mode, store_mode, 0);
static IIO_DEV_ATTR_MAGN_X_SCALE(S_IRUGO, show_scale, NULL, 0);
static IIO_DEV_ATTR_MAGN_Y_SCALE(S_IRUGO, show_scale, NULL, 1);
static IIO_DEV_ATTR_MAGN_Z_SCALE(S_IRUGO, show_scale, NULL, 2);
static IIO_DEV_ATTR_MAGN_X(show_raw, AK8975_REG_HXL);
static IIO_DEV_ATTR_MAGN_Y(show_raw, AK8975_REG_HYL);
static IIO_DEV_ATTR_MAGN_Z(show_raw, AK8975_REG_HZL);
static struct attribute *ak8975_attr[] = {
&iio_dev_attr_mode.dev_attr.attr,
&iio_dev_attr_magn_x_scale.dev_attr.attr,
&iio_dev_attr_magn_y_scale.dev_attr.attr,
&iio_dev_attr_magn_z_scale.dev_attr.attr,
&iio_dev_attr_magn_x_raw.dev_attr.attr,
&iio_dev_attr_magn_y_raw.dev_attr.attr,
&iio_dev_attr_magn_z_raw.dev_attr.attr,
NULL
};
static struct attribute_group ak8975_attr_group = {
.attrs = ak8975_attr,
};
static int ak8975_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct ak8975_data *data;
int err;
/* Allocate our device context. */
data = kzalloc(sizeof(struct ak8975_data), GFP_KERNEL);
if (!data) {
dev_err(&client->dev, "Memory allocation fails\n");
err = -ENOMEM;
goto exit;
}
i2c_set_clientdata(client, data);
data->client = client;
mutex_init(&data->lock);
/* Grab and set up the supplied GPIO. */
data->eoc_irq = client->irq;
data->eoc_gpio = irq_to_gpio(client->irq);
if (!data->eoc_gpio) {
dev_err(&client->dev, "failed, no valid GPIO\n");
err = -EINVAL;
goto exit_free;
}
err = gpio_request(data->eoc_gpio, "ak_8975");
if (err < 0) {
dev_err(&client->dev, "failed to request GPIO %d, error %d\n",
data->eoc_gpio, err);
goto exit_free;
}
err = gpio_direction_input(data->eoc_gpio);
if (err < 0) {
dev_err(&client->dev, "Failed to configure input direction for"
" GPIO %d, error %d\n", data->eoc_gpio, err);
goto exit_gpio;
}
/* Perform some basic start-of-day setup of the device. */
err = ak8975_setup(client);
if (err < 0) {
dev_err(&client->dev, "AK8975 initialization fails\n");
goto exit_gpio;
}
/* Register with IIO */
data->indio_dev = iio_allocate_device();
if (data->indio_dev == NULL) {
err = -ENOMEM;
goto exit_gpio;
}
data->indio_dev->dev.parent = &client->dev;
data->indio_dev->attrs = &ak8975_attr_group;
data->indio_dev->dev_data = (void *)(data);
data->indio_dev->driver_module = THIS_MODULE;
data->indio_dev->modes = INDIO_DIRECT_MODE;
err = iio_device_register(data->indio_dev);
if (err < 0)
goto exit_free_iio;
return 0;
exit_free_iio:
iio_free_device(data->indio_dev);
exit_gpio:
gpio_free(data->eoc_gpio);
exit_free:
kfree(data);
exit:
return err;
}
static int ak8975_remove(struct i2c_client *client)
{
struct ak8975_data *data = i2c_get_clientdata(client);
iio_device_unregister(data->indio_dev);
iio_free_device(data->indio_dev);
gpio_free(data->eoc_gpio);
kfree(data);
return 0;
}
static const struct i2c_device_id ak8975_id[] = {
{"ak8975", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, ak8975_id);
static struct i2c_driver ak8975_driver = {
.driver = {
.name = "ak8975",
},
.probe = ak8975_probe,
.remove = __devexit_p(ak8975_remove),
.id_table = ak8975_id,
};
static int __init ak8975_init(void)
{
return i2c_add_driver(&ak8975_driver);
}
static void __exit ak8975_exit(void)
{
i2c_del_driver(&ak8975_driver);
}
module_init(ak8975_init);
module_exit(ak8975_exit);
MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
MODULE_DESCRIPTION("AK8975 magnetometer driver");
MODULE_LICENSE("GPL");