blob: 9f924ea6ca35b127bf7880fa11b375fc44869bae [file] [log] [blame]
/*
*************************************************************************
* Ralink Tech Inc.
* 5F., No.36, Taiyuan St., Jhubei City,
* Hsinchu County 302,
* Taiwan, R.O.C.
*
* (c) Copyright 2002-2007, Ralink Technology, Inc.
*
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
*************************************************************************
Module Name:
rtmp_phy.h
Abstract:
Ralink Wireless Chip PHY(BBP/RF) related definition & structures
Revision History:
Who When What
-------- ---------- ----------------------------------------------
*/
#ifndef __RTMP_PHY_H__
#define __RTMP_PHY_H__
/*
RF sections
*/
#define RF_R00 0
#define RF_R01 1
#define RF_R02 2
#define RF_R03 3
#define RF_R04 4
#define RF_R05 5
#define RF_R06 6
#define RF_R07 7
#define RF_R08 8
#define RF_R09 9
#define RF_R10 10
#define RF_R11 11
#define RF_R12 12
#define RF_R13 13
#define RF_R14 14
#define RF_R15 15
#define RF_R16 16
#define RF_R17 17
#define RF_R18 18
#define RF_R19 19
#define RF_R20 20
#define RF_R21 21
#define RF_R22 22
#define RF_R23 23
#define RF_R24 24
#define RF_R25 25
#define RF_R26 26
#define RF_R27 27
#define RF_R28 28
#define RF_R29 29
#define RF_R30 30
#define RF_R31 31
/* value domain of pAd->RfIcType */
#define RFIC_2820 1 /* 2.4G 2T3R */
#define RFIC_2850 2 /* 2.4G/5G 2T3R */
#define RFIC_2720 3 /* 2.4G 1T2R */
#define RFIC_2750 4 /* 2.4G/5G 1T2R */
#define RFIC_3020 5 /* 2.4G 1T1R */
#define RFIC_2020 6 /* 2.4G B/G */
#define RFIC_3021 7 /* 2.4G 1T2R */
#define RFIC_3022 8 /* 2.4G 2T2R */
#define RFIC_3052 9 /* 2.4G/5G 2T2R */
/*
BBP sections
*/
#define BBP_R0 0 /* version */
#define BBP_R1 1 /* TSSI */
#define BBP_R2 2 /* TX configure */
#define BBP_R3 3
#define BBP_R4 4
#define BBP_R5 5
#define BBP_R6 6
#define BBP_R14 14 /* RX configure */
#define BBP_R16 16
#define BBP_R17 17 /* RX sensibility */
#define BBP_R18 18
#define BBP_R21 21
#define BBP_R22 22
#define BBP_R24 24
#define BBP_R25 25
#define BBP_R26 26
#define BBP_R27 27
#define BBP_R31 31
#define BBP_R49 49 /*TSSI */
#define BBP_R50 50
#define BBP_R51 51
#define BBP_R52 52
#define BBP_R55 55
#define BBP_R62 62 /* Rx SQ0 Threshold HIGH */
#define BBP_R63 63
#define BBP_R64 64
#define BBP_R65 65
#define BBP_R66 66
#define BBP_R67 67
#define BBP_R68 68
#define BBP_R69 69
#define BBP_R70 70 /* Rx AGC SQ CCK Xcorr threshold */
#define BBP_R73 73
#define BBP_R75 75
#define BBP_R77 77
#define BBP_R78 78
#define BBP_R79 79
#define BBP_R80 80
#define BBP_R81 81
#define BBP_R82 82
#define BBP_R83 83
#define BBP_R84 84
#define BBP_R86 86
#define BBP_R91 91
#define BBP_R92 92
#define BBP_R94 94 /* Tx Gain Control */
#define BBP_R103 103
#define BBP_R105 105
#define BBP_R106 106
#define BBP_R113 113
#define BBP_R114 114
#define BBP_R115 115
#define BBP_R116 116
#define BBP_R117 117
#define BBP_R118 118
#define BBP_R119 119
#define BBP_R120 120
#define BBP_R121 121
#define BBP_R122 122
#define BBP_R123 123
#ifdef RT30xx
#define BBP_R138 138 /* add by johnli, RF power sequence setup, ADC dynamic on/off control */
#endif /* RT30xx // */
#define BBPR94_DEFAULT 0x06 /* Add 1 value will gain 1db */
/* */
/* BBP & RF are using indirect access. Before write any value into it. */
/* We have to make sure there is no outstanding command pending via checking busy bit. */
/* */
#define MAX_BUSY_COUNT 100 /* Number of retry before failing access BBP & RF indirect register */
/*#define PHY_TR_SWITCH_TIME 5 // usec */
/*#define BBP_R17_LOW_SENSIBILITY 0x50 */
/*#define BBP_R17_MID_SENSIBILITY 0x41 */
/*#define BBP_R17_DYNAMIC_UP_BOUND 0x40 */
#define RSSI_FOR_VERY_LOW_SENSIBILITY -35
#define RSSI_FOR_LOW_SENSIBILITY -58
#define RSSI_FOR_MID_LOW_SENSIBILITY -80
#define RSSI_FOR_MID_SENSIBILITY -90
/*****************************************************************************
RF register Read/Write marco definition
*****************************************************************************/
#ifdef RTMP_MAC_PCI
#define RTMP_RF_IO_WRITE32(_A, _V) \
{ \
if ((_A)->bPCIclkOff == FALSE) { \
PHY_CSR4_STRUC _value; \
unsigned long _busyCnt = 0; \
\
do { \
RTMP_IO_READ32((_A), RF_CSR_CFG0, &_value.word); \
if (_value.field.Busy == IDLE) \
break; \
_busyCnt++; \
} while (_busyCnt < MAX_BUSY_COUNT); \
if (_busyCnt < MAX_BUSY_COUNT) { \
RTMP_IO_WRITE32((_A), RF_CSR_CFG0, (_V)); \
} \
} \
}
#endif /* RTMP_MAC_PCI // */
#ifdef RTMP_MAC_USB
#define RTMP_RF_IO_WRITE32(_A, _V) RTUSBWriteRFRegister(_A, _V)
#endif /* RTMP_MAC_USB // */
#ifdef RT30xx
#define RTMP_RF_IO_READ8_BY_REG_ID(_A, _I, _pV) RT30xxReadRFRegister(_A, _I, _pV)
#define RTMP_RF_IO_WRITE8_BY_REG_ID(_A, _I, _V) RT30xxWriteRFRegister(_A, _I, _V)
#endif /* RT30xx // */
/*****************************************************************************
BBP register Read/Write marco definitions.
we read/write the bbp value by register's ID.
Generate PER to test BA
*****************************************************************************/
#ifdef RTMP_MAC_PCI
/*
basic marco for BBP read operation.
_pAd: the data structure pointer of struct rt_rtmp_adapter
_bbpID : the bbp register ID
_pV: data pointer used to save the value of queried bbp register.
_bViaMCU: if we need access the bbp via the MCU.
*/
#define RTMP_BBP_IO_READ8(_pAd, _bbpID, _pV, _bViaMCU) \
do { \
BBP_CSR_CFG_STRUC BbpCsr; \
int _busyCnt, _secCnt, _regID; \
\
_regID = ((_bViaMCU) == TRUE ? H2M_BBP_AGENT : BBP_CSR_CFG); \
for (_busyCnt = 0; _busyCnt < MAX_BUSY_COUNT; _busyCnt++) { \
RTMP_IO_READ32(_pAd, _regID, &BbpCsr.word); \
if (BbpCsr.field.Busy == BUSY) \
continue; \
BbpCsr.word = 0; \
BbpCsr.field.fRead = 1; \
BbpCsr.field.BBP_RW_MODE = 1; \
BbpCsr.field.Busy = 1; \
BbpCsr.field.RegNum = _bbpID; \
RTMP_IO_WRITE32(_pAd, _regID, BbpCsr.word); \
if ((_bViaMCU) == TRUE) { \
AsicSendCommandToMcu(_pAd, 0x80, 0xff, 0x0, 0x0); \
RTMPusecDelay(1000); \
} \
for (_secCnt = 0; _secCnt < MAX_BUSY_COUNT; _secCnt++) { \
RTMP_IO_READ32(_pAd, _regID, &BbpCsr.word); \
if (BbpCsr.field.Busy == IDLE) \
break; \
} \
if ((BbpCsr.field.Busy == IDLE) && \
(BbpCsr.field.RegNum == _bbpID)) { \
*(_pV) = (u8)BbpCsr.field.Value; \
break; \
} \
} \
if (BbpCsr.field.Busy == BUSY) { \
DBGPRINT_ERR(("BBP(viaMCU=%d) read R%d fail\n", (_bViaMCU), _bbpID)); \
*(_pV) = (_pAd)->BbpWriteLatch[_bbpID]; \
if ((_bViaMCU) == TRUE) { \
RTMP_IO_READ32(_pAd, _regID, &BbpCsr.word); \
BbpCsr.field.Busy = 0; \
RTMP_IO_WRITE32(_pAd, _regID, BbpCsr.word); \
} \
} \
} while (0)
/*
This marco used for the BBP read operation which didn't need via MCU.
*/
#define BBP_IO_READ8_BY_REG_ID(_A, _I, _pV) \
RTMP_BBP_IO_READ8((_A), (_I), (_pV), FALSE)
/*
This marco used for the BBP read operation which need via MCU.
But for some chipset which didn't have mcu (e.g., RBUS based chipset), we
will use this function too and didn't access the bbp register via the MCU.
*/
/* Read BBP register by register's ID. Generate PER to test BA */
#define RTMP_BBP_IO_READ8_BY_REG_ID(_A, _I, _pV) \
{ \
BBP_CSR_CFG_STRUC BbpCsr; \
int i, k; \
BOOLEAN brc; \
BbpCsr.field.Busy = IDLE; \
if ((IS_RT3090((_A)) || IS_RT3572((_A)) || IS_RT3390((_A))) \
&& ((_A)->StaCfg.PSControl.field.rt30xxPowerMode == 3) \
&& ((_A)->StaCfg.PSControl.field.EnableNewPS == TRUE) \
&& ((_A)->bPCIclkOff == FALSE) \
&& ((_A)->brt30xxBanMcuCmd == FALSE)) { \
for (i = 0; i < MAX_BUSY_COUNT; i++) { \
RTMP_IO_READ32(_A, H2M_BBP_AGENT, &BbpCsr.word); \
if (BbpCsr.field.Busy == BUSY) { \
continue; \
} \
BbpCsr.word = 0; \
BbpCsr.field.fRead = 1; \
BbpCsr.field.BBP_RW_MODE = 1; \
BbpCsr.field.Busy = 1; \
BbpCsr.field.RegNum = _I; \
RTMP_IO_WRITE32(_A, H2M_BBP_AGENT, BbpCsr.word); \
brc = AsicSendCommandToMcu(_A, 0x80, 0xff, 0x0, 0x0); \
if (brc == TRUE) { \
for (k = 0; k < MAX_BUSY_COUNT; k++) { \
RTMP_IO_READ32(_A, H2M_BBP_AGENT, &BbpCsr.word); \
if (BbpCsr.field.Busy == IDLE) \
break; \
} \
if ((BbpCsr.field.Busy == IDLE) && \
(BbpCsr.field.RegNum == _I)) { \
*(_pV) = (u8)BbpCsr.field.Value; \
break; \
} \
} else { \
BbpCsr.field.Busy = 0; \
RTMP_IO_WRITE32(_A, H2M_BBP_AGENT, BbpCsr.word); \
} \
} \
} \
else if (!((IS_RT3090((_A)) || IS_RT3572((_A)) || IS_RT3390((_A))) && ((_A)->StaCfg.PSControl.field.rt30xxPowerMode == 3) \
&& ((_A)->StaCfg.PSControl.field.EnableNewPS == TRUE)) \
&& ((_A)->bPCIclkOff == FALSE)) { \
for (i = 0; i < MAX_BUSY_COUNT; i++) { \
RTMP_IO_READ32(_A, H2M_BBP_AGENT, &BbpCsr.word); \
if (BbpCsr.field.Busy == BUSY) { \
continue; \
} \
BbpCsr.word = 0; \
BbpCsr.field.fRead = 1; \
BbpCsr.field.BBP_RW_MODE = 1; \
BbpCsr.field.Busy = 1; \
BbpCsr.field.RegNum = _I; \
RTMP_IO_WRITE32(_A, H2M_BBP_AGENT, BbpCsr.word); \
AsicSendCommandToMcu(_A, 0x80, 0xff, 0x0, 0x0); \
for (k = 0; k < MAX_BUSY_COUNT; k++) { \
RTMP_IO_READ32(_A, H2M_BBP_AGENT, &BbpCsr.word); \
if (BbpCsr.field.Busy == IDLE) \
break; \
} \
if ((BbpCsr.field.Busy == IDLE) && \
(BbpCsr.field.RegNum == _I)) { \
*(_pV) = (u8)BbpCsr.field.Value; \
break; \
} \
} \
} else { \
DBGPRINT_ERR((" , brt30xxBanMcuCmd = %d, Read BBP %d \n", (_A)->brt30xxBanMcuCmd, (_I))); \
*(_pV) = (_A)->BbpWriteLatch[_I]; \
} \
if ((BbpCsr.field.Busy == BUSY) || ((_A)->bPCIclkOff == TRUE)) { \
DBGPRINT_ERR(("BBP read R%d=0x%x fail\n", _I, BbpCsr.word)); \
*(_pV) = (_A)->BbpWriteLatch[_I]; \
} \
}
/*
basic marco for BBP write operation.
_pAd: the data structure pointer of struct rt_rtmp_adapter
_bbpID : the bbp register ID
_pV: data used to save the value of queried bbp register.
_bViaMCU: if we need access the bbp via the MCU.
*/
#define RTMP_BBP_IO_WRITE8(_pAd, _bbpID, _pV, _bViaMCU) \
do { \
BBP_CSR_CFG_STRUC BbpCsr; \
int _busyCnt, _regID; \
\
_regID = ((_bViaMCU) == TRUE ? H2M_BBP_AGENT : BBP_CSR_CFG); \
for (_busyCnt = 0; _busyCnt < MAX_BUSY_COUNT; _busyCnt++) { \
RTMP_IO_READ32((_pAd), BBP_CSR_CFG, &BbpCsr.word); \
if (BbpCsr.field.Busy == BUSY) \
continue; \
BbpCsr.word = 0; \
BbpCsr.field.fRead = 0; \
BbpCsr.field.BBP_RW_MODE = 1; \
BbpCsr.field.Busy = 1; \
BbpCsr.field.Value = _pV; \
BbpCsr.field.RegNum = _bbpID; \
RTMP_IO_WRITE32((_pAd), BBP_CSR_CFG, BbpCsr.word); \
if ((_bViaMCU) == TRUE) { \
AsicSendCommandToMcu(_pAd, 0x80, 0xff, 0x0, 0x0); \
if ((_pAd)->OpMode == OPMODE_AP) \
RTMPusecDelay(1000); \
} \
(_pAd)->BbpWriteLatch[_bbpID] = _pV; \
break; \
} \
if (_busyCnt == MAX_BUSY_COUNT) { \
DBGPRINT_ERR(("BBP write R%d fail\n", _bbpID)); \
if ((_bViaMCU) == TRUE) { \
RTMP_IO_READ32(_pAd, H2M_BBP_AGENT, &BbpCsr.word); \
BbpCsr.field.Busy = 0; \
RTMP_IO_WRITE32(_pAd, H2M_BBP_AGENT, BbpCsr.word); \
} \
} \
} while (0)
/*
This marco used for the BBP write operation which didn't need via MCU.
*/
#define BBP_IO_WRITE8_BY_REG_ID(_A, _I, _pV) \
RTMP_BBP_IO_WRITE8((_A), (_I), (_pV), FALSE)
/*
This marco used for the BBP write operation which need via MCU.
But for some chipset which didn't have mcu (e.g., RBUS based chipset), we
will use this function too and didn't access the bbp register via the MCU.
*/
/* Write BBP register by register's ID & value */
#define RTMP_BBP_IO_WRITE8_BY_REG_ID(_A, _I, _V) \
{ \
BBP_CSR_CFG_STRUC BbpCsr; \
int BusyCnt = 0; \
BOOLEAN brc; \
if (_I < MAX_NUM_OF_BBP_LATCH) { \
if ((IS_RT3090((_A)) || IS_RT3572((_A)) || IS_RT3390((_A))) \
&& ((_A)->StaCfg.PSControl.field.rt30xxPowerMode == 3) \
&& ((_A)->StaCfg.PSControl.field.EnableNewPS == TRUE) \
&& ((_A)->bPCIclkOff == FALSE) \
&& ((_A)->brt30xxBanMcuCmd == FALSE)) { \
if (_A->AccessBBPFailCount > 20) { \
AsicResetBBPAgent(_A); \
_A->AccessBBPFailCount = 0; \
} \
for (BusyCnt = 0; BusyCnt < MAX_BUSY_COUNT; BusyCnt++) { \
RTMP_IO_READ32(_A, H2M_BBP_AGENT, &BbpCsr.word); \
if (BbpCsr.field.Busy == BUSY) \
continue; \
BbpCsr.word = 0; \
BbpCsr.field.fRead = 0; \
BbpCsr.field.BBP_RW_MODE = 1; \
BbpCsr.field.Busy = 1; \
BbpCsr.field.Value = _V; \
BbpCsr.field.RegNum = _I; \
RTMP_IO_WRITE32(_A, H2M_BBP_AGENT, BbpCsr.word); \
brc = AsicSendCommandToMcu(_A, 0x80, 0xff, 0x0, 0x0); \
if (brc == TRUE) { \
(_A)->BbpWriteLatch[_I] = _V; \
} else { \
BbpCsr.field.Busy = 0; \
RTMP_IO_WRITE32(_A, H2M_BBP_AGENT, BbpCsr.word); \
} \
break; \
} \
} \
else if (!((IS_RT3090((_A)) || IS_RT3572((_A)) || IS_RT3390((_A))) \
&& ((_A)->StaCfg.PSControl.field.rt30xxPowerMode == 3) \
&& ((_A)->StaCfg.PSControl.field.EnableNewPS == TRUE)) \
&& ((_A)->bPCIclkOff == FALSE)) { \
if (_A->AccessBBPFailCount > 20) { \
AsicResetBBPAgent(_A); \
_A->AccessBBPFailCount = 0; \
} \
for (BusyCnt = 0; BusyCnt < MAX_BUSY_COUNT; BusyCnt++) { \
RTMP_IO_READ32(_A, H2M_BBP_AGENT, &BbpCsr.word); \
if (BbpCsr.field.Busy == BUSY) \
continue; \
BbpCsr.word = 0; \
BbpCsr.field.fRead = 0; \
BbpCsr.field.BBP_RW_MODE = 1; \
BbpCsr.field.Busy = 1; \
BbpCsr.field.Value = _V; \
BbpCsr.field.RegNum = _I; \
RTMP_IO_WRITE32(_A, H2M_BBP_AGENT, BbpCsr.word); \
AsicSendCommandToMcu(_A, 0x80, 0xff, 0x0, 0x0); \
(_A)->BbpWriteLatch[_I] = _V; \
break; \
} \
} else { \
DBGPRINT_ERR((" brt30xxBanMcuCmd = %d. Write BBP %d \n", (_A)->brt30xxBanMcuCmd, (_I))); \
} \
if ((BusyCnt == MAX_BUSY_COUNT) || ((_A)->bPCIclkOff == TRUE)) { \
if (BusyCnt == MAX_BUSY_COUNT) \
(_A)->AccessBBPFailCount++; \
DBGPRINT_ERR(("BBP write R%d=0x%x fail. BusyCnt= %d.bPCIclkOff = %d. \n", _I, BbpCsr.word, BusyCnt, (_A)->bPCIclkOff)); \
} \
} else { \
DBGPRINT_ERR(("****** BBP_Write_Latch Buffer exceeds max boundry ****** \n")); \
} \
}
#endif /* RTMP_MAC_PCI // */
#ifdef RTMP_MAC_USB
#define RTMP_BBP_IO_READ8_BY_REG_ID(_A, _I, _pV) RTUSBReadBBPRegister(_A, _I, _pV)
#define RTMP_BBP_IO_WRITE8_BY_REG_ID(_A, _I, _V) RTUSBWriteBBPRegister(_A, _I, _V)
#define BBP_IO_WRITE8_BY_REG_ID(_A, _I, _V) RTUSBWriteBBPRegister(_A, _I, _V)
#define BBP_IO_READ8_BY_REG_ID(_A, _I, _pV) RTUSBReadBBPRegister(_A, _I, _pV)
#endif /* RTMP_MAC_USB // */
#ifdef RT30xx
#define RTMP_ASIC_MMPS_DISABLE(_pAd) \
do { \
u32 _macData; \
u8 _bbpData = 0; \
/* disable MMPS BBP control register */ \
RTMP_BBP_IO_READ8_BY_REG_ID(_pAd, BBP_R3, &_bbpData); \
_bbpData &= ~(0x04); /*bit 2*/ \
RTMP_BBP_IO_WRITE8_BY_REG_ID(_pAd, BBP_R3, _bbpData); \
\
/* disable MMPS MAC control register */ \
RTMP_IO_READ32(_pAd, 0x1210, &_macData); \
_macData &= ~(0x09); /*bit 0, 3*/ \
RTMP_IO_WRITE32(_pAd, 0x1210, _macData); \
} while (0)
#define RTMP_ASIC_MMPS_ENABLE(_pAd) \
do { \
u32 _macData; \
u8 _bbpData = 0; \
/* enable MMPS BBP control register */ \
RTMP_BBP_IO_READ8_BY_REG_ID(_pAd, BBP_R3, &_bbpData); \
_bbpData |= (0x04); /*bit 2*/ \
RTMP_BBP_IO_WRITE8_BY_REG_ID(_pAd, BBP_R3, _bbpData); \
\
/* enable MMPS MAC control register */ \
RTMP_IO_READ32(_pAd, 0x1210, &_macData); \
_macData |= (0x09); /*bit 0, 3*/ \
RTMP_IO_WRITE32(_pAd, 0x1210, _macData); \
} while (0)
#endif /* RT30xx // */
#endif /* __RTMP_PHY_H__ // */