| /* Elgamal.c - Elgamal Public Key encryption |
| * Copyright (C) 1998, 2000, 2001, 2002, 2003, |
| * 2008 Free Software Foundation, Inc. |
| * Copyright (C) 2013 g10 Code GmbH |
| * |
| * This file is part of Libgcrypt. |
| * |
| * Libgcrypt is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU Lesser General Public License as |
| * published by the Free Software Foundation; either version 2.1 of |
| * the License, or (at your option) any later version. |
| * |
| * Libgcrypt is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this program; if not, see <http://www.gnu.org/licenses/>. |
| * |
| * For a description of the algorithm, see: |
| * Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996. |
| * ISBN 0-471-11709-9. Pages 476 ff. |
| */ |
| |
| #include <config.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include "g10lib.h" |
| #include "mpi.h" |
| #include "cipher.h" |
| #include "pubkey-internal.h" |
| |
| |
| typedef struct |
| { |
| gcry_mpi_t p; /* prime */ |
| gcry_mpi_t g; /* group generator */ |
| gcry_mpi_t y; /* g^x mod p */ |
| } ELG_public_key; |
| |
| |
| typedef struct |
| { |
| gcry_mpi_t p; /* prime */ |
| gcry_mpi_t g; /* group generator */ |
| gcry_mpi_t y; /* g^x mod p */ |
| gcry_mpi_t x; /* secret exponent */ |
| } ELG_secret_key; |
| |
| |
| static const char *elg_names[] = |
| { |
| "elg", |
| "openpgp-elg", |
| "openpgp-elg-sig", |
| NULL, |
| }; |
| |
| |
| static int test_keys (ELG_secret_key *sk, unsigned int nbits, int nodie); |
| static gcry_mpi_t gen_k (gcry_mpi_t p, int small_k); |
| static void generate (ELG_secret_key *sk, unsigned nbits, gcry_mpi_t **factors); |
| static int check_secret_key (ELG_secret_key *sk); |
| static void do_encrypt (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, |
| ELG_public_key *pkey); |
| static void decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b, |
| ELG_secret_key *skey); |
| static void sign (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, |
| ELG_secret_key *skey); |
| static int verify (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, |
| ELG_public_key *pkey); |
| static unsigned int elg_get_nbits (gcry_sexp_t parms); |
| |
| |
| static void (*progress_cb) (void *, const char *, int, int, int); |
| static void *progress_cb_data; |
| |
| void |
| _gcry_register_pk_elg_progress (void (*cb) (void *, const char *, |
| int, int, int), |
| void *cb_data) |
| { |
| progress_cb = cb; |
| progress_cb_data = cb_data; |
| } |
| |
| |
| static void |
| progress (int c) |
| { |
| if (progress_cb) |
| progress_cb (progress_cb_data, "pk_elg", c, 0, 0); |
| } |
| |
| |
| /**************** |
| * Michael Wiener's table on subgroup sizes to match field sizes. |
| * (floating around somewhere, probably based on the paper from |
| * Eurocrypt 96, page 332) |
| */ |
| static unsigned int |
| wiener_map( unsigned int n ) |
| { |
| static struct { unsigned int p_n, q_n; } t[] = |
| { /* p q attack cost */ |
| { 512, 119 }, /* 9 x 10^17 */ |
| { 768, 145 }, /* 6 x 10^21 */ |
| { 1024, 165 }, /* 7 x 10^24 */ |
| { 1280, 183 }, /* 3 x 10^27 */ |
| { 1536, 198 }, /* 7 x 10^29 */ |
| { 1792, 212 }, /* 9 x 10^31 */ |
| { 2048, 225 }, /* 8 x 10^33 */ |
| { 2304, 237 }, /* 5 x 10^35 */ |
| { 2560, 249 }, /* 3 x 10^37 */ |
| { 2816, 259 }, /* 1 x 10^39 */ |
| { 3072, 269 }, /* 3 x 10^40 */ |
| { 3328, 279 }, /* 8 x 10^41 */ |
| { 3584, 288 }, /* 2 x 10^43 */ |
| { 3840, 296 }, /* 4 x 10^44 */ |
| { 4096, 305 }, /* 7 x 10^45 */ |
| { 4352, 313 }, /* 1 x 10^47 */ |
| { 4608, 320 }, /* 2 x 10^48 */ |
| { 4864, 328 }, /* 2 x 10^49 */ |
| { 5120, 335 }, /* 3 x 10^50 */ |
| { 0, 0 } |
| }; |
| int i; |
| |
| for(i=0; t[i].p_n; i++ ) |
| { |
| if( n <= t[i].p_n ) |
| return t[i].q_n; |
| } |
| /* Not in table - use an arbitrary high number. */ |
| return n / 8 + 200; |
| } |
| |
| static int |
| test_keys ( ELG_secret_key *sk, unsigned int nbits, int nodie ) |
| { |
| ELG_public_key pk; |
| gcry_mpi_t test = mpi_new ( 0 ); |
| gcry_mpi_t out1_a = mpi_new ( nbits ); |
| gcry_mpi_t out1_b = mpi_new ( nbits ); |
| gcry_mpi_t out2 = mpi_new ( nbits ); |
| int failed = 0; |
| |
| pk.p = sk->p; |
| pk.g = sk->g; |
| pk.y = sk->y; |
| |
| _gcry_mpi_randomize ( test, nbits, GCRY_WEAK_RANDOM ); |
| |
| do_encrypt ( out1_a, out1_b, test, &pk ); |
| decrypt ( out2, out1_a, out1_b, sk ); |
| if ( mpi_cmp( test, out2 ) ) |
| failed |= 1; |
| |
| sign ( out1_a, out1_b, test, sk ); |
| if ( !verify( out1_a, out1_b, test, &pk ) ) |
| failed |= 2; |
| |
| _gcry_mpi_release ( test ); |
| _gcry_mpi_release ( out1_a ); |
| _gcry_mpi_release ( out1_b ); |
| _gcry_mpi_release ( out2 ); |
| |
| if (failed && !nodie) |
| log_fatal ("Elgamal test key for %s %s failed\n", |
| (failed & 1)? "encrypt+decrypt":"", |
| (failed & 2)? "sign+verify":""); |
| if (failed && DBG_CIPHER) |
| log_debug ("Elgamal test key for %s %s failed\n", |
| (failed & 1)? "encrypt+decrypt":"", |
| (failed & 2)? "sign+verify":""); |
| |
| return failed; |
| } |
| |
| |
| /**************** |
| * Generate a random secret exponent k from prime p, so that k is |
| * relatively prime to p-1. With SMALL_K set, k will be selected for |
| * better encryption performance - this must never be used signing! |
| */ |
| static gcry_mpi_t |
| gen_k( gcry_mpi_t p, int small_k ) |
| { |
| gcry_mpi_t k = mpi_alloc_secure( 0 ); |
| gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(p) ); |
| gcry_mpi_t p_1 = mpi_copy(p); |
| unsigned int orig_nbits = mpi_get_nbits(p); |
| unsigned int nbits, nbytes; |
| char *rndbuf = NULL; |
| |
| if (small_k) |
| { |
| /* Using a k much lesser than p is sufficient for encryption and |
| * it greatly improves the encryption performance. We use |
| * Wiener's table and add a large safety margin. */ |
| nbits = wiener_map( orig_nbits ) * 3 / 2; |
| if( nbits >= orig_nbits ) |
| BUG(); |
| } |
| else |
| nbits = orig_nbits; |
| |
| |
| nbytes = (nbits+7)/8; |
| if( DBG_CIPHER ) |
| log_debug("choosing a random k\n"); |
| mpi_sub_ui( p_1, p, 1); |
| for(;;) |
| { |
| if( !rndbuf || nbits < 32 ) |
| { |
| xfree(rndbuf); |
| rndbuf = _gcry_random_bytes_secure( nbytes, GCRY_STRONG_RANDOM ); |
| } |
| else |
| { |
| /* Change only some of the higher bits. We could improve |
| this by directly requesting more memory at the first call |
| to get_random_bytes() and use this the here maybe it is |
| easier to do this directly in random.c Anyway, it is |
| highly inlikely that we will ever reach this code. */ |
| char *pp = _gcry_random_bytes_secure( 4, GCRY_STRONG_RANDOM ); |
| memcpy( rndbuf, pp, 4 ); |
| xfree(pp); |
| } |
| _gcry_mpi_set_buffer( k, rndbuf, nbytes, 0 ); |
| |
| for(;;) |
| { |
| if( !(mpi_cmp( k, p_1 ) < 0) ) /* check: k < (p-1) */ |
| { |
| if( DBG_CIPHER ) |
| progress('+'); |
| break; /* no */ |
| } |
| if( !(mpi_cmp_ui( k, 0 ) > 0) ) /* check: k > 0 */ |
| { |
| if( DBG_CIPHER ) |
| progress('-'); |
| break; /* no */ |
| } |
| if (mpi_gcd( temp, k, p_1 )) |
| goto found; /* okay, k is relative prime to (p-1) */ |
| mpi_add_ui( k, k, 1 ); |
| if( DBG_CIPHER ) |
| progress('.'); |
| } |
| } |
| found: |
| xfree (rndbuf); |
| if( DBG_CIPHER ) |
| progress('\n'); |
| mpi_free(p_1); |
| mpi_free(temp); |
| |
| return k; |
| } |
| |
| /**************** |
| * Generate a key pair with a key of size NBITS |
| * Returns: 2 structures filled with all needed values |
| * and an array with n-1 factors of (p-1) |
| */ |
| static void |
| generate ( ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t **ret_factors ) |
| { |
| gcry_mpi_t p; /* the prime */ |
| gcry_mpi_t p_min1; |
| gcry_mpi_t g; |
| gcry_mpi_t x; /* the secret exponent */ |
| gcry_mpi_t y; |
| unsigned int qbits; |
| unsigned int xbits; |
| byte *rndbuf; |
| |
| p_min1 = mpi_new ( nbits ); |
| qbits = wiener_map( nbits ); |
| if( qbits & 1 ) /* better have a even one */ |
| qbits++; |
| g = mpi_alloc(1); |
| p = _gcry_generate_elg_prime( 0, nbits, qbits, g, ret_factors ); |
| mpi_sub_ui(p_min1, p, 1); |
| |
| |
| /* Select a random number which has these properties: |
| * 0 < x < p-1 |
| * This must be a very good random number because this is the |
| * secret part. The prime is public and may be shared anyway, |
| * so a random generator level of 1 is used for the prime. |
| * |
| * I don't see a reason to have a x of about the same size |
| * as the p. It should be sufficient to have one about the size |
| * of q or the later used k plus a large safety margin. Decryption |
| * will be much faster with such an x. |
| */ |
| xbits = qbits * 3 / 2; |
| if( xbits >= nbits ) |
| BUG(); |
| x = mpi_snew ( xbits ); |
| if( DBG_CIPHER ) |
| log_debug("choosing a random x of size %u\n", xbits ); |
| rndbuf = NULL; |
| do |
| { |
| if( DBG_CIPHER ) |
| progress('.'); |
| if( rndbuf ) |
| { /* Change only some of the higher bits */ |
| if( xbits < 16 ) /* should never happen ... */ |
| { |
| xfree(rndbuf); |
| rndbuf = _gcry_random_bytes_secure ((xbits+7)/8, |
| GCRY_VERY_STRONG_RANDOM); |
| } |
| else |
| { |
| char *r = _gcry_random_bytes_secure (2, GCRY_VERY_STRONG_RANDOM); |
| memcpy(rndbuf, r, 2 ); |
| xfree (r); |
| } |
| } |
| else |
| { |
| rndbuf = _gcry_random_bytes_secure ((xbits+7)/8, |
| GCRY_VERY_STRONG_RANDOM ); |
| } |
| _gcry_mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 ); |
| mpi_clear_highbit( x, xbits+1 ); |
| } |
| while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) ); |
| xfree(rndbuf); |
| |
| y = mpi_new (nbits); |
| mpi_powm( y, g, x, p ); |
| |
| if( DBG_CIPHER ) |
| { |
| progress ('\n'); |
| log_mpidump ("elg p", p ); |
| log_mpidump ("elg g", g ); |
| log_mpidump ("elg y", y ); |
| log_mpidump ("elg x", x ); |
| } |
| |
| /* Copy the stuff to the key structures */ |
| sk->p = p; |
| sk->g = g; |
| sk->y = y; |
| sk->x = x; |
| |
| _gcry_mpi_release ( p_min1 ); |
| |
| /* Now we can test our keys (this should never fail!) */ |
| test_keys ( sk, nbits - 64, 0 ); |
| } |
| |
| |
| /* Generate a key pair with a key of size NBITS not using a random |
| value for the secret key but the one given as X. This is useful to |
| implement a passphrase based decryption for a public key based |
| encryption. It has appliactions in backup systems. |
| |
| Returns: A structure filled with all needed values and an array |
| with n-1 factors of (p-1). */ |
| static gcry_err_code_t |
| generate_using_x (ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t x, |
| gcry_mpi_t **ret_factors ) |
| { |
| gcry_mpi_t p; /* The prime. */ |
| gcry_mpi_t p_min1; /* The prime minus 1. */ |
| gcry_mpi_t g; /* The generator. */ |
| gcry_mpi_t y; /* g^x mod p. */ |
| unsigned int qbits; |
| unsigned int xbits; |
| |
| sk->p = NULL; |
| sk->g = NULL; |
| sk->y = NULL; |
| sk->x = NULL; |
| |
| /* Do a quick check to see whether X is suitable. */ |
| xbits = mpi_get_nbits (x); |
| if ( xbits < 64 || xbits >= nbits ) |
| return GPG_ERR_INV_VALUE; |
| |
| p_min1 = mpi_new ( nbits ); |
| qbits = wiener_map ( nbits ); |
| if ( (qbits & 1) ) /* Better have an even one. */ |
| qbits++; |
| g = mpi_alloc (1); |
| p = _gcry_generate_elg_prime ( 0, nbits, qbits, g, ret_factors ); |
| mpi_sub_ui (p_min1, p, 1); |
| |
| if (DBG_CIPHER) |
| log_debug ("using a supplied x of size %u", xbits ); |
| if ( !(mpi_cmp_ui ( x, 0 ) > 0 && mpi_cmp ( x, p_min1 ) <0 ) ) |
| { |
| _gcry_mpi_release ( p_min1 ); |
| _gcry_mpi_release ( p ); |
| _gcry_mpi_release ( g ); |
| return GPG_ERR_INV_VALUE; |
| } |
| |
| y = mpi_new (nbits); |
| mpi_powm ( y, g, x, p ); |
| |
| if ( DBG_CIPHER ) |
| { |
| progress ('\n'); |
| log_mpidump ("elg p", p ); |
| log_mpidump ("elg g", g ); |
| log_mpidump ("elg y", y ); |
| log_mpidump ("elg x", x ); |
| } |
| |
| /* Copy the stuff to the key structures */ |
| sk->p = p; |
| sk->g = g; |
| sk->y = y; |
| sk->x = mpi_copy (x); |
| |
| _gcry_mpi_release ( p_min1 ); |
| |
| /* Now we can test our keys. */ |
| if ( test_keys ( sk, nbits - 64, 1 ) ) |
| { |
| _gcry_mpi_release ( sk->p ); sk->p = NULL; |
| _gcry_mpi_release ( sk->g ); sk->g = NULL; |
| _gcry_mpi_release ( sk->y ); sk->y = NULL; |
| _gcry_mpi_release ( sk->x ); sk->x = NULL; |
| return GPG_ERR_BAD_SECKEY; |
| } |
| |
| return 0; |
| } |
| |
| |
| /**************** |
| * Test whether the secret key is valid. |
| * Returns: if this is a valid key. |
| */ |
| static int |
| check_secret_key( ELG_secret_key *sk ) |
| { |
| int rc; |
| gcry_mpi_t y = mpi_alloc( mpi_get_nlimbs(sk->y) ); |
| |
| mpi_powm (y, sk->g, sk->x, sk->p); |
| rc = !mpi_cmp( y, sk->y ); |
| mpi_free( y ); |
| return rc; |
| } |
| |
| |
| static void |
| do_encrypt(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey ) |
| { |
| gcry_mpi_t k; |
| |
| /* Note: maybe we should change the interface, so that it |
| * is possible to check that input is < p and return an |
| * error code. |
| */ |
| |
| k = gen_k( pkey->p, 1 ); |
| mpi_powm (a, pkey->g, k, pkey->p); |
| |
| /* b = (y^k * input) mod p |
| * = ((y^k mod p) * (input mod p)) mod p |
| * and because input is < p |
| * = ((y^k mod p) * input) mod p |
| */ |
| mpi_powm (b, pkey->y, k, pkey->p); |
| mpi_mulm (b, b, input, pkey->p); |
| #if 0 |
| if( DBG_CIPHER ) |
| { |
| log_mpidump("elg encrypted y", pkey->y); |
| log_mpidump("elg encrypted p", pkey->p); |
| log_mpidump("elg encrypted k", k); |
| log_mpidump("elg encrypted M", input); |
| log_mpidump("elg encrypted a", a); |
| log_mpidump("elg encrypted b", b); |
| } |
| #endif |
| mpi_free(k); |
| } |
| |
| |
| |
| |
| static void |
| decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b, ELG_secret_key *skey ) |
| { |
| gcry_mpi_t t1 = mpi_alloc_secure( mpi_get_nlimbs( skey->p ) ); |
| |
| mpi_normalize (a); |
| mpi_normalize (b); |
| |
| /* output = b/(a^x) mod p */ |
| mpi_powm( t1, a, skey->x, skey->p ); |
| mpi_invm( t1, t1, skey->p ); |
| mpi_mulm( output, b, t1, skey->p ); |
| #if 0 |
| if( DBG_CIPHER ) |
| { |
| log_mpidump ("elg decrypted x", skey->x); |
| log_mpidump ("elg decrypted p", skey->p); |
| log_mpidump ("elg decrypted a", a); |
| log_mpidump ("elg decrypted b", b); |
| log_mpidump ("elg decrypted M", output); |
| } |
| #endif |
| mpi_free(t1); |
| } |
| |
| |
| /**************** |
| * Make an Elgamal signature out of INPUT |
| */ |
| |
| static void |
| sign(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_secret_key *skey ) |
| { |
| gcry_mpi_t k; |
| gcry_mpi_t t = mpi_alloc( mpi_get_nlimbs(a) ); |
| gcry_mpi_t inv = mpi_alloc( mpi_get_nlimbs(a) ); |
| gcry_mpi_t p_1 = mpi_copy(skey->p); |
| |
| /* |
| * b = (t * inv) mod (p-1) |
| * b = (t * inv(k,(p-1),(p-1)) mod (p-1) |
| * b = (((M-x*a) mod (p-1)) * inv(k,(p-1),(p-1))) mod (p-1) |
| * |
| */ |
| mpi_sub_ui(p_1, p_1, 1); |
| k = gen_k( skey->p, 0 /* no small K ! */ ); |
| mpi_powm( a, skey->g, k, skey->p ); |
| mpi_mul(t, skey->x, a ); |
| mpi_subm(t, input, t, p_1 ); |
| mpi_invm(inv, k, p_1 ); |
| mpi_mulm(b, t, inv, p_1 ); |
| |
| #if 0 |
| if( DBG_CIPHER ) |
| { |
| log_mpidump ("elg sign p", skey->p); |
| log_mpidump ("elg sign g", skey->g); |
| log_mpidump ("elg sign y", skey->y); |
| log_mpidump ("elg sign x", skey->x); |
| log_mpidump ("elg sign k", k); |
| log_mpidump ("elg sign M", input); |
| log_mpidump ("elg sign a", a); |
| log_mpidump ("elg sign b", b); |
| } |
| #endif |
| mpi_free(k); |
| mpi_free(t); |
| mpi_free(inv); |
| mpi_free(p_1); |
| } |
| |
| |
| /**************** |
| * Returns true if the signature composed of A and B is valid. |
| */ |
| static int |
| verify(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey ) |
| { |
| int rc; |
| gcry_mpi_t t1; |
| gcry_mpi_t t2; |
| gcry_mpi_t base[4]; |
| gcry_mpi_t ex[4]; |
| |
| if( !(mpi_cmp_ui( a, 0 ) > 0 && mpi_cmp( a, pkey->p ) < 0) ) |
| return 0; /* assertion 0 < a < p failed */ |
| |
| t1 = mpi_alloc( mpi_get_nlimbs(a) ); |
| t2 = mpi_alloc( mpi_get_nlimbs(a) ); |
| |
| #if 0 |
| /* t1 = (y^a mod p) * (a^b mod p) mod p */ |
| gcry_mpi_powm( t1, pkey->y, a, pkey->p ); |
| gcry_mpi_powm( t2, a, b, pkey->p ); |
| mpi_mulm( t1, t1, t2, pkey->p ); |
| |
| /* t2 = g ^ input mod p */ |
| gcry_mpi_powm( t2, pkey->g, input, pkey->p ); |
| |
| rc = !mpi_cmp( t1, t2 ); |
| #elif 0 |
| /* t1 = (y^a mod p) * (a^b mod p) mod p */ |
| base[0] = pkey->y; ex[0] = a; |
| base[1] = a; ex[1] = b; |
| base[2] = NULL; ex[2] = NULL; |
| mpi_mulpowm( t1, base, ex, pkey->p ); |
| |
| /* t2 = g ^ input mod p */ |
| gcry_mpi_powm( t2, pkey->g, input, pkey->p ); |
| |
| rc = !mpi_cmp( t1, t2 ); |
| #else |
| /* t1 = g ^ - input * y ^ a * a ^ b mod p */ |
| mpi_invm(t2, pkey->g, pkey->p ); |
| base[0] = t2 ; ex[0] = input; |
| base[1] = pkey->y; ex[1] = a; |
| base[2] = a; ex[2] = b; |
| base[3] = NULL; ex[3] = NULL; |
| mpi_mulpowm( t1, base, ex, pkey->p ); |
| rc = !mpi_cmp_ui( t1, 1 ); |
| |
| #endif |
| |
| mpi_free(t1); |
| mpi_free(t2); |
| return rc; |
| } |
| |
| /********************************************* |
| ************** interface ****************** |
| *********************************************/ |
| |
| static gpg_err_code_t |
| elg_generate (const gcry_sexp_t genparms, gcry_sexp_t *r_skey) |
| { |
| gpg_err_code_t rc; |
| unsigned int nbits; |
| ELG_secret_key sk; |
| gcry_mpi_t xvalue = NULL; |
| gcry_sexp_t l1; |
| gcry_mpi_t *factors = NULL; |
| gcry_sexp_t misc_info = NULL; |
| |
| memset (&sk, 0, sizeof sk); |
| |
| rc = _gcry_pk_util_get_nbits (genparms, &nbits); |
| if (rc) |
| return rc; |
| |
| /* Parse the optional xvalue element. */ |
| l1 = sexp_find_token (genparms, "xvalue", 0); |
| if (l1) |
| { |
| xvalue = sexp_nth_mpi (l1, 1, 0); |
| sexp_release (l1); |
| if (!xvalue) |
| return GPG_ERR_BAD_MPI; |
| } |
| |
| if (xvalue) |
| { |
| rc = generate_using_x (&sk, nbits, xvalue, &factors); |
| mpi_free (xvalue); |
| } |
| else |
| { |
| generate (&sk, nbits, &factors); |
| rc = 0; |
| } |
| if (rc) |
| goto leave; |
| |
| if (factors && factors[0]) |
| { |
| int nfac; |
| void **arg_list; |
| char *buffer, *p; |
| |
| for (nfac = 0; factors[nfac]; nfac++) |
| ; |
| arg_list = xtrycalloc (nfac+1, sizeof *arg_list); |
| if (!arg_list) |
| { |
| rc = gpg_err_code_from_syserror (); |
| goto leave; |
| } |
| buffer = xtrymalloc (30 + nfac*2 + 2 + 1); |
| if (!buffer) |
| { |
| rc = gpg_err_code_from_syserror (); |
| xfree (arg_list); |
| goto leave; |
| } |
| p = stpcpy (buffer, "(misc-key-info(pm1-factors"); |
| for(nfac = 0; factors[nfac]; nfac++) |
| { |
| p = stpcpy (p, "%m"); |
| arg_list[nfac] = factors + nfac; |
| } |
| p = stpcpy (p, "))"); |
| rc = sexp_build_array (&misc_info, NULL, buffer, arg_list); |
| xfree (arg_list); |
| xfree (buffer); |
| if (rc) |
| goto leave; |
| } |
| |
| rc = sexp_build (r_skey, NULL, |
| "(key-data" |
| " (public-key" |
| " (elg(p%m)(g%m)(y%m)))" |
| " (private-key" |
| " (elg(p%m)(g%m)(y%m)(x%m)))" |
| " %S)", |
| sk.p, sk.g, sk.y, |
| sk.p, sk.g, sk.y, sk.x, |
| misc_info); |
| |
| leave: |
| mpi_free (sk.p); |
| mpi_free (sk.g); |
| mpi_free (sk.y); |
| mpi_free (sk.x); |
| sexp_release (misc_info); |
| if (factors) |
| { |
| gcry_mpi_t *mp; |
| for (mp = factors; *mp; mp++) |
| mpi_free (*mp); |
| xfree (factors); |
| } |
| |
| return rc; |
| } |
| |
| |
| static gcry_err_code_t |
| elg_check_secret_key (gcry_sexp_t keyparms) |
| { |
| gcry_err_code_t rc; |
| ELG_secret_key sk = {NULL, NULL, NULL, NULL}; |
| |
| rc = sexp_extract_param (keyparms, NULL, "pgyx", |
| &sk.p, &sk.g, &sk.y, &sk.x, |
| NULL); |
| if (rc) |
| goto leave; |
| |
| if (!check_secret_key (&sk)) |
| rc = GPG_ERR_BAD_SECKEY; |
| |
| leave: |
| _gcry_mpi_release (sk.p); |
| _gcry_mpi_release (sk.g); |
| _gcry_mpi_release (sk.y); |
| _gcry_mpi_release (sk.x); |
| if (DBG_CIPHER) |
| log_debug ("elg_testkey => %s\n", gpg_strerror (rc)); |
| return rc; |
| } |
| |
| |
| static gcry_err_code_t |
| elg_encrypt (gcry_sexp_t *r_ciph, gcry_sexp_t s_data, gcry_sexp_t keyparms) |
| { |
| gcry_err_code_t rc; |
| struct pk_encoding_ctx ctx; |
| gcry_mpi_t mpi_a = NULL; |
| gcry_mpi_t mpi_b = NULL; |
| gcry_mpi_t data = NULL; |
| ELG_public_key pk = { NULL, NULL, NULL }; |
| |
| _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_ENCRYPT, |
| elg_get_nbits (keyparms)); |
| |
| /* Extract the data. */ |
| rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); |
| if (rc) |
| goto leave; |
| if (DBG_CIPHER) |
| log_mpidump ("elg_encrypt data", data); |
| if (mpi_is_opaque (data)) |
| { |
| rc = GPG_ERR_INV_DATA; |
| goto leave; |
| } |
| |
| /* Extract the key. */ |
| rc = sexp_extract_param (keyparms, NULL, "pgy", |
| &pk.p, &pk.g, &pk.y, NULL); |
| if (rc) |
| goto leave; |
| if (DBG_CIPHER) |
| { |
| log_mpidump ("elg_encrypt p", pk.p); |
| log_mpidump ("elg_encrypt g", pk.g); |
| log_mpidump ("elg_encrypt y", pk.y); |
| } |
| |
| /* Do Elgamal computation and build result. */ |
| mpi_a = mpi_new (0); |
| mpi_b = mpi_new (0); |
| do_encrypt (mpi_a, mpi_b, data, &pk); |
| rc = sexp_build (r_ciph, NULL, "(enc-val(elg(a%m)(b%m)))", mpi_a, mpi_b); |
| |
| leave: |
| _gcry_mpi_release (mpi_a); |
| _gcry_mpi_release (mpi_b); |
| _gcry_mpi_release (pk.p); |
| _gcry_mpi_release (pk.g); |
| _gcry_mpi_release (pk.y); |
| _gcry_mpi_release (data); |
| _gcry_pk_util_free_encoding_ctx (&ctx); |
| if (DBG_CIPHER) |
| log_debug ("elg_encrypt => %s\n", gpg_strerror (rc)); |
| return rc; |
| } |
| |
| |
| static gcry_err_code_t |
| elg_decrypt (gcry_sexp_t *r_plain, gcry_sexp_t s_data, gcry_sexp_t keyparms) |
| { |
| gpg_err_code_t rc; |
| struct pk_encoding_ctx ctx; |
| gcry_sexp_t l1 = NULL; |
| gcry_mpi_t data_a = NULL; |
| gcry_mpi_t data_b = NULL; |
| ELG_secret_key sk = {NULL, NULL, NULL, NULL}; |
| gcry_mpi_t plain = NULL; |
| unsigned char *unpad = NULL; |
| size_t unpadlen = 0; |
| |
| _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_DECRYPT, |
| elg_get_nbits (keyparms)); |
| |
| /* Extract the data. */ |
| rc = _gcry_pk_util_preparse_encval (s_data, elg_names, &l1, &ctx); |
| if (rc) |
| goto leave; |
| rc = sexp_extract_param (l1, NULL, "ab", &data_a, &data_b, NULL); |
| if (rc) |
| goto leave; |
| if (DBG_CIPHER) |
| { |
| log_printmpi ("elg_decrypt d_a", data_a); |
| log_printmpi ("elg_decrypt d_b", data_b); |
| } |
| if (mpi_is_opaque (data_a) || mpi_is_opaque (data_b)) |
| { |
| rc = GPG_ERR_INV_DATA; |
| goto leave; |
| } |
| |
| /* Extract the key. */ |
| rc = sexp_extract_param (keyparms, NULL, "pgyx", |
| &sk.p, &sk.g, &sk.y, &sk.x, |
| NULL); |
| if (rc) |
| goto leave; |
| if (DBG_CIPHER) |
| { |
| log_printmpi ("elg_decrypt p", sk.p); |
| log_printmpi ("elg_decrypt g", sk.g); |
| log_printmpi ("elg_decrypt y", sk.y); |
| if (!fips_mode ()) |
| log_printmpi ("elg_decrypt x", sk.x); |
| } |
| |
| plain = mpi_snew (ctx.nbits); |
| decrypt (plain, data_a, data_b, &sk); |
| if (DBG_CIPHER) |
| log_printmpi ("elg_decrypt res", plain); |
| |
| /* Reverse the encoding and build the s-expression. */ |
| switch (ctx.encoding) |
| { |
| case PUBKEY_ENC_PKCS1: |
| rc = _gcry_rsa_pkcs1_decode_for_enc (&unpad, &unpadlen, ctx.nbits, plain); |
| mpi_free (plain); plain = NULL; |
| if (!rc) |
| rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad); |
| break; |
| |
| case PUBKEY_ENC_OAEP: |
| rc = _gcry_rsa_oaep_decode (&unpad, &unpadlen, |
| ctx.nbits, ctx.hash_algo, plain, |
| ctx.label, ctx.labellen); |
| mpi_free (plain); plain = NULL; |
| if (!rc) |
| rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad); |
| break; |
| |
| default: |
| /* Raw format. For backward compatibility we need to assume a |
| signed mpi by using the sexp format string "%m". */ |
| rc = sexp_build (r_plain, NULL, |
| (ctx.flags & PUBKEY_FLAG_LEGACYRESULT) |
| ? "%m" : "(value %m)", |
| plain); |
| break; |
| } |
| |
| |
| leave: |
| xfree (unpad); |
| _gcry_mpi_release (plain); |
| _gcry_mpi_release (sk.p); |
| _gcry_mpi_release (sk.g); |
| _gcry_mpi_release (sk.y); |
| _gcry_mpi_release (sk.x); |
| _gcry_mpi_release (data_a); |
| _gcry_mpi_release (data_b); |
| sexp_release (l1); |
| _gcry_pk_util_free_encoding_ctx (&ctx); |
| if (DBG_CIPHER) |
| log_debug ("elg_decrypt => %s\n", gpg_strerror (rc)); |
| return rc; |
| } |
| |
| |
| static gcry_err_code_t |
| elg_sign (gcry_sexp_t *r_sig, gcry_sexp_t s_data, gcry_sexp_t keyparms) |
| { |
| gcry_err_code_t rc; |
| struct pk_encoding_ctx ctx; |
| gcry_mpi_t data = NULL; |
| ELG_secret_key sk = {NULL, NULL, NULL, NULL}; |
| gcry_mpi_t sig_r = NULL; |
| gcry_mpi_t sig_s = NULL; |
| |
| _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_SIGN, |
| elg_get_nbits (keyparms)); |
| |
| /* Extract the data. */ |
| rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); |
| if (rc) |
| goto leave; |
| if (DBG_CIPHER) |
| log_mpidump ("elg_sign data", data); |
| if (mpi_is_opaque (data)) |
| { |
| rc = GPG_ERR_INV_DATA; |
| goto leave; |
| } |
| |
| /* Extract the key. */ |
| rc = sexp_extract_param (keyparms, NULL, "pgyx", |
| &sk.p, &sk.g, &sk.y, &sk.x, NULL); |
| if (rc) |
| goto leave; |
| if (DBG_CIPHER) |
| { |
| log_mpidump ("elg_sign p", sk.p); |
| log_mpidump ("elg_sign g", sk.g); |
| log_mpidump ("elg_sign y", sk.y); |
| if (!fips_mode ()) |
| log_mpidump ("elg_sign x", sk.x); |
| } |
| |
| sig_r = mpi_new (0); |
| sig_s = mpi_new (0); |
| sign (sig_r, sig_s, data, &sk); |
| if (DBG_CIPHER) |
| { |
| log_mpidump ("elg_sign sig_r", sig_r); |
| log_mpidump ("elg_sign sig_s", sig_s); |
| } |
| rc = sexp_build (r_sig, NULL, "(sig-val(elg(r%M)(s%M)))", sig_r, sig_s); |
| |
| leave: |
| _gcry_mpi_release (sig_r); |
| _gcry_mpi_release (sig_s); |
| _gcry_mpi_release (sk.p); |
| _gcry_mpi_release (sk.g); |
| _gcry_mpi_release (sk.y); |
| _gcry_mpi_release (sk.x); |
| _gcry_mpi_release (data); |
| _gcry_pk_util_free_encoding_ctx (&ctx); |
| if (DBG_CIPHER) |
| log_debug ("elg_sign => %s\n", gpg_strerror (rc)); |
| return rc; |
| } |
| |
| |
| static gcry_err_code_t |
| elg_verify (gcry_sexp_t s_sig, gcry_sexp_t s_data, gcry_sexp_t s_keyparms) |
| { |
| gcry_err_code_t rc; |
| struct pk_encoding_ctx ctx; |
| gcry_sexp_t l1 = NULL; |
| gcry_mpi_t sig_r = NULL; |
| gcry_mpi_t sig_s = NULL; |
| gcry_mpi_t data = NULL; |
| ELG_public_key pk = { NULL, NULL, NULL }; |
| |
| _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_VERIFY, |
| elg_get_nbits (s_keyparms)); |
| |
| /* Extract the data. */ |
| rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); |
| if (rc) |
| goto leave; |
| if (DBG_CIPHER) |
| log_mpidump ("elg_verify data", data); |
| if (mpi_is_opaque (data)) |
| { |
| rc = GPG_ERR_INV_DATA; |
| goto leave; |
| } |
| |
| /* Extract the signature value. */ |
| rc = _gcry_pk_util_preparse_sigval (s_sig, elg_names, &l1, NULL); |
| if (rc) |
| goto leave; |
| rc = sexp_extract_param (l1, NULL, "rs", &sig_r, &sig_s, NULL); |
| if (rc) |
| goto leave; |
| if (DBG_CIPHER) |
| { |
| log_mpidump ("elg_verify s_r", sig_r); |
| log_mpidump ("elg_verify s_s", sig_s); |
| } |
| |
| /* Extract the key. */ |
| rc = sexp_extract_param (s_keyparms, NULL, "pgy", |
| &pk.p, &pk.g, &pk.y, NULL); |
| if (rc) |
| goto leave; |
| if (DBG_CIPHER) |
| { |
| log_mpidump ("elg_verify p", pk.p); |
| log_mpidump ("elg_verify g", pk.g); |
| log_mpidump ("elg_verify y", pk.y); |
| } |
| |
| /* Verify the signature. */ |
| if (!verify (sig_r, sig_s, data, &pk)) |
| rc = GPG_ERR_BAD_SIGNATURE; |
| |
| leave: |
| _gcry_mpi_release (pk.p); |
| _gcry_mpi_release (pk.g); |
| _gcry_mpi_release (pk.y); |
| _gcry_mpi_release (data); |
| _gcry_mpi_release (sig_r); |
| _gcry_mpi_release (sig_s); |
| sexp_release (l1); |
| _gcry_pk_util_free_encoding_ctx (&ctx); |
| if (DBG_CIPHER) |
| log_debug ("elg_verify => %s\n", rc?gpg_strerror (rc):"Good"); |
| return rc; |
| } |
| |
| |
| /* Return the number of bits for the key described by PARMS. On error |
| * 0 is returned. The format of PARMS starts with the algorithm name; |
| * for example: |
| * |
| * (dsa |
| * (p <mpi>) |
| * (g <mpi>) |
| * (y <mpi>)) |
| * |
| * More parameters may be given but we only need P here. |
| */ |
| static unsigned int |
| elg_get_nbits (gcry_sexp_t parms) |
| { |
| gcry_sexp_t l1; |
| gcry_mpi_t p; |
| unsigned int nbits; |
| |
| l1 = sexp_find_token (parms, "p", 1); |
| if (!l1) |
| return 0; /* Parameter P not found. */ |
| |
| p= sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG); |
| sexp_release (l1); |
| nbits = p? mpi_get_nbits (p) : 0; |
| _gcry_mpi_release (p); |
| return nbits; |
| } |
| |
| |
| |
| gcry_pk_spec_t _gcry_pubkey_spec_elg = |
| { |
| GCRY_PK_ELG, { 0, 0 }, |
| (GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR), |
| "ELG", elg_names, |
| "pgy", "pgyx", "ab", "rs", "pgy", |
| elg_generate, |
| elg_check_secret_key, |
| elg_encrypt, |
| elg_decrypt, |
| elg_sign, |
| elg_verify, |
| elg_get_nbits, |
| }; |