| /* serpent.c - Implementation of the Serpent encryption algorithm. |
| * Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc. |
| * |
| * This file is part of Libgcrypt. |
| * |
| * Libgcrypt is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU Lesser general Public License as |
| * published by the Free Software Foundation; either version 2.1 of |
| * the License, or (at your option) any later version. |
| * |
| * Libgcrypt is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
| * 02111-1307, USA. |
| */ |
| |
| #include <config.h> |
| |
| #include <string.h> |
| #include <stdio.h> |
| |
| #include "types.h" |
| #include "g10lib.h" |
| #include "cipher.h" |
| #include "bithelp.h" |
| #include "bufhelp.h" |
| #include "cipher-selftest.h" |
| |
| |
| /* USE_SSE2 indicates whether to compile with AMD64 SSE2 code. */ |
| #undef USE_SSE2 |
| #if defined(__x86_64__) && defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) |
| # define USE_SSE2 1 |
| #endif |
| |
| /* USE_AVX2 indicates whether to compile with AMD64 AVX2 code. */ |
| #undef USE_AVX2 |
| #if defined(__x86_64__) && defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) |
| # if defined(ENABLE_AVX2_SUPPORT) |
| # define USE_AVX2 1 |
| # endif |
| #endif |
| |
| /* USE_NEON indicates whether to enable ARM NEON assembly code. */ |
| #undef USE_NEON |
| #if defined(HAVE_ARM_ARCH_V6) && defined(__ARMEL__) |
| # if defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) && \ |
| defined(HAVE_GCC_INLINE_ASM_NEON) |
| # define USE_NEON 1 |
| # endif |
| #endif |
| |
| |
| /* Number of rounds per Serpent encrypt/decrypt operation. */ |
| #define ROUNDS 32 |
| |
| /* Magic number, used during generating of the subkeys. */ |
| #define PHI 0x9E3779B9 |
| |
| /* Serpent works on 128 bit blocks. */ |
| typedef u32 serpent_block_t[4]; |
| |
| /* Serpent key, provided by the user. If the original key is shorter |
| than 256 bits, it is padded. */ |
| typedef u32 serpent_key_t[8]; |
| |
| /* The key schedule consists of 33 128 bit subkeys. */ |
| typedef u32 serpent_subkeys_t[ROUNDS + 1][4]; |
| |
| /* A Serpent context. */ |
| typedef struct serpent_context |
| { |
| serpent_subkeys_t keys; /* Generated subkeys. */ |
| |
| #ifdef USE_AVX2 |
| int use_avx2; |
| #endif |
| #ifdef USE_NEON |
| int use_neon; |
| #endif |
| } serpent_context_t; |
| |
| |
| #ifdef USE_SSE2 |
| /* Assembler implementations of Serpent using SSE2. Process 8 block in |
| parallel. |
| */ |
| extern void _gcry_serpent_sse2_ctr_enc(serpent_context_t *ctx, |
| unsigned char *out, |
| const unsigned char *in, |
| unsigned char *ctr); |
| |
| extern void _gcry_serpent_sse2_cbc_dec(serpent_context_t *ctx, |
| unsigned char *out, |
| const unsigned char *in, |
| unsigned char *iv); |
| |
| extern void _gcry_serpent_sse2_cfb_dec(serpent_context_t *ctx, |
| unsigned char *out, |
| const unsigned char *in, |
| unsigned char *iv); |
| #endif |
| |
| #ifdef USE_AVX2 |
| /* Assembler implementations of Serpent using SSE2. Process 16 block in |
| parallel. |
| */ |
| extern void _gcry_serpent_avx2_ctr_enc(serpent_context_t *ctx, |
| unsigned char *out, |
| const unsigned char *in, |
| unsigned char *ctr); |
| |
| extern void _gcry_serpent_avx2_cbc_dec(serpent_context_t *ctx, |
| unsigned char *out, |
| const unsigned char *in, |
| unsigned char *iv); |
| |
| extern void _gcry_serpent_avx2_cfb_dec(serpent_context_t *ctx, |
| unsigned char *out, |
| const unsigned char *in, |
| unsigned char *iv); |
| #endif |
| |
| #ifdef USE_NEON |
| /* Assembler implementations of Serpent using ARM NEON. Process 8 block in |
| parallel. |
| */ |
| extern void _gcry_serpent_neon_ctr_enc(serpent_context_t *ctx, |
| unsigned char *out, |
| const unsigned char *in, |
| unsigned char *ctr); |
| |
| extern void _gcry_serpent_neon_cbc_dec(serpent_context_t *ctx, |
| unsigned char *out, |
| const unsigned char *in, |
| unsigned char *iv); |
| |
| extern void _gcry_serpent_neon_cfb_dec(serpent_context_t *ctx, |
| unsigned char *out, |
| const unsigned char *in, |
| unsigned char *iv); |
| #endif |
| |
| |
| /* A prototype. */ |
| static const char *serpent_test (void); |
| |
| |
| /* |
| * These are the S-Boxes of Serpent from following research paper. |
| * |
| * D. A. Osvik, “Speeding up Serpent,” in Third AES Candidate Conference, |
| * (New York, New York, USA), p. 317–329, National Institute of Standards and |
| * Technology, 2000. |
| * |
| * Paper is also available at: http://www.ii.uib.no/~osvik/pub/aes3.pdf |
| * |
| */ |
| |
| #define SBOX0(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r3 ^= r0; r4 = r1; \ |
| r1 &= r3; r4 ^= r2; \ |
| r1 ^= r0; r0 |= r3; \ |
| r0 ^= r4; r4 ^= r3; \ |
| r3 ^= r2; r2 |= r1; \ |
| r2 ^= r4; r4 = ~r4; \ |
| r4 |= r1; r1 ^= r3; \ |
| r1 ^= r4; r3 |= r0; \ |
| r1 ^= r3; r4 ^= r3; \ |
| \ |
| w = r1; x = r4; y = r2; z = r0; \ |
| } |
| |
| #define SBOX0_INVERSE(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r2 = ~r2; r4 = r1; \ |
| r1 |= r0; r4 = ~r4; \ |
| r1 ^= r2; r2 |= r4; \ |
| r1 ^= r3; r0 ^= r4; \ |
| r2 ^= r0; r0 &= r3; \ |
| r4 ^= r0; r0 |= r1; \ |
| r0 ^= r2; r3 ^= r4; \ |
| r2 ^= r1; r3 ^= r0; \ |
| r3 ^= r1; \ |
| r2 &= r3; \ |
| r4 ^= r2; \ |
| \ |
| w = r0; x = r4; y = r1; z = r3; \ |
| } |
| |
| #define SBOX1(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r0 = ~r0; r2 = ~r2; \ |
| r4 = r0; r0 &= r1; \ |
| r2 ^= r0; r0 |= r3; \ |
| r3 ^= r2; r1 ^= r0; \ |
| r0 ^= r4; r4 |= r1; \ |
| r1 ^= r3; r2 |= r0; \ |
| r2 &= r4; r0 ^= r1; \ |
| r1 &= r2; \ |
| r1 ^= r0; r0 &= r2; \ |
| r0 ^= r4; \ |
| \ |
| w = r2; x = r0; y = r3; z = r1; \ |
| } |
| |
| #define SBOX1_INVERSE(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r4 = r1; r1 ^= r3; \ |
| r3 &= r1; r4 ^= r2; \ |
| r3 ^= r0; r0 |= r1; \ |
| r2 ^= r3; r0 ^= r4; \ |
| r0 |= r2; r1 ^= r3; \ |
| r0 ^= r1; r1 |= r3; \ |
| r1 ^= r0; r4 = ~r4; \ |
| r4 ^= r1; r1 |= r0; \ |
| r1 ^= r0; \ |
| r1 |= r4; \ |
| r3 ^= r1; \ |
| \ |
| w = r4; x = r0; y = r3; z = r2; \ |
| } |
| |
| #define SBOX2(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r4 = r0; r0 &= r2; \ |
| r0 ^= r3; r2 ^= r1; \ |
| r2 ^= r0; r3 |= r4; \ |
| r3 ^= r1; r4 ^= r2; \ |
| r1 = r3; r3 |= r4; \ |
| r3 ^= r0; r0 &= r1; \ |
| r4 ^= r0; r1 ^= r3; \ |
| r1 ^= r4; r4 = ~r4; \ |
| \ |
| w = r2; x = r3; y = r1; z = r4; \ |
| } |
| |
| #define SBOX2_INVERSE(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r2 ^= r3; r3 ^= r0; \ |
| r4 = r3; r3 &= r2; \ |
| r3 ^= r1; r1 |= r2; \ |
| r1 ^= r4; r4 &= r3; \ |
| r2 ^= r3; r4 &= r0; \ |
| r4 ^= r2; r2 &= r1; \ |
| r2 |= r0; r3 = ~r3; \ |
| r2 ^= r3; r0 ^= r3; \ |
| r0 &= r1; r3 ^= r4; \ |
| r3 ^= r0; \ |
| \ |
| w = r1; x = r4; y = r2; z = r3; \ |
| } |
| |
| #define SBOX3(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r4 = r0; r0 |= r3; \ |
| r3 ^= r1; r1 &= r4; \ |
| r4 ^= r2; r2 ^= r3; \ |
| r3 &= r0; r4 |= r1; \ |
| r3 ^= r4; r0 ^= r1; \ |
| r4 &= r0; r1 ^= r3; \ |
| r4 ^= r2; r1 |= r0; \ |
| r1 ^= r2; r0 ^= r3; \ |
| r2 = r1; r1 |= r3; \ |
| r1 ^= r0; \ |
| \ |
| w = r1; x = r2; y = r3; z = r4; \ |
| } |
| |
| #define SBOX3_INVERSE(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r4 = r2; r2 ^= r1; \ |
| r0 ^= r2; r4 &= r2; \ |
| r4 ^= r0; r0 &= r1; \ |
| r1 ^= r3; r3 |= r4; \ |
| r2 ^= r3; r0 ^= r3; \ |
| r1 ^= r4; r3 &= r2; \ |
| r3 ^= r1; r1 ^= r0; \ |
| r1 |= r2; r0 ^= r3; \ |
| r1 ^= r4; \ |
| r0 ^= r1; \ |
| \ |
| w = r2; x = r1; y = r3; z = r0; \ |
| } |
| |
| #define SBOX4(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r1 ^= r3; r3 = ~r3; \ |
| r2 ^= r3; r3 ^= r0; \ |
| r4 = r1; r1 &= r3; \ |
| r1 ^= r2; r4 ^= r3; \ |
| r0 ^= r4; r2 &= r4; \ |
| r2 ^= r0; r0 &= r1; \ |
| r3 ^= r0; r4 |= r1; \ |
| r4 ^= r0; r0 |= r3; \ |
| r0 ^= r2; r2 &= r3; \ |
| r0 = ~r0; r4 ^= r2; \ |
| \ |
| w = r1; x = r4; y = r0; z = r3; \ |
| } |
| |
| #define SBOX4_INVERSE(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r4 = r2; r2 &= r3; \ |
| r2 ^= r1; r1 |= r3; \ |
| r1 &= r0; r4 ^= r2; \ |
| r4 ^= r1; r1 &= r2; \ |
| r0 = ~r0; r3 ^= r4; \ |
| r1 ^= r3; r3 &= r0; \ |
| r3 ^= r2; r0 ^= r1; \ |
| r2 &= r0; r3 ^= r0; \ |
| r2 ^= r4; \ |
| r2 |= r3; r3 ^= r0; \ |
| r2 ^= r1; \ |
| \ |
| w = r0; x = r3; y = r2; z = r4; \ |
| } |
| |
| #define SBOX5(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r0 ^= r1; r1 ^= r3; \ |
| r3 = ~r3; r4 = r1; \ |
| r1 &= r0; r2 ^= r3; \ |
| r1 ^= r2; r2 |= r4; \ |
| r4 ^= r3; r3 &= r1; \ |
| r3 ^= r0; r4 ^= r1; \ |
| r4 ^= r2; r2 ^= r0; \ |
| r0 &= r3; r2 = ~r2; \ |
| r0 ^= r4; r4 |= r3; \ |
| r2 ^= r4; \ |
| \ |
| w = r1; x = r3; y = r0; z = r2; \ |
| } |
| |
| #define SBOX5_INVERSE(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r1 = ~r1; r4 = r3; \ |
| r2 ^= r1; r3 |= r0; \ |
| r3 ^= r2; r2 |= r1; \ |
| r2 &= r0; r4 ^= r3; \ |
| r2 ^= r4; r4 |= r0; \ |
| r4 ^= r1; r1 &= r2; \ |
| r1 ^= r3; r4 ^= r2; \ |
| r3 &= r4; r4 ^= r1; \ |
| r3 ^= r4; r4 = ~r4; \ |
| r3 ^= r0; \ |
| \ |
| w = r1; x = r4; y = r3; z = r2; \ |
| } |
| |
| #define SBOX6(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r2 = ~r2; r4 = r3; \ |
| r3 &= r0; r0 ^= r4; \ |
| r3 ^= r2; r2 |= r4; \ |
| r1 ^= r3; r2 ^= r0; \ |
| r0 |= r1; r2 ^= r1; \ |
| r4 ^= r0; r0 |= r3; \ |
| r0 ^= r2; r4 ^= r3; \ |
| r4 ^= r0; r3 = ~r3; \ |
| r2 &= r4; \ |
| r2 ^= r3; \ |
| \ |
| w = r0; x = r1; y = r4; z = r2; \ |
| } |
| |
| #define SBOX6_INVERSE(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r0 ^= r2; r4 = r2; \ |
| r2 &= r0; r4 ^= r3; \ |
| r2 = ~r2; r3 ^= r1; \ |
| r2 ^= r3; r4 |= r0; \ |
| r0 ^= r2; r3 ^= r4; \ |
| r4 ^= r1; r1 &= r3; \ |
| r1 ^= r0; r0 ^= r3; \ |
| r0 |= r2; r3 ^= r1; \ |
| r4 ^= r0; \ |
| \ |
| w = r1; x = r2; y = r4; z = r3; \ |
| } |
| |
| #define SBOX7(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r4 = r1; r1 |= r2; \ |
| r1 ^= r3; r4 ^= r2; \ |
| r2 ^= r1; r3 |= r4; \ |
| r3 &= r0; r4 ^= r2; \ |
| r3 ^= r1; r1 |= r4; \ |
| r1 ^= r0; r0 |= r4; \ |
| r0 ^= r2; r1 ^= r4; \ |
| r2 ^= r1; r1 &= r0; \ |
| r1 ^= r4; r2 = ~r2; \ |
| r2 |= r0; \ |
| r4 ^= r2; \ |
| \ |
| w = r4; x = r3; y = r1; z = r0; \ |
| } |
| |
| #define SBOX7_INVERSE(r0, r1, r2, r3, w, x, y, z) \ |
| { \ |
| u32 r4; \ |
| \ |
| r4 = r2; r2 ^= r0; \ |
| r0 &= r3; r4 |= r3; \ |
| r2 = ~r2; r3 ^= r1; \ |
| r1 |= r0; r0 ^= r2; \ |
| r2 &= r4; r3 &= r4; \ |
| r1 ^= r2; r2 ^= r0; \ |
| r0 |= r2; r4 ^= r1; \ |
| r0 ^= r3; r3 ^= r4; \ |
| r4 |= r0; r3 ^= r2; \ |
| r4 ^= r2; \ |
| \ |
| w = r3; x = r0; y = r1; z = r4; \ |
| } |
| |
| /* XOR BLOCK1 into BLOCK0. */ |
| #define BLOCK_XOR(block0, block1) \ |
| { \ |
| block0[0] ^= block1[0]; \ |
| block0[1] ^= block1[1]; \ |
| block0[2] ^= block1[2]; \ |
| block0[3] ^= block1[3]; \ |
| } |
| |
| /* Copy BLOCK_SRC to BLOCK_DST. */ |
| #define BLOCK_COPY(block_dst, block_src) \ |
| { \ |
| block_dst[0] = block_src[0]; \ |
| block_dst[1] = block_src[1]; \ |
| block_dst[2] = block_src[2]; \ |
| block_dst[3] = block_src[3]; \ |
| } |
| |
| /* Apply SBOX number WHICH to to the block found in ARRAY0, writing |
| the output to the block found in ARRAY1. */ |
| #define SBOX(which, array0, array1) \ |
| SBOX##which (array0[0], array0[1], array0[2], array0[3], \ |
| array1[0], array1[1], array1[2], array1[3]); |
| |
| /* Apply inverse SBOX number WHICH to to the block found in ARRAY0, writing |
| the output to the block found in ARRAY1. */ |
| #define SBOX_INVERSE(which, array0, array1) \ |
| SBOX##which##_INVERSE (array0[0], array0[1], array0[2], array0[3], \ |
| array1[0], array1[1], array1[2], array1[3]); |
| |
| /* Apply the linear transformation to BLOCK. */ |
| #define LINEAR_TRANSFORMATION(block) \ |
| { \ |
| block[0] = rol (block[0], 13); \ |
| block[2] = rol (block[2], 3); \ |
| block[1] = block[1] ^ block[0] ^ block[2]; \ |
| block[3] = block[3] ^ block[2] ^ (block[0] << 3); \ |
| block[1] = rol (block[1], 1); \ |
| block[3] = rol (block[3], 7); \ |
| block[0] = block[0] ^ block[1] ^ block[3]; \ |
| block[2] = block[2] ^ block[3] ^ (block[1] << 7); \ |
| block[0] = rol (block[0], 5); \ |
| block[2] = rol (block[2], 22); \ |
| } |
| |
| /* Apply the inverse linear transformation to BLOCK. */ |
| #define LINEAR_TRANSFORMATION_INVERSE(block) \ |
| { \ |
| block[2] = ror (block[2], 22); \ |
| block[0] = ror (block[0] , 5); \ |
| block[2] = block[2] ^ block[3] ^ (block[1] << 7); \ |
| block[0] = block[0] ^ block[1] ^ block[3]; \ |
| block[3] = ror (block[3], 7); \ |
| block[1] = ror (block[1], 1); \ |
| block[3] = block[3] ^ block[2] ^ (block[0] << 3); \ |
| block[1] = block[1] ^ block[0] ^ block[2]; \ |
| block[2] = ror (block[2], 3); \ |
| block[0] = ror (block[0], 13); \ |
| } |
| |
| /* Apply a Serpent round to BLOCK, using the SBOX number WHICH and the |
| subkeys contained in SUBKEYS. Use BLOCK_TMP as temporary storage. |
| This macro increments `round'. */ |
| #define ROUND(which, subkeys, block, block_tmp) \ |
| { \ |
| BLOCK_XOR (block, subkeys[round]); \ |
| round++; \ |
| SBOX (which, block, block_tmp); \ |
| LINEAR_TRANSFORMATION (block_tmp); \ |
| BLOCK_COPY (block, block_tmp); \ |
| } |
| |
| /* Apply the last Serpent round to BLOCK, using the SBOX number WHICH |
| and the subkeys contained in SUBKEYS. Use BLOCK_TMP as temporary |
| storage. The result will be stored in BLOCK_TMP. This macro |
| increments `round'. */ |
| #define ROUND_LAST(which, subkeys, block, block_tmp) \ |
| { \ |
| BLOCK_XOR (block, subkeys[round]); \ |
| round++; \ |
| SBOX (which, block, block_tmp); \ |
| BLOCK_XOR (block_tmp, subkeys[round]); \ |
| round++; \ |
| } |
| |
| /* Apply an inverse Serpent round to BLOCK, using the SBOX number |
| WHICH and the subkeys contained in SUBKEYS. Use BLOCK_TMP as |
| temporary storage. This macro increments `round'. */ |
| #define ROUND_INVERSE(which, subkey, block, block_tmp) \ |
| { \ |
| LINEAR_TRANSFORMATION_INVERSE (block); \ |
| SBOX_INVERSE (which, block, block_tmp); \ |
| BLOCK_XOR (block_tmp, subkey[round]); \ |
| round--; \ |
| BLOCK_COPY (block, block_tmp); \ |
| } |
| |
| /* Apply the first Serpent round to BLOCK, using the SBOX number WHICH |
| and the subkeys contained in SUBKEYS. Use BLOCK_TMP as temporary |
| storage. The result will be stored in BLOCK_TMP. This macro |
| increments `round'. */ |
| #define ROUND_FIRST_INVERSE(which, subkeys, block, block_tmp) \ |
| { \ |
| BLOCK_XOR (block, subkeys[round]); \ |
| round--; \ |
| SBOX_INVERSE (which, block, block_tmp); \ |
| BLOCK_XOR (block_tmp, subkeys[round]); \ |
| round--; \ |
| } |
| |
| /* Convert the user provided key KEY of KEY_LENGTH bytes into the |
| internally used format. */ |
| static void |
| serpent_key_prepare (const byte *key, unsigned int key_length, |
| serpent_key_t key_prepared) |
| { |
| int i; |
| |
| /* Copy key. */ |
| key_length /= 4; |
| for (i = 0; i < key_length; i++) |
| key_prepared[i] = buf_get_le32 (key + i * 4); |
| |
| if (i < 8) |
| { |
| /* Key must be padded according to the Serpent |
| specification. */ |
| key_prepared[i] = 0x00000001; |
| |
| for (i++; i < 8; i++) |
| key_prepared[i] = 0; |
| } |
| } |
| |
| /* Derive the 33 subkeys from KEY and store them in SUBKEYS. */ |
| static void |
| serpent_subkeys_generate (serpent_key_t key, serpent_subkeys_t subkeys) |
| { |
| u32 w[8]; /* The `prekey'. */ |
| u32 ws[4]; |
| u32 wt[4]; |
| |
| /* Initialize with key values. */ |
| w[0] = key[0]; |
| w[1] = key[1]; |
| w[2] = key[2]; |
| w[3] = key[3]; |
| w[4] = key[4]; |
| w[5] = key[5]; |
| w[6] = key[6]; |
| w[7] = key[7]; |
| |
| /* Expand to intermediate key using the affine recurrence. */ |
| #define EXPAND_KEY4(wo, r) \ |
| wo[0] = w[(r+0)%8] = \ |
| rol (w[(r+0)%8] ^ w[(r+3)%8] ^ w[(r+5)%8] ^ w[(r+7)%8] ^ PHI ^ (r+0), 11); \ |
| wo[1] = w[(r+1)%8] = \ |
| rol (w[(r+1)%8] ^ w[(r+4)%8] ^ w[(r+6)%8] ^ w[(r+0)%8] ^ PHI ^ (r+1), 11); \ |
| wo[2] = w[(r+2)%8] = \ |
| rol (w[(r+2)%8] ^ w[(r+5)%8] ^ w[(r+7)%8] ^ w[(r+1)%8] ^ PHI ^ (r+2), 11); \ |
| wo[3] = w[(r+3)%8] = \ |
| rol (w[(r+3)%8] ^ w[(r+6)%8] ^ w[(r+0)%8] ^ w[(r+2)%8] ^ PHI ^ (r+3), 11); |
| |
| #define EXPAND_KEY(r) \ |
| EXPAND_KEY4(ws, (r)); \ |
| EXPAND_KEY4(wt, (r + 4)); |
| |
| /* Calculate subkeys via S-Boxes, in bitslice mode. */ |
| EXPAND_KEY (0); SBOX (3, ws, subkeys[0]); SBOX (2, wt, subkeys[1]); |
| EXPAND_KEY (8); SBOX (1, ws, subkeys[2]); SBOX (0, wt, subkeys[3]); |
| EXPAND_KEY (16); SBOX (7, ws, subkeys[4]); SBOX (6, wt, subkeys[5]); |
| EXPAND_KEY (24); SBOX (5, ws, subkeys[6]); SBOX (4, wt, subkeys[7]); |
| EXPAND_KEY (32); SBOX (3, ws, subkeys[8]); SBOX (2, wt, subkeys[9]); |
| EXPAND_KEY (40); SBOX (1, ws, subkeys[10]); SBOX (0, wt, subkeys[11]); |
| EXPAND_KEY (48); SBOX (7, ws, subkeys[12]); SBOX (6, wt, subkeys[13]); |
| EXPAND_KEY (56); SBOX (5, ws, subkeys[14]); SBOX (4, wt, subkeys[15]); |
| EXPAND_KEY (64); SBOX (3, ws, subkeys[16]); SBOX (2, wt, subkeys[17]); |
| EXPAND_KEY (72); SBOX (1, ws, subkeys[18]); SBOX (0, wt, subkeys[19]); |
| EXPAND_KEY (80); SBOX (7, ws, subkeys[20]); SBOX (6, wt, subkeys[21]); |
| EXPAND_KEY (88); SBOX (5, ws, subkeys[22]); SBOX (4, wt, subkeys[23]); |
| EXPAND_KEY (96); SBOX (3, ws, subkeys[24]); SBOX (2, wt, subkeys[25]); |
| EXPAND_KEY (104); SBOX (1, ws, subkeys[26]); SBOX (0, wt, subkeys[27]); |
| EXPAND_KEY (112); SBOX (7, ws, subkeys[28]); SBOX (6, wt, subkeys[29]); |
| EXPAND_KEY (120); SBOX (5, ws, subkeys[30]); SBOX (4, wt, subkeys[31]); |
| EXPAND_KEY4 (ws, 128); SBOX (3, ws, subkeys[32]); |
| |
| wipememory (ws, sizeof (ws)); |
| wipememory (wt, sizeof (wt)); |
| wipememory (w, sizeof (w)); |
| } |
| |
| /* Initialize CONTEXT with the key KEY of KEY_LENGTH bits. */ |
| static void |
| serpent_setkey_internal (serpent_context_t *context, |
| const byte *key, unsigned int key_length) |
| { |
| serpent_key_t key_prepared; |
| |
| serpent_key_prepare (key, key_length, key_prepared); |
| serpent_subkeys_generate (key_prepared, context->keys); |
| |
| #ifdef USE_AVX2 |
| context->use_avx2 = 0; |
| if ((_gcry_get_hw_features () & HWF_INTEL_AVX2)) |
| { |
| context->use_avx2 = 1; |
| } |
| #endif |
| |
| #ifdef USE_NEON |
| context->use_neon = 0; |
| if ((_gcry_get_hw_features () & HWF_ARM_NEON)) |
| { |
| context->use_neon = 1; |
| } |
| #endif |
| |
| wipememory (key_prepared, sizeof(key_prepared)); |
| } |
| |
| /* Initialize CTX with the key KEY of KEY_LENGTH bytes. */ |
| static gcry_err_code_t |
| serpent_setkey (void *ctx, |
| const byte *key, unsigned int key_length) |
| { |
| serpent_context_t *context = ctx; |
| static const char *serpent_test_ret; |
| static int serpent_init_done; |
| gcry_err_code_t ret = GPG_ERR_NO_ERROR; |
| |
| if (! serpent_init_done) |
| { |
| /* Execute a self-test the first time, Serpent is used. */ |
| serpent_init_done = 1; |
| serpent_test_ret = serpent_test (); |
| if (serpent_test_ret) |
| log_error ("Serpent test failure: %s\n", serpent_test_ret); |
| } |
| |
| if (serpent_test_ret) |
| ret = GPG_ERR_SELFTEST_FAILED; |
| else |
| serpent_setkey_internal (context, key, key_length); |
| |
| return ret; |
| } |
| |
| static void |
| serpent_encrypt_internal (serpent_context_t *context, |
| const byte *input, byte *output) |
| { |
| serpent_block_t b, b_next; |
| int round = 0; |
| |
| b[0] = buf_get_le32 (input + 0); |
| b[1] = buf_get_le32 (input + 4); |
| b[2] = buf_get_le32 (input + 8); |
| b[3] = buf_get_le32 (input + 12); |
| |
| ROUND (0, context->keys, b, b_next); |
| ROUND (1, context->keys, b, b_next); |
| ROUND (2, context->keys, b, b_next); |
| ROUND (3, context->keys, b, b_next); |
| ROUND (4, context->keys, b, b_next); |
| ROUND (5, context->keys, b, b_next); |
| ROUND (6, context->keys, b, b_next); |
| ROUND (7, context->keys, b, b_next); |
| ROUND (0, context->keys, b, b_next); |
| ROUND (1, context->keys, b, b_next); |
| ROUND (2, context->keys, b, b_next); |
| ROUND (3, context->keys, b, b_next); |
| ROUND (4, context->keys, b, b_next); |
| ROUND (5, context->keys, b, b_next); |
| ROUND (6, context->keys, b, b_next); |
| ROUND (7, context->keys, b, b_next); |
| ROUND (0, context->keys, b, b_next); |
| ROUND (1, context->keys, b, b_next); |
| ROUND (2, context->keys, b, b_next); |
| ROUND (3, context->keys, b, b_next); |
| ROUND (4, context->keys, b, b_next); |
| ROUND (5, context->keys, b, b_next); |
| ROUND (6, context->keys, b, b_next); |
| ROUND (7, context->keys, b, b_next); |
| ROUND (0, context->keys, b, b_next); |
| ROUND (1, context->keys, b, b_next); |
| ROUND (2, context->keys, b, b_next); |
| ROUND (3, context->keys, b, b_next); |
| ROUND (4, context->keys, b, b_next); |
| ROUND (5, context->keys, b, b_next); |
| ROUND (6, context->keys, b, b_next); |
| |
| ROUND_LAST (7, context->keys, b, b_next); |
| |
| buf_put_le32 (output + 0, b_next[0]); |
| buf_put_le32 (output + 4, b_next[1]); |
| buf_put_le32 (output + 8, b_next[2]); |
| buf_put_le32 (output + 12, b_next[3]); |
| } |
| |
| static void |
| serpent_decrypt_internal (serpent_context_t *context, |
| const byte *input, byte *output) |
| { |
| serpent_block_t b, b_next; |
| int round = ROUNDS; |
| |
| b_next[0] = buf_get_le32 (input + 0); |
| b_next[1] = buf_get_le32 (input + 4); |
| b_next[2] = buf_get_le32 (input + 8); |
| b_next[3] = buf_get_le32 (input + 12); |
| |
| ROUND_FIRST_INVERSE (7, context->keys, b_next, b); |
| |
| ROUND_INVERSE (6, context->keys, b, b_next); |
| ROUND_INVERSE (5, context->keys, b, b_next); |
| ROUND_INVERSE (4, context->keys, b, b_next); |
| ROUND_INVERSE (3, context->keys, b, b_next); |
| ROUND_INVERSE (2, context->keys, b, b_next); |
| ROUND_INVERSE (1, context->keys, b, b_next); |
| ROUND_INVERSE (0, context->keys, b, b_next); |
| ROUND_INVERSE (7, context->keys, b, b_next); |
| ROUND_INVERSE (6, context->keys, b, b_next); |
| ROUND_INVERSE (5, context->keys, b, b_next); |
| ROUND_INVERSE (4, context->keys, b, b_next); |
| ROUND_INVERSE (3, context->keys, b, b_next); |
| ROUND_INVERSE (2, context->keys, b, b_next); |
| ROUND_INVERSE (1, context->keys, b, b_next); |
| ROUND_INVERSE (0, context->keys, b, b_next); |
| ROUND_INVERSE (7, context->keys, b, b_next); |
| ROUND_INVERSE (6, context->keys, b, b_next); |
| ROUND_INVERSE (5, context->keys, b, b_next); |
| ROUND_INVERSE (4, context->keys, b, b_next); |
| ROUND_INVERSE (3, context->keys, b, b_next); |
| ROUND_INVERSE (2, context->keys, b, b_next); |
| ROUND_INVERSE (1, context->keys, b, b_next); |
| ROUND_INVERSE (0, context->keys, b, b_next); |
| ROUND_INVERSE (7, context->keys, b, b_next); |
| ROUND_INVERSE (6, context->keys, b, b_next); |
| ROUND_INVERSE (5, context->keys, b, b_next); |
| ROUND_INVERSE (4, context->keys, b, b_next); |
| ROUND_INVERSE (3, context->keys, b, b_next); |
| ROUND_INVERSE (2, context->keys, b, b_next); |
| ROUND_INVERSE (1, context->keys, b, b_next); |
| ROUND_INVERSE (0, context->keys, b, b_next); |
| |
| buf_put_le32 (output + 0, b_next[0]); |
| buf_put_le32 (output + 4, b_next[1]); |
| buf_put_le32 (output + 8, b_next[2]); |
| buf_put_le32 (output + 12, b_next[3]); |
| } |
| |
| static unsigned int |
| serpent_encrypt (void *ctx, byte *buffer_out, const byte *buffer_in) |
| { |
| serpent_context_t *context = ctx; |
| |
| serpent_encrypt_internal (context, buffer_in, buffer_out); |
| return /*burn_stack*/ (2 * sizeof (serpent_block_t)); |
| } |
| |
| static unsigned int |
| serpent_decrypt (void *ctx, byte *buffer_out, const byte *buffer_in) |
| { |
| serpent_context_t *context = ctx; |
| |
| serpent_decrypt_internal (context, buffer_in, buffer_out); |
| return /*burn_stack*/ (2 * sizeof (serpent_block_t)); |
| } |
| |
| |
| |
| /* Bulk encryption of complete blocks in CTR mode. This function is only |
| intended for the bulk encryption feature of cipher.c. CTR is expected to be |
| of size sizeof(serpent_block_t). */ |
| void |
| _gcry_serpent_ctr_enc(void *context, unsigned char *ctr, |
| void *outbuf_arg, const void *inbuf_arg, |
| size_t nblocks) |
| { |
| serpent_context_t *ctx = context; |
| unsigned char *outbuf = outbuf_arg; |
| const unsigned char *inbuf = inbuf_arg; |
| unsigned char tmpbuf[sizeof(serpent_block_t)]; |
| int burn_stack_depth = 2 * sizeof (serpent_block_t); |
| int i; |
| |
| #ifdef USE_AVX2 |
| if (ctx->use_avx2) |
| { |
| int did_use_avx2 = 0; |
| |
| /* Process data in 16 block chunks. */ |
| while (nblocks >= 16) |
| { |
| _gcry_serpent_avx2_ctr_enc(ctx, outbuf, inbuf, ctr); |
| |
| nblocks -= 16; |
| outbuf += 16 * sizeof(serpent_block_t); |
| inbuf += 16 * sizeof(serpent_block_t); |
| did_use_avx2 = 1; |
| } |
| |
| if (did_use_avx2) |
| { |
| /* serpent-avx2 assembly code does not use stack */ |
| if (nblocks == 0) |
| burn_stack_depth = 0; |
| } |
| |
| /* Use generic/sse2 code to handle smaller chunks... */ |
| /* TODO: use caching instead? */ |
| } |
| #endif |
| |
| #ifdef USE_SSE2 |
| { |
| int did_use_sse2 = 0; |
| |
| /* Process data in 8 block chunks. */ |
| while (nblocks >= 8) |
| { |
| _gcry_serpent_sse2_ctr_enc(ctx, outbuf, inbuf, ctr); |
| |
| nblocks -= 8; |
| outbuf += 8 * sizeof(serpent_block_t); |
| inbuf += 8 * sizeof(serpent_block_t); |
| did_use_sse2 = 1; |
| } |
| |
| if (did_use_sse2) |
| { |
| /* serpent-sse2 assembly code does not use stack */ |
| if (nblocks == 0) |
| burn_stack_depth = 0; |
| } |
| |
| /* Use generic code to handle smaller chunks... */ |
| /* TODO: use caching instead? */ |
| } |
| #endif |
| |
| #ifdef USE_NEON |
| if (ctx->use_neon) |
| { |
| int did_use_neon = 0; |
| |
| /* Process data in 8 block chunks. */ |
| while (nblocks >= 8) |
| { |
| _gcry_serpent_neon_ctr_enc(ctx, outbuf, inbuf, ctr); |
| |
| nblocks -= 8; |
| outbuf += 8 * sizeof(serpent_block_t); |
| inbuf += 8 * sizeof(serpent_block_t); |
| did_use_neon = 1; |
| } |
| |
| if (did_use_neon) |
| { |
| /* serpent-neon assembly code does not use stack */ |
| if (nblocks == 0) |
| burn_stack_depth = 0; |
| } |
| |
| /* Use generic code to handle smaller chunks... */ |
| /* TODO: use caching instead? */ |
| } |
| #endif |
| |
| for ( ;nblocks; nblocks-- ) |
| { |
| /* Encrypt the counter. */ |
| serpent_encrypt_internal(ctx, ctr, tmpbuf); |
| /* XOR the input with the encrypted counter and store in output. */ |
| buf_xor(outbuf, tmpbuf, inbuf, sizeof(serpent_block_t)); |
| outbuf += sizeof(serpent_block_t); |
| inbuf += sizeof(serpent_block_t); |
| /* Increment the counter. */ |
| for (i = sizeof(serpent_block_t); i > 0; i--) |
| { |
| ctr[i-1]++; |
| if (ctr[i-1]) |
| break; |
| } |
| } |
| |
| wipememory(tmpbuf, sizeof(tmpbuf)); |
| _gcry_burn_stack(burn_stack_depth); |
| } |
| |
| /* Bulk decryption of complete blocks in CBC mode. This function is only |
| intended for the bulk encryption feature of cipher.c. */ |
| void |
| _gcry_serpent_cbc_dec(void *context, unsigned char *iv, |
| void *outbuf_arg, const void *inbuf_arg, |
| size_t nblocks) |
| { |
| serpent_context_t *ctx = context; |
| unsigned char *outbuf = outbuf_arg; |
| const unsigned char *inbuf = inbuf_arg; |
| unsigned char savebuf[sizeof(serpent_block_t)]; |
| int burn_stack_depth = 2 * sizeof (serpent_block_t); |
| |
| #ifdef USE_AVX2 |
| if (ctx->use_avx2) |
| { |
| int did_use_avx2 = 0; |
| |
| /* Process data in 16 block chunks. */ |
| while (nblocks >= 16) |
| { |
| _gcry_serpent_avx2_cbc_dec(ctx, outbuf, inbuf, iv); |
| |
| nblocks -= 16; |
| outbuf += 16 * sizeof(serpent_block_t); |
| inbuf += 16 * sizeof(serpent_block_t); |
| did_use_avx2 = 1; |
| } |
| |
| if (did_use_avx2) |
| { |
| /* serpent-avx2 assembly code does not use stack */ |
| if (nblocks == 0) |
| burn_stack_depth = 0; |
| } |
| |
| /* Use generic/sse2 code to handle smaller chunks... */ |
| } |
| #endif |
| |
| #ifdef USE_SSE2 |
| { |
| int did_use_sse2 = 0; |
| |
| /* Process data in 8 block chunks. */ |
| while (nblocks >= 8) |
| { |
| _gcry_serpent_sse2_cbc_dec(ctx, outbuf, inbuf, iv); |
| |
| nblocks -= 8; |
| outbuf += 8 * sizeof(serpent_block_t); |
| inbuf += 8 * sizeof(serpent_block_t); |
| did_use_sse2 = 1; |
| } |
| |
| if (did_use_sse2) |
| { |
| /* serpent-sse2 assembly code does not use stack */ |
| if (nblocks == 0) |
| burn_stack_depth = 0; |
| } |
| |
| /* Use generic code to handle smaller chunks... */ |
| } |
| #endif |
| |
| #ifdef USE_NEON |
| if (ctx->use_neon) |
| { |
| int did_use_neon = 0; |
| |
| /* Process data in 8 block chunks. */ |
| while (nblocks >= 8) |
| { |
| _gcry_serpent_neon_cbc_dec(ctx, outbuf, inbuf, iv); |
| |
| nblocks -= 8; |
| outbuf += 8 * sizeof(serpent_block_t); |
| inbuf += 8 * sizeof(serpent_block_t); |
| did_use_neon = 1; |
| } |
| |
| if (did_use_neon) |
| { |
| /* serpent-neon assembly code does not use stack */ |
| if (nblocks == 0) |
| burn_stack_depth = 0; |
| } |
| |
| /* Use generic code to handle smaller chunks... */ |
| } |
| #endif |
| |
| for ( ;nblocks; nblocks-- ) |
| { |
| /* INBUF is needed later and it may be identical to OUTBUF, so store |
| the intermediate result to SAVEBUF. */ |
| serpent_decrypt_internal (ctx, inbuf, savebuf); |
| |
| buf_xor_n_copy_2(outbuf, savebuf, iv, inbuf, sizeof(serpent_block_t)); |
| inbuf += sizeof(serpent_block_t); |
| outbuf += sizeof(serpent_block_t); |
| } |
| |
| wipememory(savebuf, sizeof(savebuf)); |
| _gcry_burn_stack(burn_stack_depth); |
| } |
| |
| /* Bulk decryption of complete blocks in CFB mode. This function is only |
| intended for the bulk encryption feature of cipher.c. */ |
| void |
| _gcry_serpent_cfb_dec(void *context, unsigned char *iv, |
| void *outbuf_arg, const void *inbuf_arg, |
| size_t nblocks) |
| { |
| serpent_context_t *ctx = context; |
| unsigned char *outbuf = outbuf_arg; |
| const unsigned char *inbuf = inbuf_arg; |
| int burn_stack_depth = 2 * sizeof (serpent_block_t); |
| |
| #ifdef USE_AVX2 |
| if (ctx->use_avx2) |
| { |
| int did_use_avx2 = 0; |
| |
| /* Process data in 16 block chunks. */ |
| while (nblocks >= 16) |
| { |
| _gcry_serpent_avx2_cfb_dec(ctx, outbuf, inbuf, iv); |
| |
| nblocks -= 16; |
| outbuf += 16 * sizeof(serpent_block_t); |
| inbuf += 16 * sizeof(serpent_block_t); |
| did_use_avx2 = 1; |
| } |
| |
| if (did_use_avx2) |
| { |
| /* serpent-avx2 assembly code does not use stack */ |
| if (nblocks == 0) |
| burn_stack_depth = 0; |
| } |
| |
| /* Use generic/sse2 code to handle smaller chunks... */ |
| } |
| #endif |
| |
| #ifdef USE_SSE2 |
| { |
| int did_use_sse2 = 0; |
| |
| /* Process data in 8 block chunks. */ |
| while (nblocks >= 8) |
| { |
| _gcry_serpent_sse2_cfb_dec(ctx, outbuf, inbuf, iv); |
| |
| nblocks -= 8; |
| outbuf += 8 * sizeof(serpent_block_t); |
| inbuf += 8 * sizeof(serpent_block_t); |
| did_use_sse2 = 1; |
| } |
| |
| if (did_use_sse2) |
| { |
| /* serpent-sse2 assembly code does not use stack */ |
| if (nblocks == 0) |
| burn_stack_depth = 0; |
| } |
| |
| /* Use generic code to handle smaller chunks... */ |
| } |
| #endif |
| |
| #ifdef USE_NEON |
| if (ctx->use_neon) |
| { |
| int did_use_neon = 0; |
| |
| /* Process data in 8 block chunks. */ |
| while (nblocks >= 8) |
| { |
| _gcry_serpent_neon_cfb_dec(ctx, outbuf, inbuf, iv); |
| |
| nblocks -= 8; |
| outbuf += 8 * sizeof(serpent_block_t); |
| inbuf += 8 * sizeof(serpent_block_t); |
| did_use_neon = 1; |
| } |
| |
| if (did_use_neon) |
| { |
| /* serpent-neon assembly code does not use stack */ |
| if (nblocks == 0) |
| burn_stack_depth = 0; |
| } |
| |
| /* Use generic code to handle smaller chunks... */ |
| } |
| #endif |
| |
| for ( ;nblocks; nblocks-- ) |
| { |
| serpent_encrypt_internal(ctx, iv, iv); |
| buf_xor_n_copy(outbuf, iv, inbuf, sizeof(serpent_block_t)); |
| outbuf += sizeof(serpent_block_t); |
| inbuf += sizeof(serpent_block_t); |
| } |
| |
| _gcry_burn_stack(burn_stack_depth); |
| } |
| |
| |
| |
| /* Run the self-tests for SERPENT-CTR-128, tests IV increment of bulk CTR |
| encryption. Returns NULL on success. */ |
| static const char* |
| selftest_ctr_128 (void) |
| { |
| const int nblocks = 16+8+1; |
| const int blocksize = sizeof(serpent_block_t); |
| const int context_size = sizeof(serpent_context_t); |
| |
| return _gcry_selftest_helper_ctr("SERPENT", &serpent_setkey, |
| &serpent_encrypt, &_gcry_serpent_ctr_enc, nblocks, blocksize, |
| context_size); |
| } |
| |
| |
| /* Run the self-tests for SERPENT-CBC-128, tests bulk CBC decryption. |
| Returns NULL on success. */ |
| static const char* |
| selftest_cbc_128 (void) |
| { |
| const int nblocks = 16+8+2; |
| const int blocksize = sizeof(serpent_block_t); |
| const int context_size = sizeof(serpent_context_t); |
| |
| return _gcry_selftest_helper_cbc("SERPENT", &serpent_setkey, |
| &serpent_encrypt, &_gcry_serpent_cbc_dec, nblocks, blocksize, |
| context_size); |
| } |
| |
| |
| /* Run the self-tests for SERPENT-CBC-128, tests bulk CBC decryption. |
| Returns NULL on success. */ |
| static const char* |
| selftest_cfb_128 (void) |
| { |
| const int nblocks = 16+8+2; |
| const int blocksize = sizeof(serpent_block_t); |
| const int context_size = sizeof(serpent_context_t); |
| |
| return _gcry_selftest_helper_cfb("SERPENT", &serpent_setkey, |
| &serpent_encrypt, &_gcry_serpent_cfb_dec, nblocks, blocksize, |
| context_size); |
| } |
| |
| |
| /* Serpent test. */ |
| |
| static const char * |
| serpent_test (void) |
| { |
| serpent_context_t context; |
| unsigned char scratch[16]; |
| unsigned int i; |
| const char *r; |
| |
| static struct test |
| { |
| int key_length; |
| unsigned char key[32]; |
| unsigned char text_plain[16]; |
| unsigned char text_cipher[16]; |
| } test_data[] = |
| { |
| { |
| 16, |
| "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", |
| "\xD2\x9D\x57\x6F\xCE\xA3\xA3\xA7\xED\x90\x99\xF2\x92\x73\xD7\x8E", |
| "\xB2\x28\x8B\x96\x8A\xE8\xB0\x86\x48\xD1\xCE\x96\x06\xFD\x99\x2D" |
| }, |
| { |
| 24, |
| "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" |
| "\x00\x00\x00\x00\x00\x00\x00\x00", |
| "\xD2\x9D\x57\x6F\xCE\xAB\xA3\xA7\xED\x98\x99\xF2\x92\x7B\xD7\x8E", |
| "\x13\x0E\x35\x3E\x10\x37\xC2\x24\x05\xE8\xFA\xEF\xB2\xC3\xC3\xE9" |
| }, |
| { |
| 32, |
| "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" |
| "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", |
| "\xD0\x95\x57\x6F\xCE\xA3\xE3\xA7\xED\x98\xD9\xF2\x90\x73\xD7\x8E", |
| "\xB9\x0E\xE5\x86\x2D\xE6\x91\x68\xF2\xBD\xD5\x12\x5B\x45\x47\x2B" |
| }, |
| { |
| 32, |
| "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" |
| "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", |
| "\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00", |
| "\x20\x61\xA4\x27\x82\xBD\x52\xEC\x69\x1E\xC3\x83\xB0\x3B\xA7\x7C" |
| }, |
| { |
| 0 |
| }, |
| }; |
| |
| for (i = 0; test_data[i].key_length; i++) |
| { |
| serpent_setkey_internal (&context, test_data[i].key, |
| test_data[i].key_length); |
| serpent_encrypt_internal (&context, test_data[i].text_plain, scratch); |
| |
| if (memcmp (scratch, test_data[i].text_cipher, sizeof (serpent_block_t))) |
| switch (test_data[i].key_length) |
| { |
| case 16: |
| return "Serpent-128 test encryption failed."; |
| case 24: |
| return "Serpent-192 test encryption failed."; |
| case 32: |
| return "Serpent-256 test encryption failed."; |
| } |
| |
| serpent_decrypt_internal (&context, test_data[i].text_cipher, scratch); |
| if (memcmp (scratch, test_data[i].text_plain, sizeof (serpent_block_t))) |
| switch (test_data[i].key_length) |
| { |
| case 16: |
| return "Serpent-128 test decryption failed."; |
| case 24: |
| return "Serpent-192 test decryption failed."; |
| case 32: |
| return "Serpent-256 test decryption failed."; |
| } |
| } |
| |
| if ( (r = selftest_ctr_128 ()) ) |
| return r; |
| |
| if ( (r = selftest_cbc_128 ()) ) |
| return r; |
| |
| if ( (r = selftest_cfb_128 ()) ) |
| return r; |
| |
| return NULL; |
| } |
| |
| |
| |
| /* "SERPENT" is an alias for "SERPENT128". */ |
| static const char *cipher_spec_serpent128_aliases[] = |
| { |
| "SERPENT", |
| NULL |
| }; |
| |
| gcry_cipher_spec_t _gcry_cipher_spec_serpent128 = |
| { |
| GCRY_CIPHER_SERPENT128, {0, 0}, |
| "SERPENT128", cipher_spec_serpent128_aliases, NULL, 16, 128, |
| sizeof (serpent_context_t), |
| serpent_setkey, serpent_encrypt, serpent_decrypt |
| }; |
| |
| gcry_cipher_spec_t _gcry_cipher_spec_serpent192 = |
| { |
| GCRY_CIPHER_SERPENT192, {0, 0}, |
| "SERPENT192", NULL, NULL, 16, 192, |
| sizeof (serpent_context_t), |
| serpent_setkey, serpent_encrypt, serpent_decrypt |
| }; |
| |
| gcry_cipher_spec_t _gcry_cipher_spec_serpent256 = |
| { |
| GCRY_CIPHER_SERPENT256, {0, 0}, |
| "SERPENT256", NULL, NULL, 16, 256, |
| sizeof (serpent_context_t), |
| serpent_setkey, serpent_encrypt, serpent_decrypt |
| }; |