blob: 81eb5ed6ec97dae546c3ea9dfcbb0bdd46cdf9c3 [file] [log] [blame]
/*
* comedi/drivers/dt9812.c
* COMEDI driver for DataTranslation DT9812 USB module
*
* Copyright (C) 2005 Anders Blomdell <anders.blomdell@control.lth.se>
*
* COMEDI - Linux Control and Measurement Device Interface
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
/*
Driver: dt9812
Description: Data Translation DT9812 USB module
Author: anders.blomdell@control.lth.se (Anders Blomdell)
Status: in development
Devices: [Data Translation] DT9812 (dt9812)
Updated: Sun Nov 20 20:18:34 EST 2005
This driver works, but bulk transfers not implemented. Might be a starting point
for someone else. I found out too late that USB has too high latencies (>1 ms)
for my needs.
*/
/*
* Nota Bene:
* 1. All writes to command pipe has to be 32 bytes (ISP1181B SHRTP=0 ?)
* 2. The DDK source (as of sep 2005) is in error regarding the
* input MUX bits (example code says P4, but firmware schematics
* says P1).
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/kref.h>
#include <linux/uaccess.h>
#include <linux/usb.h>
#include "../comedidev.h"
#define DT9812_DIAGS_BOARD_INFO_ADDR 0xFBFF
#define DT9812_MAX_WRITE_CMD_PIPE_SIZE 32
#define DT9812_MAX_READ_CMD_PIPE_SIZE 32
/*
* See Silican Laboratories C8051F020/1/2/3 manual
*/
#define F020_SFR_P4 0x84
#define F020_SFR_P1 0x90
#define F020_SFR_P2 0xa0
#define F020_SFR_P3 0xb0
#define F020_SFR_AMX0CF 0xba
#define F020_SFR_AMX0SL 0xbb
#define F020_SFR_ADC0CF 0xbc
#define F020_SFR_ADC0L 0xbe
#define F020_SFR_ADC0H 0xbf
#define F020_SFR_DAC0L 0xd2
#define F020_SFR_DAC0H 0xd3
#define F020_SFR_DAC0CN 0xd4
#define F020_SFR_DAC1L 0xd5
#define F020_SFR_DAC1H 0xd6
#define F020_SFR_DAC1CN 0xd7
#define F020_SFR_ADC0CN 0xe8
#define F020_MASK_ADC0CF_AMP0GN0 0x01
#define F020_MASK_ADC0CF_AMP0GN1 0x02
#define F020_MASK_ADC0CF_AMP0GN2 0x04
#define F020_MASK_ADC0CN_AD0EN 0x80
#define F020_MASK_ADC0CN_AD0INT 0x20
#define F020_MASK_ADC0CN_AD0BUSY 0x10
#define F020_MASK_DACxCN_DACxEN 0x80
enum {
/* A/D D/A DI DO CT */
DT9812_DEVID_DT9812_10, /* 8 2 8 8 1 +/- 10V */
DT9812_DEVID_DT9812_2PT5, /* 8 2 8 8 1 0-2.44V */
#if 0
DT9812_DEVID_DT9813, /* 16 2 4 4 1 +/- 10V */
DT9812_DEVID_DT9814 /* 24 2 0 0 1 +/- 10V */
#endif
};
enum dt9812_gain {
DT9812_GAIN_0PT25 = 1,
DT9812_GAIN_0PT5 = 2,
DT9812_GAIN_1 = 4,
DT9812_GAIN_2 = 8,
DT9812_GAIN_4 = 16,
DT9812_GAIN_8 = 32,
DT9812_GAIN_16 = 64,
};
enum {
DT9812_LEAST_USB_FIRMWARE_CMD_CODE = 0,
/* Write Flash memory */
DT9812_W_FLASH_DATA = 0,
/* Read Flash memory misc config info */
DT9812_R_FLASH_DATA = 1,
/*
* Register read/write commands for processor
*/
/* Read a single byte of USB memory */
DT9812_R_SINGLE_BYTE_REG = 2,
/* Write a single byte of USB memory */
DT9812_W_SINGLE_BYTE_REG = 3,
/* Multiple Reads of USB memory */
DT9812_R_MULTI_BYTE_REG = 4,
/* Multiple Writes of USB memory */
DT9812_W_MULTI_BYTE_REG = 5,
/* Read, (AND) with mask, OR value, then write (single) */
DT9812_RMW_SINGLE_BYTE_REG = 6,
/* Read, (AND) with mask, OR value, then write (multiple) */
DT9812_RMW_MULTI_BYTE_REG = 7,
/*
* Register read/write commands for SMBus
*/
/* Read a single byte of SMBus */
DT9812_R_SINGLE_BYTE_SMBUS = 8,
/* Write a single byte of SMBus */
DT9812_W_SINGLE_BYTE_SMBUS = 9,
/* Multiple Reads of SMBus */
DT9812_R_MULTI_BYTE_SMBUS = 10,
/* Multiple Writes of SMBus */
DT9812_W_MULTI_BYTE_SMBUS = 11,
/*
* Register read/write commands for a device
*/
/* Read a single byte of a device */
DT9812_R_SINGLE_BYTE_DEV = 12,
/* Write a single byte of a device */
DT9812_W_SINGLE_BYTE_DEV = 13,
/* Multiple Reads of a device */
DT9812_R_MULTI_BYTE_DEV = 14,
/* Multiple Writes of a device */
DT9812_W_MULTI_BYTE_DEV = 15,
/* Not sure if we'll need this */
DT9812_W_DAC_THRESHOLD = 16,
/* Set interrupt on change mask */
DT9812_W_INT_ON_CHANGE_MASK = 17,
/* Write (or Clear) the CGL for the ADC */
DT9812_W_CGL = 18,
/* Multiple Reads of USB memory */
DT9812_R_MULTI_BYTE_USBMEM = 19,
/* Multiple Writes to USB memory */
DT9812_W_MULTI_BYTE_USBMEM = 20,
/* Issue a start command to a given subsystem */
DT9812_START_SUBSYSTEM = 21,
/* Issue a stop command to a given subsystem */
DT9812_STOP_SUBSYSTEM = 22,
/* calibrate the board using CAL_POT_CMD */
DT9812_CALIBRATE_POT = 23,
/* set the DAC FIFO size */
DT9812_W_DAC_FIFO_SIZE = 24,
/* Write or Clear the CGL for the DAC */
DT9812_W_CGL_DAC = 25,
/* Read a single value from a subsystem */
DT9812_R_SINGLE_VALUE_CMD = 26,
/* Write a single value to a subsystem */
DT9812_W_SINGLE_VALUE_CMD = 27,
/* Valid DT9812_USB_FIRMWARE_CMD_CODE's will be less than this number */
DT9812_MAX_USB_FIRMWARE_CMD_CODE,
};
struct dt9812_flash_data {
u16 numbytes;
u16 address;
};
#define DT9812_MAX_NUM_MULTI_BYTE_RDS \
((DT9812_MAX_WRITE_CMD_PIPE_SIZE - 4 - 1) / sizeof(u8))
struct dt9812_read_multi {
u8 count;
u8 address[DT9812_MAX_NUM_MULTI_BYTE_RDS];
};
struct dt9812_write_byte {
u8 address;
u8 value;
};
#define DT9812_MAX_NUM_MULTI_BYTE_WRTS \
((DT9812_MAX_WRITE_CMD_PIPE_SIZE - 4 - 1) / \
sizeof(struct dt9812_write_byte))
struct dt9812_write_multi {
u8 count;
struct dt9812_write_byte write[DT9812_MAX_NUM_MULTI_BYTE_WRTS];
};
struct dt9812_rmw_byte {
u8 address;
u8 and_mask;
u8 or_value;
};
#define DT9812_MAX_NUM_MULTI_BYTE_RMWS \
((DT9812_MAX_WRITE_CMD_PIPE_SIZE - 4 - 1) / \
sizeof(struct dt9812_rmw_byte))
struct dt9812_rmw_multi {
u8 count;
struct dt9812_rmw_byte rmw[DT9812_MAX_NUM_MULTI_BYTE_RMWS];
};
struct dt9812_usb_cmd {
u32 cmd;
union {
struct dt9812_flash_data flash_data_info;
struct dt9812_read_multi read_multi_info;
struct dt9812_write_multi write_multi_info;
struct dt9812_rmw_multi rmw_multi_info;
} u;
#if 0
WRITE_BYTE_INFO WriteByteInfo;
READ_BYTE_INFO ReadByteInfo;
WRITE_MULTI_INFO WriteMultiInfo;
READ_MULTI_INFO ReadMultiInfo;
RMW_BYTE_INFO RMWByteInfo;
RMW_MULTI_INFO RMWMultiInfo;
DAC_THRESHOLD_INFO DacThresholdInfo;
INT_ON_CHANGE_MASK_INFO IntOnChangeMaskInfo;
CGL_INFO CglInfo;
SUBSYSTEM_INFO SubsystemInfo;
CAL_POT_CMD CalPotCmd;
WRITE_DEV_BYTE_INFO WriteDevByteInfo;
READ_DEV_BYTE_INFO ReadDevByteInfo;
WRITE_DEV_MULTI_INFO WriteDevMultiInfo;
READ_DEV_MULTI_INFO ReadDevMultiInfo;
READ_SINGLE_VALUE_INFO ReadSingleValueInfo;
WRITE_SINGLE_VALUE_INFO WriteSingleValueInfo;
#endif
};
#define DT9812_NUM_SLOTS 16
static DEFINE_SEMAPHORE(dt9812_mutex);
static const struct usb_device_id dt9812_table[] = {
{USB_DEVICE(0x0867, 0x9812)},
{} /* Terminating entry */
};
MODULE_DEVICE_TABLE(usb, dt9812_table);
struct usb_dt9812 {
struct slot_dt9812 *slot;
struct usb_device *udev;
struct usb_interface *interface;
u16 vendor;
u16 product;
u16 device;
u32 serial;
struct {
__u8 addr;
size_t size;
} message_pipe, command_write, command_read, write_stream, read_stream;
struct kref kref;
u16 analog_out_shadow[2];
u8 digital_out_shadow;
};
struct comedi_dt9812 {
struct slot_dt9812 *slot;
u32 serial;
};
struct slot_dt9812 {
struct semaphore mutex;
u32 serial;
struct usb_dt9812 *usb;
struct comedi_dt9812 *comedi;
};
static struct slot_dt9812 dt9812[DT9812_NUM_SLOTS];
static inline struct usb_dt9812 *to_dt9812_dev(struct kref *d)
{
return container_of(d, struct usb_dt9812, kref);
}
static void dt9812_delete(struct kref *kref)
{
struct usb_dt9812 *dev = to_dt9812_dev(kref);
usb_put_dev(dev->udev);
kfree(dev);
}
static int dt9812_read_info(struct usb_dt9812 *dev, int offset, void *buf,
size_t buf_size)
{
struct dt9812_usb_cmd cmd;
int count, retval;
cmd.cmd = cpu_to_le32(DT9812_R_FLASH_DATA);
cmd.u.flash_data_info.address =
cpu_to_le16(DT9812_DIAGS_BOARD_INFO_ADDR + offset);
cmd.u.flash_data_info.numbytes = cpu_to_le16(buf_size);
/* DT9812 only responds to 32 byte writes!! */
count = 32;
retval = usb_bulk_msg(dev->udev,
usb_sndbulkpipe(dev->udev,
dev->command_write.addr),
&cmd, 32, &count, HZ * 1);
if (retval)
return retval;
retval = usb_bulk_msg(dev->udev,
usb_rcvbulkpipe(dev->udev,
dev->command_read.addr),
buf, buf_size, &count, HZ * 1);
return retval;
}
static int dt9812_read_multiple_registers(struct usb_dt9812 *dev, int reg_count,
u8 *address, u8 *value)
{
struct dt9812_usb_cmd cmd;
int i, count, retval;
cmd.cmd = cpu_to_le32(DT9812_R_MULTI_BYTE_REG);
cmd.u.read_multi_info.count = reg_count;
for (i = 0; i < reg_count; i++)
cmd.u.read_multi_info.address[i] = address[i];
/* DT9812 only responds to 32 byte writes!! */
count = 32;
retval = usb_bulk_msg(dev->udev,
usb_sndbulkpipe(dev->udev,
dev->command_write.addr),
&cmd, 32, &count, HZ * 1);
if (retval)
return retval;
retval = usb_bulk_msg(dev->udev,
usb_rcvbulkpipe(dev->udev,
dev->command_read.addr),
value, reg_count, &count, HZ * 1);
return retval;
}
static int dt9812_write_multiple_registers(struct usb_dt9812 *dev,
int reg_count, u8 *address,
u8 *value)
{
struct dt9812_usb_cmd cmd;
int i, count, retval;
cmd.cmd = cpu_to_le32(DT9812_W_MULTI_BYTE_REG);
cmd.u.read_multi_info.count = reg_count;
for (i = 0; i < reg_count; i++) {
cmd.u.write_multi_info.write[i].address = address[i];
cmd.u.write_multi_info.write[i].value = value[i];
}
/* DT9812 only responds to 32 byte writes!! */
retval = usb_bulk_msg(dev->udev,
usb_sndbulkpipe(dev->udev,
dev->command_write.addr),
&cmd, 32, &count, HZ * 1);
return retval;
}
static int dt9812_rmw_multiple_registers(struct usb_dt9812 *dev, int reg_count,
struct dt9812_rmw_byte *rmw)
{
struct dt9812_usb_cmd cmd;
int i, count, retval;
cmd.cmd = cpu_to_le32(DT9812_RMW_MULTI_BYTE_REG);
cmd.u.rmw_multi_info.count = reg_count;
for (i = 0; i < reg_count; i++)
cmd.u.rmw_multi_info.rmw[i] = rmw[i];
/* DT9812 only responds to 32 byte writes!! */
retval = usb_bulk_msg(dev->udev,
usb_sndbulkpipe(dev->udev,
dev->command_write.addr),
&cmd, 32, &count, HZ * 1);
return retval;
}
static int dt9812_digital_in(struct slot_dt9812 *slot, u8 *bits)
{
int result = -ENODEV;
down(&slot->mutex);
if (slot->usb) {
u8 reg[2] = { F020_SFR_P3, F020_SFR_P1 };
u8 value[2];
result = dt9812_read_multiple_registers(slot->usb, 2, reg,
value);
if (result == 0) {
/*
* bits 0-6 in F020_SFR_P3 are bits 0-6 in the digital
* input port bit 3 in F020_SFR_P1 is bit 7 in the
* digital input port
*/
*bits = (value[0] & 0x7f) | ((value[1] & 0x08) << 4);
/* printk("%2.2x, %2.2x -> %2.2x\n",
value[0], value[1], *bits); */
}
}
up(&slot->mutex);
return result;
}
static int dt9812_digital_out(struct slot_dt9812 *slot, u8 bits)
{
int result = -ENODEV;
down(&slot->mutex);
if (slot->usb) {
u8 reg[1];
u8 value[1];
reg[0] = F020_SFR_P2;
value[0] = bits;
result = dt9812_write_multiple_registers(slot->usb, 1, reg,
value);
slot->usb->digital_out_shadow = bits;
}
up(&slot->mutex);
return result;
}
static int dt9812_digital_out_shadow(struct slot_dt9812 *slot, u8 *bits)
{
int result = -ENODEV;
down(&slot->mutex);
if (slot->usb) {
*bits = slot->usb->digital_out_shadow;
result = 0;
}
up(&slot->mutex);
return result;
}
static void dt9812_configure_mux(struct usb_dt9812 *dev,
struct dt9812_rmw_byte *rmw, int channel)
{
if (dev->device == DT9812_DEVID_DT9812_10) {
/* In the DT9812/10V MUX is selected by P1.5-7 */
rmw->address = F020_SFR_P1;
rmw->and_mask = 0xe0;
rmw->or_value = channel << 5;
} else {
/* In the DT9812/2.5V, internal mux is selected by bits 0:2 */
rmw->address = F020_SFR_AMX0SL;
rmw->and_mask = 0xff;
rmw->or_value = channel & 0x07;
}
}
static void dt9812_configure_gain(struct usb_dt9812 *dev,
struct dt9812_rmw_byte *rmw,
enum dt9812_gain gain)
{
if (dev->device == DT9812_DEVID_DT9812_10) {
/* In the DT9812/10V, there is an external gain of 0.5 */
gain <<= 1;
}
rmw->address = F020_SFR_ADC0CF;
rmw->and_mask = F020_MASK_ADC0CF_AMP0GN2 |
F020_MASK_ADC0CF_AMP0GN1 | F020_MASK_ADC0CF_AMP0GN0;
switch (gain) {
/*
* 000 -> Gain = 1
* 001 -> Gain = 2
* 010 -> Gain = 4
* 011 -> Gain = 8
* 10x -> Gain = 16
* 11x -> Gain = 0.5
*/
case DT9812_GAIN_0PT5:
rmw->or_value = F020_MASK_ADC0CF_AMP0GN2 |
F020_MASK_ADC0CF_AMP0GN1;
break;
case DT9812_GAIN_1:
rmw->or_value = 0x00;
break;
case DT9812_GAIN_2:
rmw->or_value = F020_MASK_ADC0CF_AMP0GN0;
break;
case DT9812_GAIN_4:
rmw->or_value = F020_MASK_ADC0CF_AMP0GN1;
break;
case DT9812_GAIN_8:
rmw->or_value = F020_MASK_ADC0CF_AMP0GN1 |
F020_MASK_ADC0CF_AMP0GN0;
break;
case DT9812_GAIN_16:
rmw->or_value = F020_MASK_ADC0CF_AMP0GN2;
break;
default:
dev_err(&dev->interface->dev, "Illegal gain %d\n", gain);
}
}
static int dt9812_analog_in(struct slot_dt9812 *slot, int channel, u16 *value,
enum dt9812_gain gain)
{
struct dt9812_rmw_byte rmw[3];
u8 reg[3] = {
F020_SFR_ADC0CN,
F020_SFR_ADC0H,
F020_SFR_ADC0L
};
u8 val[3];
int result = -ENODEV;
down(&slot->mutex);
if (!slot->usb)
goto exit;
/* 1 select the gain */
dt9812_configure_gain(slot->usb, &rmw[0], gain);
/* 2 set the MUX to select the channel */
dt9812_configure_mux(slot->usb, &rmw[1], channel);
/* 3 start conversion */
rmw[2].address = F020_SFR_ADC0CN;
rmw[2].and_mask = 0xff;
rmw[2].or_value = F020_MASK_ADC0CN_AD0EN | F020_MASK_ADC0CN_AD0BUSY;
result = dt9812_rmw_multiple_registers(slot->usb, 3, rmw);
if (result)
goto exit;
/* read the status and ADC */
result = dt9812_read_multiple_registers(slot->usb, 3, reg, val);
if (result)
goto exit;
/*
* An ADC conversion takes 16 SAR clocks cycles, i.e. about 9us.
* Therefore, between the instant that AD0BUSY was set via
* dt9812_rmw_multiple_registers and the read of AD0BUSY via
* dt9812_read_multiple_registers, the conversion should be complete
* since these two operations require two USB transactions each taking
* at least a millisecond to complete. However, lets make sure that
* conversion is finished.
*/
if ((val[0] & (F020_MASK_ADC0CN_AD0INT | F020_MASK_ADC0CN_AD0BUSY)) ==
F020_MASK_ADC0CN_AD0INT) {
switch (slot->usb->device) {
case DT9812_DEVID_DT9812_10:
/*
* For DT9812-10V the personality module set the
* encoding to 2's complement. Hence, convert it before
* returning it
*/
*value = ((val[1] << 8) | val[2]) + 0x800;
break;
case DT9812_DEVID_DT9812_2PT5:
*value = (val[1] << 8) | val[2];
break;
}
}
exit:
up(&slot->mutex);
return result;
}
static int dt9812_analog_out_shadow(struct slot_dt9812 *slot, int channel,
u16 *value)
{
int result = -ENODEV;
down(&slot->mutex);
if (slot->usb) {
*value = slot->usb->analog_out_shadow[channel];
result = 0;
}
up(&slot->mutex);
return result;
}
static int dt9812_analog_out(struct slot_dt9812 *slot, int channel, u16 value)
{
int result = -ENODEV;
down(&slot->mutex);
if (slot->usb) {
struct dt9812_rmw_byte rmw[3];
switch (channel) {
case 0:
/* 1. Set DAC mode */
rmw[0].address = F020_SFR_DAC0CN;
rmw[0].and_mask = 0xff;
rmw[0].or_value = F020_MASK_DACxCN_DACxEN;
/* 2 load low byte of DAC value first */
rmw[1].address = F020_SFR_DAC0L;
rmw[1].and_mask = 0xff;
rmw[1].or_value = value & 0xff;
/* 3 load high byte of DAC value next to latch the
12-bit value */
rmw[2].address = F020_SFR_DAC0H;
rmw[2].and_mask = 0xff;
rmw[2].or_value = (value >> 8) & 0xf;
break;
case 1:
/* 1. Set DAC mode */
rmw[0].address = F020_SFR_DAC1CN;
rmw[0].and_mask = 0xff;
rmw[0].or_value = F020_MASK_DACxCN_DACxEN;
/* 2 load low byte of DAC value first */
rmw[1].address = F020_SFR_DAC1L;
rmw[1].and_mask = 0xff;
rmw[1].or_value = value & 0xff;
/* 3 load high byte of DAC value next to latch the
12-bit value */
rmw[2].address = F020_SFR_DAC1H;
rmw[2].and_mask = 0xff;
rmw[2].or_value = (value >> 8) & 0xf;
break;
}
result = dt9812_rmw_multiple_registers(slot->usb, 3, rmw);
slot->usb->analog_out_shadow[channel] = value;
}
up(&slot->mutex);
return result;
}
/*
* USB framework functions
*/
static int dt9812_probe(struct usb_interface *interface,
const struct usb_device_id *id)
{
int retval = -ENOMEM;
struct usb_dt9812 *dev = NULL;
struct usb_host_interface *iface_desc;
struct usb_endpoint_descriptor *endpoint;
int i;
u8 fw;
/* allocate memory for our device state and initialize it */
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (dev == NULL)
goto error;
kref_init(&dev->kref);
dev->udev = usb_get_dev(interface_to_usbdev(interface));
dev->interface = interface;
/* Check endpoints */
iface_desc = interface->cur_altsetting;
if (iface_desc->desc.bNumEndpoints != 5) {
dev_err(&interface->dev, "Wrong number of endpoints.\n");
retval = -ENODEV;
goto error;
}
for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
int direction = -1;
endpoint = &iface_desc->endpoint[i].desc;
switch (i) {
case 0:
direction = USB_DIR_IN;
dev->message_pipe.addr = endpoint->bEndpointAddress;
dev->message_pipe.size =
le16_to_cpu(endpoint->wMaxPacketSize);
break;
case 1:
direction = USB_DIR_OUT;
dev->command_write.addr = endpoint->bEndpointAddress;
dev->command_write.size =
le16_to_cpu(endpoint->wMaxPacketSize);
break;
case 2:
direction = USB_DIR_IN;
dev->command_read.addr = endpoint->bEndpointAddress;
dev->command_read.size =
le16_to_cpu(endpoint->wMaxPacketSize);
break;
case 3:
direction = USB_DIR_OUT;
dev->write_stream.addr = endpoint->bEndpointAddress;
dev->write_stream.size =
le16_to_cpu(endpoint->wMaxPacketSize);
break;
case 4:
direction = USB_DIR_IN;
dev->read_stream.addr = endpoint->bEndpointAddress;
dev->read_stream.size =
le16_to_cpu(endpoint->wMaxPacketSize);
break;
}
if ((endpoint->bEndpointAddress & USB_DIR_IN) != direction) {
dev_err(&interface->dev,
"Endpoint has wrong direction.\n");
retval = -ENODEV;
goto error;
}
}
if (dt9812_read_info(dev, 0, &fw, sizeof(fw)) != 0) {
/*
* Seems like a configuration reset is necessary if driver is
* reloaded while device is attached
*/
usb_reset_configuration(dev->udev);
for (i = 0; i < 10; i++) {
retval = dt9812_read_info(dev, 1, &fw, sizeof(fw));
if (retval == 0) {
dev_info(&interface->dev,
"usb_reset_configuration succeeded "
"after %d iterations\n", i);
break;
}
}
}
if (dt9812_read_info(dev, 1, &dev->vendor, sizeof(dev->vendor)) != 0) {
dev_err(&interface->dev, "Failed to read vendor.\n");
retval = -ENODEV;
goto error;
}
if (dt9812_read_info(dev, 3, &dev->product, sizeof(dev->product)) != 0) {
dev_err(&interface->dev, "Failed to read product.\n");
retval = -ENODEV;
goto error;
}
if (dt9812_read_info(dev, 5, &dev->device, sizeof(dev->device)) != 0) {
dev_err(&interface->dev, "Failed to read device.\n");
retval = -ENODEV;
goto error;
}
if (dt9812_read_info(dev, 7, &dev->serial, sizeof(dev->serial)) != 0) {
dev_err(&interface->dev, "Failed to read serial.\n");
retval = -ENODEV;
goto error;
}
dev->vendor = le16_to_cpu(dev->vendor);
dev->product = le16_to_cpu(dev->product);
dev->device = le16_to_cpu(dev->device);
dev->serial = le32_to_cpu(dev->serial);
switch (dev->device) {
case DT9812_DEVID_DT9812_10:
dev->analog_out_shadow[0] = 0x0800;
dev->analog_out_shadow[1] = 0x800;
break;
case DT9812_DEVID_DT9812_2PT5:
dev->analog_out_shadow[0] = 0x0000;
dev->analog_out_shadow[1] = 0x0000;
break;
}
dev->digital_out_shadow = 0;
/* save our data pointer in this interface device */
usb_set_intfdata(interface, dev);
/* let the user know what node this device is now attached to */
dev_info(&interface->dev, "USB DT9812 (%4.4x.%4.4x.%4.4x) #0x%8.8x\n",
dev->vendor, dev->product, dev->device, dev->serial);
down(&dt9812_mutex);
{
/* Find a slot for the USB device */
struct slot_dt9812 *first = NULL;
struct slot_dt9812 *best = NULL;
for (i = 0; i < DT9812_NUM_SLOTS; i++) {
if (!first && !dt9812[i].usb && dt9812[i].serial == 0)
first = &dt9812[i];
if (!best && dt9812[i].serial == dev->serial)
best = &dt9812[i];
}
if (!best)
best = first;
if (best) {
down(&best->mutex);
best->usb = dev;
dev->slot = best;
up(&best->mutex);
}
}
up(&dt9812_mutex);
return 0;
error:
if (dev)
kref_put(&dev->kref, dt9812_delete);
return retval;
}
static void dt9812_disconnect(struct usb_interface *interface)
{
struct usb_dt9812 *dev;
int minor = interface->minor;
down(&dt9812_mutex);
dev = usb_get_intfdata(interface);
if (dev->slot) {
down(&dev->slot->mutex);
dev->slot->usb = NULL;
up(&dev->slot->mutex);
dev->slot = NULL;
}
usb_set_intfdata(interface, NULL);
up(&dt9812_mutex);
/* queue final destruction */
kref_put(&dev->kref, dt9812_delete);
dev_info(&interface->dev, "USB Dt9812 #%d now disconnected\n", minor);
}
static struct usb_driver dt9812_usb_driver = {
.name = "dt9812",
.probe = dt9812_probe,
.disconnect = dt9812_disconnect,
.id_table = dt9812_table,
};
/*
* Comedi functions
*/
static int dt9812_comedi_open(struct comedi_device *dev)
{
struct comedi_dt9812 *devpriv = dev->private;
int result = -ENODEV;
down(&devpriv->slot->mutex);
if (devpriv->slot->usb) {
/* We have an attached device, fill in current range info */
struct comedi_subdevice *s;
s = &dev->subdevices[0];
s->n_chan = 8;
s->maxdata = 1;
s = &dev->subdevices[1];
s->n_chan = 8;
s->maxdata = 1;
s = &dev->subdevices[2];
s->n_chan = 8;
switch (devpriv->slot->usb->device) {
case 0:{
s->maxdata = 4095;
s->range_table = &range_bipolar10;
}
break;
case 1:{
s->maxdata = 4095;
s->range_table = &range_unipolar2_5;
}
break;
}
s = &dev->subdevices[3];
s->n_chan = 2;
switch (devpriv->slot->usb->device) {
case 0:{
s->maxdata = 4095;
s->range_table = &range_bipolar10;
}
break;
case 1:{
s->maxdata = 4095;
s->range_table = &range_unipolar2_5;
}
break;
}
result = 0;
}
up(&devpriv->slot->mutex);
return result;
}
static int dt9812_di_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_insn *insn,
unsigned int *data)
{
struct comedi_dt9812 *devpriv = dev->private;
unsigned int channel = CR_CHAN(insn->chanspec);
int n;
u8 bits = 0;
dt9812_digital_in(devpriv->slot, &bits);
for (n = 0; n < insn->n; n++)
data[n] = ((1 << channel) & bits) != 0;
return n;
}
static int dt9812_do_winsn(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_insn *insn,
unsigned int *data)
{
struct comedi_dt9812 *devpriv = dev->private;
unsigned int channel = CR_CHAN(insn->chanspec);
int n;
u8 bits = 0;
dt9812_digital_out_shadow(devpriv->slot, &bits);
for (n = 0; n < insn->n; n++) {
u8 mask = 1 << channel;
bits &= ~mask;
if (data[n])
bits |= mask;
}
dt9812_digital_out(devpriv->slot, bits);
return n;
}
static int dt9812_ai_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_insn *insn,
unsigned int *data)
{
struct comedi_dt9812 *devpriv = dev->private;
unsigned int channel = CR_CHAN(insn->chanspec);
int n;
for (n = 0; n < insn->n; n++) {
u16 value = 0;
dt9812_analog_in(devpriv->slot, channel, &value, DT9812_GAIN_1);
data[n] = value;
}
return n;
}
static int dt9812_ao_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_insn *insn,
unsigned int *data)
{
struct comedi_dt9812 *devpriv = dev->private;
unsigned int channel = CR_CHAN(insn->chanspec);
int n;
u16 value;
for (n = 0; n < insn->n; n++) {
value = 0;
dt9812_analog_out_shadow(devpriv->slot, channel, &value);
data[n] = value;
}
return n;
}
static int dt9812_ao_winsn(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_insn *insn,
unsigned int *data)
{
struct comedi_dt9812 *devpriv = dev->private;
unsigned int channel = CR_CHAN(insn->chanspec);
int n;
for (n = 0; n < insn->n; n++)
dt9812_analog_out(devpriv->slot, channel, data[n]);
return n;
}
static int dt9812_attach(struct comedi_device *dev, struct comedi_devconfig *it)
{
struct comedi_dt9812 *devpriv;
int i;
struct comedi_subdevice *s;
int ret;
devpriv = kzalloc(sizeof(*devpriv), GFP_KERNEL);
if (!devpriv)
return -ENOMEM;
dev->private = devpriv;
/*
* Special open routine, since USB unit may be unattached at
* comedi_config time, hence range can not be determined
*/
dev->open = dt9812_comedi_open;
devpriv->serial = it->options[0];
ret = comedi_alloc_subdevices(dev, 4);
if (ret)
return ret;
/* digital input subdevice */
s = &dev->subdevices[0];
s->type = COMEDI_SUBD_DI;
s->subdev_flags = SDF_READABLE;
s->n_chan = 0;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_read = &dt9812_di_rinsn;
/* digital output subdevice */
s = &dev->subdevices[1];
s->type = COMEDI_SUBD_DO;
s->subdev_flags = SDF_WRITEABLE;
s->n_chan = 0;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_write = &dt9812_do_winsn;
/* analog input subdevice */
s = &dev->subdevices[2];
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_GROUND;
s->n_chan = 0;
s->maxdata = 1;
s->range_table = NULL;
s->insn_read = &dt9812_ai_rinsn;
/* analog output subdevice */
s = &dev->subdevices[3];
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITEABLE;
s->n_chan = 0;
s->maxdata = 1;
s->range_table = NULL;
s->insn_write = &dt9812_ao_winsn;
s->insn_read = &dt9812_ao_rinsn;
dev_info(dev->class_dev, "successfully attached to dt9812.\n");
down(&dt9812_mutex);
/* Find a slot for the comedi device */
{
struct slot_dt9812 *first = NULL;
struct slot_dt9812 *best = NULL;
for (i = 0; i < DT9812_NUM_SLOTS; i++) {
if (!first && !dt9812[i].comedi) {
/* First free slot from comedi side */
first = &dt9812[i];
}
if (!best &&
dt9812[i].usb &&
dt9812[i].usb->serial == devpriv->serial) {
/* We have an attaced device with matching ID */
best = &dt9812[i];
}
}
if (!best)
best = first;
if (best) {
down(&best->mutex);
best->comedi = devpriv;
best->serial = devpriv->serial;
devpriv->slot = best;
up(&best->mutex);
}
}
up(&dt9812_mutex);
return 0;
}
static void dt9812_detach(struct comedi_device *dev)
{
/* Nothing to cleanup */
}
static struct comedi_driver dt9812_comedi_driver = {
.module = THIS_MODULE,
.driver_name = "dt9812",
.attach = dt9812_attach,
.detach = dt9812_detach,
};
static int __init usb_dt9812_init(void)
{
int i;
/* Initialize all driver slots */
for (i = 0; i < DT9812_NUM_SLOTS; i++) {
sema_init(&dt9812[i].mutex, 1);
dt9812[i].serial = 0;
dt9812[i].usb = NULL;
dt9812[i].comedi = NULL;
}
dt9812[12].serial = 0x0;
return comedi_usb_driver_register(&dt9812_comedi_driver,
&dt9812_usb_driver);
}
static void __exit usb_dt9812_exit(void)
{
comedi_usb_driver_unregister(&dt9812_comedi_driver, &dt9812_usb_driver);
}
module_init(usb_dt9812_init);
module_exit(usb_dt9812_exit);
MODULE_AUTHOR("Anders Blomdell <anders.blomdell@control.lth.se>");
MODULE_DESCRIPTION("Comedi DT9812 driver");
MODULE_LICENSE("GPL");