| /* |
| ****************************************************************************** |
| * |
| * Copyright (C) 2001-2009, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| * |
| ****************************************************************************** |
| * file name: utrie2_builder.c |
| * encoding: US-ASCII |
| * tab size: 8 (not used) |
| * indentation:4 |
| * |
| * created on: 2008sep26 (split off from utrie2.c) |
| * created by: Markus W. Scherer |
| * |
| * This is a common implementation of a Unicode trie. |
| * It is a kind of compressed, serializable table of 16- or 32-bit values associated with |
| * Unicode code points (0..0x10ffff). |
| * This is the second common version of a Unicode trie (hence the name UTrie2). |
| * See utrie2.h for a comparison. |
| * |
| * This file contains only the builder code. |
| * See utrie2.c for the runtime and enumeration code. |
| */ |
| #ifdef UTRIE2_DEBUG |
| # include <stdio.h> |
| #endif |
| |
| #include "unicode/utypes.h" |
| #include "cmemory.h" |
| #include "utrie2.h" |
| #include "utrie2_impl.h" |
| |
| #include "utrie.h" /* for utrie2_fromUTrie() */ |
| |
| #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
| |
| /* Implementation notes ----------------------------------------------------- */ |
| |
| /* |
| * The UTRIE2_SHIFT_1, UTRIE2_SHIFT_2, UTRIE2_INDEX_SHIFT and other values |
| * have been chosen to minimize trie sizes overall. |
| * Most of the code is flexible enough to work with a range of values, |
| * within certain limits. |
| * |
| * Exception: Support for separate values for lead surrogate code _units_ |
| * vs. code _points_ was added after the constants were fixed, |
| * and has not been tested nor particularly designed for different constant values. |
| * (Especially the utrie2_enum() code that jumps to the special LSCP index-2 |
| * part and back.) |
| * |
| * Requires UTRIE2_SHIFT_2<=6. Otherwise 0xc0 which is the top of the ASCII-linear data |
| * including the bad-UTF-8-data block is not a multiple of UTRIE2_DATA_BLOCK_LENGTH |
| * and map[block>>UTRIE2_SHIFT_2] (used in reference counting and compaction |
| * remapping) stops working. |
| * |
| * Requires UTRIE2_SHIFT_1>=10 because utrie2_enumForLeadSurrogate() |
| * assumes that a single index-2 block is used for 0x400 code points |
| * corresponding to one lead surrogate. |
| * |
| * Requires UTRIE2_SHIFT_1<=16. Otherwise one single index-2 block contains |
| * more than one Unicode plane, and the split of the index-2 table into a BMP |
| * part and a supplementary part, with a gap in between, would not work. |
| * |
| * Requires UTRIE2_INDEX_SHIFT>=1 not because of the code but because |
| * there is data with more than 64k distinct values, |
| * for example for Unihan collation with a separate collation weight per |
| * Han character. |
| */ |
| |
| /* Building a trie ----------------------------------------------------------*/ |
| |
| enum { |
| /** The null index-2 block, following the gap in the index-2 table. */ |
| UNEWTRIE2_INDEX_2_NULL_OFFSET=UNEWTRIE2_INDEX_GAP_OFFSET+UNEWTRIE2_INDEX_GAP_LENGTH, |
| |
| /** The start of allocated index-2 blocks. */ |
| UNEWTRIE2_INDEX_2_START_OFFSET=UNEWTRIE2_INDEX_2_NULL_OFFSET+UTRIE2_INDEX_2_BLOCK_LENGTH, |
| |
| /** |
| * The null data block. |
| * Length 64=0x40 even if UTRIE2_DATA_BLOCK_LENGTH is smaller, |
| * to work with 6-bit trail bytes from 2-byte UTF-8. |
| */ |
| UNEWTRIE2_DATA_NULL_OFFSET=UTRIE2_DATA_START_OFFSET, |
| |
| /** The start of allocated data blocks. */ |
| UNEWTRIE2_DATA_START_OFFSET=UNEWTRIE2_DATA_NULL_OFFSET+0x40, |
| |
| /** |
| * The start of data blocks for U+0800 and above. |
| * Below, compaction uses a block length of 64 for 2-byte UTF-8. |
| * From here on, compaction uses UTRIE2_DATA_BLOCK_LENGTH. |
| * Data values for 0x780 code points beyond ASCII. |
| */ |
| UNEWTRIE2_DATA_0800_OFFSET=UNEWTRIE2_DATA_START_OFFSET+0x780 |
| }; |
| |
| /* Start with allocation of 16k data entries. */ |
| #define UNEWTRIE2_INITIAL_DATA_LENGTH ((int32_t)1<<14) |
| |
| /* Grow about 8x each time. */ |
| #define UNEWTRIE2_MEDIUM_DATA_LENGTH ((int32_t)1<<17) |
| |
| static int32_t |
| allocIndex2Block(UNewTrie2 *trie); |
| |
| U_CAPI UTrie2 * U_EXPORT2 |
| utrie2_open(uint32_t initialValue, uint32_t errorValue, UErrorCode *pErrorCode) { |
| UTrie2 *trie; |
| UNewTrie2 *newTrie; |
| uint32_t *data; |
| int32_t i, j; |
| |
| if(U_FAILURE(*pErrorCode)) { |
| return NULL; |
| } |
| |
| trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2)); |
| newTrie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2)); |
| data=(uint32_t *)uprv_malloc(UNEWTRIE2_INITIAL_DATA_LENGTH*4); |
| if(trie==NULL || newTrie==NULL || data==NULL) { |
| uprv_free(trie); |
| uprv_free(newTrie); |
| uprv_free(data); |
| *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| return 0; |
| } |
| |
| uprv_memset(trie, 0, sizeof(UTrie2)); |
| trie->initialValue=initialValue; |
| trie->errorValue=errorValue; |
| trie->highStart=0x110000; |
| trie->newTrie=newTrie; |
| |
| newTrie->data=data; |
| newTrie->dataCapacity=UNEWTRIE2_INITIAL_DATA_LENGTH; |
| newTrie->initialValue=initialValue; |
| newTrie->errorValue=errorValue; |
| newTrie->highStart=0x110000; |
| newTrie->firstFreeBlock=0; /* no free block in the list */ |
| newTrie->isCompacted=FALSE; |
| |
| /* |
| * preallocate and reset |
| * - ASCII |
| * - the bad-UTF-8-data block |
| * - the null data block |
| */ |
| for(i=0; i<0x80; ++i) { |
| newTrie->data[i]=initialValue; |
| } |
| for(; i<0xc0; ++i) { |
| newTrie->data[i]=errorValue; |
| } |
| for(i=UNEWTRIE2_DATA_NULL_OFFSET; i<UNEWTRIE2_DATA_START_OFFSET; ++i) { |
| newTrie->data[i]=initialValue; |
| } |
| newTrie->dataNullOffset=UNEWTRIE2_DATA_NULL_OFFSET; |
| newTrie->dataLength=UNEWTRIE2_DATA_START_OFFSET; |
| |
| /* set the index-2 indexes for the 2=0x80>>UTRIE2_SHIFT_2 ASCII data blocks */ |
| for(i=0, j=0; j<0x80; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) { |
| newTrie->index2[i]=j; |
| newTrie->map[i]=1; |
| } |
| /* reference counts for the bad-UTF-8-data block */ |
| for(; j<0xc0; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) { |
| newTrie->map[i]=0; |
| } |
| /* |
| * Reference counts for the null data block: all blocks except for the ASCII blocks. |
| * Plus 1 so that we don't drop this block during compaction. |
| * Plus as many as needed for lead surrogate code points. |
| */ |
| /* i==newTrie->dataNullOffset */ |
| newTrie->map[i++]= |
| (0x110000>>UTRIE2_SHIFT_2)- |
| (0x80>>UTRIE2_SHIFT_2)+ |
| 1+ |
| UTRIE2_LSCP_INDEX_2_LENGTH; |
| j+=UTRIE2_DATA_BLOCK_LENGTH; |
| for(; j<UNEWTRIE2_DATA_START_OFFSET; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) { |
| newTrie->map[i]=0; |
| } |
| |
| /* |
| * set the remaining indexes in the BMP index-2 block |
| * to the null data block |
| */ |
| for(i=0x80>>UTRIE2_SHIFT_2; i<UTRIE2_INDEX_2_BMP_LENGTH; ++i) { |
| newTrie->index2[i]=UNEWTRIE2_DATA_NULL_OFFSET; |
| } |
| |
| /* |
| * Fill the index gap with impossible values so that compaction |
| * does not overlap other index-2 blocks with the gap. |
| */ |
| for(i=0; i<UNEWTRIE2_INDEX_GAP_LENGTH; ++i) { |
| newTrie->index2[UNEWTRIE2_INDEX_GAP_OFFSET+i]=-1; |
| } |
| |
| /* set the indexes in the null index-2 block */ |
| for(i=0; i<UTRIE2_INDEX_2_BLOCK_LENGTH; ++i) { |
| newTrie->index2[UNEWTRIE2_INDEX_2_NULL_OFFSET+i]=UNEWTRIE2_DATA_NULL_OFFSET; |
| } |
| newTrie->index2NullOffset=UNEWTRIE2_INDEX_2_NULL_OFFSET; |
| newTrie->index2Length=UNEWTRIE2_INDEX_2_START_OFFSET; |
| |
| /* set the index-1 indexes for the linear index-2 block */ |
| for(i=0, j=0; |
| i<UTRIE2_OMITTED_BMP_INDEX_1_LENGTH; |
| ++i, j+=UTRIE2_INDEX_2_BLOCK_LENGTH |
| ) { |
| newTrie->index1[i]=j; |
| } |
| |
| /* set the remaining index-1 indexes to the null index-2 block */ |
| for(; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) { |
| newTrie->index1[i]=UNEWTRIE2_INDEX_2_NULL_OFFSET; |
| } |
| |
| /* |
| * Preallocate and reset data for U+0080..U+07ff, |
| * for 2-byte UTF-8 which will be compacted in 64-blocks |
| * even if UTRIE2_DATA_BLOCK_LENGTH is smaller. |
| */ |
| for(i=0x80; i<0x800; i+=UTRIE2_DATA_BLOCK_LENGTH) { |
| utrie2_set32(trie, i, initialValue, pErrorCode); |
| } |
| |
| return trie; |
| } |
| |
| static UNewTrie2 * |
| cloneBuilder(const UNewTrie2 *other) { |
| UNewTrie2 *trie; |
| |
| trie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2)); |
| if(trie==NULL) { |
| return NULL; |
| } |
| |
| trie->data=(uint32_t *)uprv_malloc(other->dataCapacity*4); |
| if(trie->data==NULL) { |
| uprv_free(trie); |
| return NULL; |
| } |
| trie->dataCapacity=other->dataCapacity; |
| |
| /* clone data */ |
| uprv_memcpy(trie->index1, other->index1, sizeof(trie->index1)); |
| uprv_memcpy(trie->index2, other->index2, other->index2Length*4); |
| trie->index2NullOffset=other->index2NullOffset; |
| trie->index2Length=other->index2Length; |
| |
| uprv_memcpy(trie->data, other->data, other->dataLength*4); |
| trie->dataNullOffset=other->dataNullOffset; |
| trie->dataLength=other->dataLength; |
| |
| /* reference counters */ |
| if(other->isCompacted) { |
| trie->firstFreeBlock=0; |
| } else { |
| uprv_memcpy(trie->map, other->map, (other->dataLength>>UTRIE2_SHIFT_2)*4); |
| trie->firstFreeBlock=other->firstFreeBlock; |
| } |
| |
| trie->initialValue=other->initialValue; |
| trie->errorValue=other->errorValue; |
| trie->highStart=other->highStart; |
| trie->isCompacted=other->isCompacted; |
| |
| return trie; |
| } |
| |
| U_CAPI UTrie2 * U_EXPORT2 |
| utrie2_clone(const UTrie2 *other, UErrorCode *pErrorCode) { |
| UTrie2 *trie; |
| |
| if(U_FAILURE(*pErrorCode)) { |
| return NULL; |
| } |
| if(other==NULL || (other->memory==NULL && other->newTrie==NULL)) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return NULL; |
| } |
| |
| trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2)); |
| if(trie==NULL) { |
| return NULL; |
| } |
| uprv_memcpy(trie, other, sizeof(UTrie2)); |
| |
| if(other->memory!=NULL) { |
| trie->memory=uprv_malloc(other->length); |
| if(trie->memory!=NULL) { |
| trie->isMemoryOwned=TRUE; |
| uprv_memcpy(trie->memory, other->memory, other->length); |
| |
| /* make the clone's pointers point to its own memory */ |
| trie->index=(uint16_t *)trie->memory+(other->index-(uint16_t *)other->memory); |
| if(other->data16!=NULL) { |
| trie->data16=(uint16_t *)trie->memory+(other->data16-(uint16_t *)other->memory); |
| } |
| if(other->data32!=NULL) { |
| trie->data32=(uint32_t *)trie->memory+(other->data32-(uint32_t *)other->memory); |
| } |
| } |
| } else /* other->newTrie!=NULL */ { |
| trie->newTrie=cloneBuilder(other->newTrie); |
| } |
| |
| if(trie->memory==NULL && trie->newTrie==NULL) { |
| uprv_free(trie); |
| trie=NULL; |
| } |
| return trie; |
| } |
| |
| typedef struct NewTrieAndStatus { |
| UTrie2 *trie; |
| UErrorCode errorCode; |
| UBool exclusiveLimit; /* rather than inclusive range end */ |
| } NewTrieAndStatus; |
| |
| static UBool U_CALLCONV |
| copyEnumRange(const void *context, UChar32 start, UChar32 end, uint32_t value) { |
| NewTrieAndStatus *nt=(NewTrieAndStatus *)context; |
| if(value!=nt->trie->initialValue) { |
| if(nt->exclusiveLimit) { |
| --end; |
| } |
| if(start==end) { |
| utrie2_set32(nt->trie, start, value, &nt->errorCode); |
| } else { |
| utrie2_setRange32(nt->trie, start, end, value, TRUE, &nt->errorCode); |
| } |
| return U_SUCCESS(nt->errorCode); |
| } else { |
| return TRUE; |
| } |
| } |
| |
| #ifdef UTRIE2_DEBUG |
| static void |
| utrie_printLengths(const UTrie *trie) { |
| long indexLength=trie->indexLength; |
| long dataLength=(long)trie->dataLength; |
| long totalLength=(long)sizeof(UTrieHeader)+indexLength*2+dataLength*(trie->data32!=NULL ? 4 : 2); |
| printf("**UTrieLengths** index:%6ld data:%6ld serialized:%6ld\n", |
| indexLength, dataLength, totalLength); |
| } |
| |
| static void |
| utrie2_printLengths(const UTrie2 *trie, const char *which) { |
| long indexLength=trie->indexLength; |
| long dataLength=(long)trie->dataLength; |
| long totalLength=(long)sizeof(UTrie2Header)+indexLength*2+dataLength*(trie->data32!=NULL ? 4 : 2); |
| printf("**UTrie2Lengths(%s)** index:%6ld data:%6ld serialized:%6ld\n", |
| which, indexLength, dataLength, totalLength); |
| } |
| #endif |
| |
| U_CAPI UTrie2 * U_EXPORT2 |
| utrie2_cloneAsThawed(const UTrie2 *other, UErrorCode *pErrorCode) { |
| NewTrieAndStatus context; |
| UChar lead; |
| |
| if(U_FAILURE(*pErrorCode)) { |
| return NULL; |
| } |
| if(other==NULL || (other->memory==NULL && other->newTrie==NULL)) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return NULL; |
| } |
| if(other->newTrie!=NULL && !other->newTrie->isCompacted) { |
| return utrie2_clone(other, pErrorCode); /* clone an unfrozen trie */ |
| } |
| |
| /* Clone the frozen trie by enumerating it and building a new one. */ |
| context.trie=utrie2_open(other->initialValue, other->errorValue, pErrorCode); |
| if(U_FAILURE(*pErrorCode)) { |
| return NULL; |
| } |
| context.exclusiveLimit=FALSE; |
| context.errorCode=*pErrorCode; |
| utrie2_enum(other, NULL, copyEnumRange, &context); |
| *pErrorCode=context.errorCode; |
| for(lead=0xd800; lead<0xdc00; ++lead) { |
| uint32_t value; |
| if(other->data32==NULL) { |
| value=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(other, lead); |
| } else { |
| value=UTRIE2_GET32_FROM_U16_SINGLE_LEAD(other, lead); |
| } |
| if(value!=other->initialValue) { |
| utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode); |
| } |
| } |
| if(U_FAILURE(*pErrorCode)) { |
| utrie2_close(context.trie); |
| context.trie=NULL; |
| } |
| return context.trie; |
| } |
| |
| /* Almost the same as utrie2_cloneAsThawed() but copies a UTrie and freezes the clone. */ |
| U_CAPI UTrie2 * U_EXPORT2 |
| utrie2_fromUTrie(const UTrie *trie1, uint32_t errorValue, UErrorCode *pErrorCode) { |
| NewTrieAndStatus context; |
| UChar lead; |
| |
| if(U_FAILURE(*pErrorCode)) { |
| return NULL; |
| } |
| if(trie1==NULL) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return NULL; |
| } |
| context.trie=utrie2_open(trie1->initialValue, errorValue, pErrorCode); |
| if(U_FAILURE(*pErrorCode)) { |
| return NULL; |
| } |
| context.exclusiveLimit=TRUE; |
| context.errorCode=*pErrorCode; |
| utrie_enum(trie1, NULL, copyEnumRange, &context); |
| *pErrorCode=context.errorCode; |
| for(lead=0xd800; lead<0xdc00; ++lead) { |
| uint32_t value; |
| if(trie1->data32==NULL) { |
| value=UTRIE_GET16_FROM_LEAD(trie1, lead); |
| } else { |
| value=UTRIE_GET32_FROM_LEAD(trie1, lead); |
| } |
| if(value!=trie1->initialValue) { |
| utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode); |
| } |
| } |
| if(U_SUCCESS(*pErrorCode)) { |
| utrie2_freeze(context.trie, |
| trie1->data32!=NULL ? UTRIE2_32_VALUE_BITS : UTRIE2_16_VALUE_BITS, |
| pErrorCode); |
| } |
| #ifdef UTRIE2_DEBUG |
| if(U_SUCCESS(*pErrorCode)) { |
| utrie_printLengths(trie1); |
| utrie2_printLengths(context.trie, "fromUTrie"); |
| } |
| #endif |
| if(U_FAILURE(*pErrorCode)) { |
| utrie2_close(context.trie); |
| context.trie=NULL; |
| } |
| return context.trie; |
| } |
| |
| static U_INLINE UBool |
| isInNullBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) { |
| int32_t i2, block; |
| |
| if(U_IS_LEAD(c) && forLSCP) { |
| i2=(UTRIE2_LSCP_INDEX_2_OFFSET-(0xd800>>UTRIE2_SHIFT_2))+ |
| (c>>UTRIE2_SHIFT_2); |
| } else { |
| i2=trie->index1[c>>UTRIE2_SHIFT_1]+ |
| ((c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK); |
| } |
| block=trie->index2[i2]; |
| return (UBool)(block==trie->dataNullOffset); |
| } |
| |
| static int32_t |
| allocIndex2Block(UNewTrie2 *trie) { |
| int32_t newBlock, newTop; |
| |
| newBlock=trie->index2Length; |
| newTop=newBlock+UTRIE2_INDEX_2_BLOCK_LENGTH; |
| if(newTop>LENGTHOF(trie->index2)) { |
| /* |
| * Should never occur. |
| * Either UTRIE2_MAX_BUILD_TIME_INDEX_LENGTH is incorrect, |
| * or the code writes more values than should be possible. |
| */ |
| return -1; |
| } |
| trie->index2Length=newTop; |
| uprv_memcpy(trie->index2+newBlock, trie->index2+trie->index2NullOffset, UTRIE2_INDEX_2_BLOCK_LENGTH*4); |
| return newBlock; |
| } |
| |
| static int32_t |
| getIndex2Block(UNewTrie2 *trie, UChar32 c, UBool forLSCP) { |
| int32_t i1, i2; |
| |
| if(U_IS_LEAD(c) && forLSCP) { |
| return UTRIE2_LSCP_INDEX_2_OFFSET; |
| } |
| |
| i1=c>>UTRIE2_SHIFT_1; |
| i2=trie->index1[i1]; |
| if(i2==trie->index2NullOffset) { |
| i2=allocIndex2Block(trie); |
| if(i2<0) { |
| return -1; /* program error */ |
| } |
| trie->index1[i1]=i2; |
| } |
| return i2; |
| } |
| |
| static int32_t |
| allocDataBlock(UNewTrie2 *trie, int32_t copyBlock) { |
| int32_t newBlock, newTop; |
| |
| if(trie->firstFreeBlock!=0) { |
| /* get the first free block */ |
| newBlock=trie->firstFreeBlock; |
| trie->firstFreeBlock=-trie->map[newBlock>>UTRIE2_SHIFT_2]; |
| } else { |
| /* get a new block from the high end */ |
| newBlock=trie->dataLength; |
| newTop=newBlock+UTRIE2_DATA_BLOCK_LENGTH; |
| if(newTop>trie->dataCapacity) { |
| /* out of memory in the data array */ |
| int32_t capacity; |
| uint32_t *data; |
| |
| if(trie->dataCapacity<UNEWTRIE2_MEDIUM_DATA_LENGTH) { |
| capacity=UNEWTRIE2_MEDIUM_DATA_LENGTH; |
| } else if(trie->dataCapacity<UNEWTRIE2_MAX_DATA_LENGTH) { |
| capacity=UNEWTRIE2_MAX_DATA_LENGTH; |
| } else { |
| /* |
| * Should never occur. |
| * Either UNEWTRIE2_MAX_DATA_LENGTH is incorrect, |
| * or the code writes more values than should be possible. |
| */ |
| return -1; |
| } |
| data=(uint32_t *)uprv_malloc(capacity*4); |
| if(data==NULL) { |
| return -1; |
| } |
| uprv_memcpy(data, trie->data, trie->dataLength*4); |
| uprv_free(trie->data); |
| trie->data=data; |
| trie->dataCapacity=capacity; |
| } |
| trie->dataLength=newTop; |
| } |
| uprv_memcpy(trie->data+newBlock, trie->data+copyBlock, UTRIE2_DATA_BLOCK_LENGTH*4); |
| trie->map[newBlock>>UTRIE2_SHIFT_2]=0; |
| return newBlock; |
| } |
| |
| /* call when the block's reference counter reaches 0 */ |
| static void |
| releaseDataBlock(UNewTrie2 *trie, int32_t block) { |
| /* put this block at the front of the free-block chain */ |
| trie->map[block>>UTRIE2_SHIFT_2]=-trie->firstFreeBlock; |
| trie->firstFreeBlock=block; |
| } |
| |
| static U_INLINE UBool |
| isWritableBlock(UNewTrie2 *trie, int32_t block) { |
| return (UBool)(block!=trie->dataNullOffset && 1==trie->map[block>>UTRIE2_SHIFT_2]); |
| } |
| |
| static U_INLINE void |
| setIndex2Entry(UNewTrie2 *trie, int32_t i2, int32_t block) { |
| int32_t oldBlock; |
| ++trie->map[block>>UTRIE2_SHIFT_2]; /* increment first, in case block==oldBlock! */ |
| oldBlock=trie->index2[i2]; |
| if(0 == --trie->map[oldBlock>>UTRIE2_SHIFT_2]) { |
| releaseDataBlock(trie, oldBlock); |
| } |
| trie->index2[i2]=block; |
| } |
| |
| /** |
| * No error checking for illegal arguments. |
| * |
| * @return -1 if no new data block available (out of memory in data array) |
| * @internal |
| */ |
| static int32_t |
| getDataBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) { |
| int32_t i2, oldBlock, newBlock; |
| |
| i2=getIndex2Block(trie, c, forLSCP); |
| if(i2<0) { |
| return -1; /* program error */ |
| } |
| |
| i2+=(c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK; |
| oldBlock=trie->index2[i2]; |
| if(isWritableBlock(trie, oldBlock)) { |
| return oldBlock; |
| } |
| |
| /* allocate a new data block */ |
| newBlock=allocDataBlock(trie, oldBlock); |
| if(newBlock<0) { |
| /* out of memory in the data array */ |
| return -1; |
| } |
| setIndex2Entry(trie, i2, newBlock); |
| return newBlock; |
| } |
| |
| /** |
| * @return TRUE if the value was successfully set |
| */ |
| static void |
| set32(UNewTrie2 *trie, |
| UChar32 c, UBool forLSCP, uint32_t value, |
| UErrorCode *pErrorCode) { |
| int32_t block; |
| |
| if(trie==NULL || trie->isCompacted) { |
| *pErrorCode=U_NO_WRITE_PERMISSION; |
| return; |
| } |
| |
| block=getDataBlock(trie, c, forLSCP); |
| if(block<0) { |
| *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| |
| trie->data[block+(c&UTRIE2_DATA_MASK)]=value; |
| } |
| |
| U_CAPI void U_EXPORT2 |
| utrie2_set32(UTrie2 *trie, UChar32 c, uint32_t value, UErrorCode *pErrorCode) { |
| if(U_FAILURE(*pErrorCode)) { |
| return; |
| } |
| if((uint32_t)c>0x10ffff) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| set32(trie->newTrie, c, TRUE, value, pErrorCode); |
| } |
| |
| U_CAPI void U_EXPORT2 |
| utrie2_set32ForLeadSurrogateCodeUnit(UTrie2 *trie, |
| UChar32 c, uint32_t value, |
| UErrorCode *pErrorCode) { |
| if(U_FAILURE(*pErrorCode)) { |
| return; |
| } |
| if(!U_IS_LEAD(c)) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| set32(trie->newTrie, c, FALSE, value, pErrorCode); |
| } |
| |
| static void |
| writeBlock(uint32_t *block, uint32_t value) { |
| uint32_t *limit=block+UTRIE2_DATA_BLOCK_LENGTH; |
| while(block<limit) { |
| *block++=value; |
| } |
| } |
| |
| /** |
| * initialValue is ignored if overwrite=TRUE |
| * @internal |
| */ |
| static void |
| fillBlock(uint32_t *block, UChar32 start, UChar32 limit, |
| uint32_t value, uint32_t initialValue, UBool overwrite) { |
| uint32_t *pLimit; |
| |
| pLimit=block+limit; |
| block+=start; |
| if(overwrite) { |
| while(block<pLimit) { |
| *block++=value; |
| } |
| } else { |
| while(block<pLimit) { |
| if(*block==initialValue) { |
| *block=value; |
| } |
| ++block; |
| } |
| } |
| } |
| |
| U_CAPI void U_EXPORT2 |
| utrie2_setRange32(UTrie2 *trie, |
| UChar32 start, UChar32 end, |
| uint32_t value, UBool overwrite, |
| UErrorCode *pErrorCode) { |
| /* |
| * repeat value in [start..end] |
| * mark index values for repeat-data blocks by setting bit 31 of the index values |
| * fill around existing values if any, if(overwrite) |
| */ |
| UNewTrie2 *newTrie; |
| int32_t block, rest, repeatBlock; |
| UChar32 limit; |
| |
| if(U_FAILURE(*pErrorCode)) { |
| return; |
| } |
| if((uint32_t)start>0x10ffff || (uint32_t)end>0x10ffff || start>end) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| newTrie=trie->newTrie; |
| if(newTrie==NULL || newTrie->isCompacted) { |
| *pErrorCode=U_NO_WRITE_PERMISSION; |
| return; |
| } |
| if(!overwrite && value==newTrie->initialValue) { |
| return; /* nothing to do */ |
| } |
| |
| limit=end+1; |
| if(start&UTRIE2_DATA_MASK) { |
| UChar32 nextStart; |
| |
| /* set partial block at [start..following block boundary[ */ |
| block=getDataBlock(newTrie, start, TRUE); |
| if(block<0) { |
| *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| |
| nextStart=(start+UTRIE2_DATA_BLOCK_LENGTH)&~UTRIE2_DATA_MASK; |
| if(nextStart<=limit) { |
| fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, UTRIE2_DATA_BLOCK_LENGTH, |
| value, newTrie->initialValue, overwrite); |
| start=nextStart; |
| } else { |
| fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, limit&UTRIE2_DATA_MASK, |
| value, newTrie->initialValue, overwrite); |
| return; |
| } |
| } |
| |
| /* number of positions in the last, partial block */ |
| rest=limit&UTRIE2_DATA_MASK; |
| |
| /* round down limit to a block boundary */ |
| limit&=~UTRIE2_DATA_MASK; |
| |
| /* iterate over all-value blocks */ |
| if(value==newTrie->initialValue) { |
| repeatBlock=newTrie->dataNullOffset; |
| } else { |
| repeatBlock=-1; |
| } |
| |
| while(start<limit) { |
| int32_t i2; |
| UBool setRepeatBlock=FALSE; |
| |
| if(value==newTrie->initialValue && isInNullBlock(newTrie, start, TRUE)) { |
| start+=UTRIE2_DATA_BLOCK_LENGTH; /* nothing to do */ |
| continue; |
| } |
| |
| /* get index value */ |
| i2=getIndex2Block(newTrie, start, TRUE); |
| if(i2<0) { |
| *pErrorCode=U_INTERNAL_PROGRAM_ERROR; |
| return; |
| } |
| i2+=(start>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK; |
| block=newTrie->index2[i2]; |
| if(isWritableBlock(newTrie, block)) { |
| /* already allocated */ |
| if(overwrite && block>=UNEWTRIE2_DATA_0800_OFFSET) { |
| /* |
| * We overwrite all values, and it's not a |
| * protected (ASCII-linear or 2-byte UTF-8) block: |
| * replace with the repeatBlock. |
| */ |
| setRepeatBlock=TRUE; |
| } else { |
| /* !overwrite, or protected block: just write the values into this block */ |
| fillBlock(newTrie->data+block, |
| 0, UTRIE2_DATA_BLOCK_LENGTH, |
| value, newTrie->initialValue, overwrite); |
| } |
| } else if(newTrie->data[block]!=value && (overwrite || block==newTrie->dataNullOffset)) { |
| /* |
| * Set the repeatBlock instead of the null block or previous repeat block: |
| * |
| * If !isWritableBlock() then all entries in the block have the same value |
| * because it's the null block or a range block (the repeatBlock from a previous |
| * call to utrie2_setRange32()). |
| * No other blocks are used multiple times before compacting. |
| * |
| * The null block is the only non-writable block with the initialValue because |
| * of the repeatBlock initialization above. (If value==initialValue, then |
| * the repeatBlock will be the null data block.) |
| * |
| * We set our repeatBlock if the desired value differs from the block's value, |
| * and if we overwrite any data or if the data is all initial values |
| * (which is the same as the block being the null block, see above). |
| */ |
| setRepeatBlock=TRUE; |
| } |
| if(setRepeatBlock) { |
| if(repeatBlock>=0) { |
| setIndex2Entry(newTrie, i2, repeatBlock); |
| } else { |
| /* create and set and fill the repeatBlock */ |
| repeatBlock=getDataBlock(newTrie, start, TRUE); |
| if(repeatBlock<0) { |
| *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| writeBlock(newTrie->data+repeatBlock, value); |
| } |
| } |
| |
| start+=UTRIE2_DATA_BLOCK_LENGTH; |
| } |
| |
| if(rest>0) { |
| /* set partial block at [last block boundary..limit[ */ |
| block=getDataBlock(newTrie, start, TRUE); |
| if(block<0) { |
| *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| |
| fillBlock(newTrie->data+block, 0, rest, value, newTrie->initialValue, overwrite); |
| } |
| |
| return; |
| } |
| |
| /* compaction --------------------------------------------------------------- */ |
| |
| static U_INLINE UBool |
| equal_int32(const int32_t *s, const int32_t *t, int32_t length) { |
| while(length>0 && *s==*t) { |
| ++s; |
| ++t; |
| --length; |
| } |
| return (UBool)(length==0); |
| } |
| |
| static U_INLINE UBool |
| equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) { |
| while(length>0 && *s==*t) { |
| ++s; |
| ++t; |
| --length; |
| } |
| return (UBool)(length==0); |
| } |
| |
| static int32_t |
| findSameIndex2Block(const int32_t *idx, int32_t index2Length, int32_t otherBlock) { |
| int32_t block; |
| |
| /* ensure that we do not even partially get past index2Length */ |
| index2Length-=UTRIE2_INDEX_2_BLOCK_LENGTH; |
| |
| for(block=0; block<=index2Length; ++block) { |
| if(equal_int32(idx+block, idx+otherBlock, UTRIE2_INDEX_2_BLOCK_LENGTH)) { |
| return block; |
| } |
| } |
| return -1; |
| } |
| |
| static int32_t |
| findSameDataBlock(const uint32_t *data, int32_t dataLength, int32_t otherBlock, int32_t blockLength) { |
| int32_t block; |
| |
| /* ensure that we do not even partially get past dataLength */ |
| dataLength-=blockLength; |
| |
| for(block=0; block<=dataLength; block+=UTRIE2_DATA_GRANULARITY) { |
| if(equal_uint32(data+block, data+otherBlock, blockLength)) { |
| return block; |
| } |
| } |
| return -1; |
| } |
| |
| /* |
| * Find the start of the last range in the trie by enumerating backward. |
| * Indexes for supplementary code points higher than this will be omitted. |
| */ |
| static UChar32 |
| findHighStart(UNewTrie2 *trie, uint32_t highValue) { |
| const uint32_t *data32; |
| |
| uint32_t value, initialValue; |
| UChar32 c, prev; |
| int32_t i1, i2, j, i2Block, prevI2Block, index2NullOffset, block, prevBlock, nullBlock; |
| |
| data32=trie->data; |
| initialValue=trie->initialValue; |
| |
| index2NullOffset=trie->index2NullOffset; |
| nullBlock=trie->dataNullOffset; |
| |
| /* set variables for previous range */ |
| if(highValue==initialValue) { |
| prevI2Block=index2NullOffset; |
| prevBlock=nullBlock; |
| } else { |
| prevI2Block=-1; |
| prevBlock=-1; |
| } |
| prev=0x110000; |
| |
| /* enumerate index-2 blocks */ |
| i1=UNEWTRIE2_INDEX_1_LENGTH; |
| c=prev; |
| while(c>0) { |
| i2Block=trie->index1[--i1]; |
| if(i2Block==prevI2Block) { |
| /* the index-2 block is the same as the previous one, and filled with highValue */ |
| c-=UTRIE2_CP_PER_INDEX_1_ENTRY; |
| continue; |
| } |
| prevI2Block=i2Block; |
| if(i2Block==index2NullOffset) { |
| /* this is the null index-2 block */ |
| if(highValue!=initialValue) { |
| return c; |
| } |
| c-=UTRIE2_CP_PER_INDEX_1_ENTRY; |
| } else { |
| /* enumerate data blocks for one index-2 block */ |
| for(i2=UTRIE2_INDEX_2_BLOCK_LENGTH; i2>0;) { |
| block=trie->index2[i2Block+ --i2]; |
| if(block==prevBlock) { |
| /* the block is the same as the previous one, and filled with highValue */ |
| c-=UTRIE2_DATA_BLOCK_LENGTH; |
| continue; |
| } |
| prevBlock=block; |
| if(block==nullBlock) { |
| /* this is the null data block */ |
| if(highValue!=initialValue) { |
| return c; |
| } |
| c-=UTRIE2_DATA_BLOCK_LENGTH; |
| } else { |
| for(j=UTRIE2_DATA_BLOCK_LENGTH; j>0;) { |
| value=data32[block+ --j]; |
| if(value!=highValue) { |
| return c; |
| } |
| --c; |
| } |
| } |
| } |
| } |
| } |
| |
| /* deliver last range */ |
| return 0; |
| } |
| |
| /* |
| * Compact a build-time trie. |
| * |
| * The compaction |
| * - removes blocks that are identical with earlier ones |
| * - overlaps adjacent blocks as much as possible (if overlap==TRUE) |
| * - moves blocks in steps of the data granularity |
| * - moves and overlaps blocks that overlap with multiple values in the overlap region |
| * |
| * It does not |
| * - try to move and overlap blocks that are not already adjacent |
| */ |
| static void |
| compactData(UNewTrie2 *trie) { |
| int32_t start, newStart, movedStart; |
| int32_t blockLength, overlap; |
| int32_t i, mapIndex, blockCount; |
| |
| /* do not compact linear-ASCII data */ |
| newStart=UTRIE2_DATA_START_OFFSET; |
| for(start=0, i=0; start<newStart; start+=UTRIE2_DATA_BLOCK_LENGTH, ++i) { |
| trie->map[i]=start; |
| } |
| |
| /* |
| * Start with a block length of 64 for 2-byte UTF-8, |
| * then switch to UTRIE2_DATA_BLOCK_LENGTH. |
| */ |
| blockLength=64; |
| blockCount=blockLength>>UTRIE2_SHIFT_2; |
| for(start=newStart; start<trie->dataLength;) { |
| /* |
| * start: index of first entry of current block |
| * newStart: index where the current block is to be moved |
| * (right after current end of already-compacted data) |
| */ |
| if(start==UNEWTRIE2_DATA_0800_OFFSET) { |
| blockLength=UTRIE2_DATA_BLOCK_LENGTH; |
| blockCount=1; |
| } |
| |
| /* skip blocks that are not used */ |
| if(trie->map[start>>UTRIE2_SHIFT_2]<=0) { |
| /* advance start to the next block */ |
| start+=blockLength; |
| |
| /* leave newStart with the previous block! */ |
| continue; |
| } |
| |
| /* search for an identical block */ |
| if( (movedStart=findSameDataBlock(trie->data, newStart, start, blockLength)) |
| >=0 |
| ) { |
| /* found an identical block, set the other block's index value for the current block */ |
| for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) { |
| trie->map[mapIndex++]=movedStart; |
| movedStart+=UTRIE2_DATA_BLOCK_LENGTH; |
| } |
| |
| /* advance start to the next block */ |
| start+=blockLength; |
| |
| /* leave newStart with the previous block! */ |
| continue; |
| } |
| |
| /* see if the beginning of this block can be overlapped with the end of the previous block */ |
| /* look for maximum overlap (modulo granularity) with the previous, adjacent block */ |
| for(overlap=blockLength-UTRIE2_DATA_GRANULARITY; |
| overlap>0 && !equal_uint32(trie->data+(newStart-overlap), trie->data+start, overlap); |
| overlap-=UTRIE2_DATA_GRANULARITY) {} |
| |
| if(overlap>0 || newStart<start) { |
| /* some overlap, or just move the whole block */ |
| movedStart=newStart-overlap; |
| for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) { |
| trie->map[mapIndex++]=movedStart; |
| movedStart+=UTRIE2_DATA_BLOCK_LENGTH; |
| } |
| |
| /* move the non-overlapping indexes to their new positions */ |
| start+=overlap; |
| for(i=blockLength-overlap; i>0; --i) { |
| trie->data[newStart++]=trie->data[start++]; |
| } |
| } else /* no overlap && newStart==start */ { |
| for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) { |
| trie->map[mapIndex++]=start; |
| start+=UTRIE2_DATA_BLOCK_LENGTH; |
| } |
| newStart=start; |
| } |
| } |
| |
| /* now adjust the index-2 table */ |
| for(i=0; i<trie->index2Length; ++i) { |
| if(i==UNEWTRIE2_INDEX_GAP_OFFSET) { |
| /* Gap indexes are invalid (-1). Skip over the gap. */ |
| i+=UNEWTRIE2_INDEX_GAP_LENGTH; |
| } |
| trie->index2[i]=trie->map[trie->index2[i]>>UTRIE2_SHIFT_2]; |
| } |
| trie->dataNullOffset=trie->map[trie->dataNullOffset>>UTRIE2_SHIFT_2]; |
| |
| /* ensure dataLength alignment */ |
| while((newStart&(UTRIE2_DATA_GRANULARITY-1))!=0) { |
| trie->data[newStart++]=trie->initialValue; |
| } |
| |
| #ifdef UTRIE2_DEBUG |
| /* we saved some space */ |
| printf("compacting UTrie2: count of 32-bit data words %lu->%lu\n", |
| (long)trie->dataLength, (long)newStart); |
| #endif |
| |
| trie->dataLength=newStart; |
| } |
| |
| static void |
| compactIndex2(UNewTrie2 *trie) { |
| int32_t i, start, newStart, movedStart, overlap; |
| |
| /* do not compact linear-BMP index-2 blocks */ |
| newStart=UTRIE2_INDEX_2_BMP_LENGTH; |
| for(start=0, i=0; start<newStart; start+=UTRIE2_INDEX_2_BLOCK_LENGTH, ++i) { |
| trie->map[i]=start; |
| } |
| |
| /* Reduce the index table gap to what will be needed at runtime. */ |
| newStart+=UTRIE2_UTF8_2B_INDEX_2_LENGTH+((trie->highStart-0x10000)>>UTRIE2_SHIFT_1); |
| |
| for(start=UNEWTRIE2_INDEX_2_NULL_OFFSET; start<trie->index2Length;) { |
| /* |
| * start: index of first entry of current block |
| * newStart: index where the current block is to be moved |
| * (right after current end of already-compacted data) |
| */ |
| |
| /* search for an identical block */ |
| if( (movedStart=findSameIndex2Block(trie->index2, newStart, start)) |
| >=0 |
| ) { |
| /* found an identical block, set the other block's index value for the current block */ |
| trie->map[start>>UTRIE2_SHIFT_1_2]=movedStart; |
| |
| /* advance start to the next block */ |
| start+=UTRIE2_INDEX_2_BLOCK_LENGTH; |
| |
| /* leave newStart with the previous block! */ |
| continue; |
| } |
| |
| /* see if the beginning of this block can be overlapped with the end of the previous block */ |
| /* look for maximum overlap with the previous, adjacent block */ |
| for(overlap=UTRIE2_INDEX_2_BLOCK_LENGTH-1; |
| overlap>0 && !equal_int32(trie->index2+(newStart-overlap), trie->index2+start, overlap); |
| --overlap) {} |
| |
| if(overlap>0 || newStart<start) { |
| /* some overlap, or just move the whole block */ |
| trie->map[start>>UTRIE2_SHIFT_1_2]=newStart-overlap; |
| |
| /* move the non-overlapping indexes to their new positions */ |
| start+=overlap; |
| for(i=UTRIE2_INDEX_2_BLOCK_LENGTH-overlap; i>0; --i) { |
| trie->index2[newStart++]=trie->index2[start++]; |
| } |
| } else /* no overlap && newStart==start */ { |
| trie->map[start>>UTRIE2_SHIFT_1_2]=start; |
| start+=UTRIE2_INDEX_2_BLOCK_LENGTH; |
| newStart=start; |
| } |
| } |
| |
| /* now adjust the index-1 table */ |
| for(i=0; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) { |
| trie->index1[i]=trie->map[trie->index1[i]>>UTRIE2_SHIFT_1_2]; |
| } |
| trie->index2NullOffset=trie->map[trie->index2NullOffset>>UTRIE2_SHIFT_1_2]; |
| |
| /* |
| * Ensure data table alignment: |
| * Needs to be granularity-aligned for 16-bit trie |
| * (so that dataMove will be down-shiftable), |
| * and 2-aligned for uint32_t data. |
| */ |
| while((newStart&((UTRIE2_DATA_GRANULARITY-1)|1))!=0) { |
| /* Arbitrary value: 0x3fffc not possible for real data. */ |
| trie->index2[newStart++]=(int32_t)0xffff<<UTRIE2_INDEX_SHIFT; |
| } |
| |
| #ifdef UTRIE2_DEBUG |
| /* we saved some space */ |
| printf("compacting UTrie2: count of 16-bit index-2 words %lu->%lu\n", |
| (long)trie->index2Length, (long)newStart); |
| #endif |
| |
| trie->index2Length=newStart; |
| } |
| |
| static void |
| compactTrie(UTrie2 *trie, UErrorCode *pErrorCode) { |
| UNewTrie2 *newTrie; |
| UChar32 highStart, suppHighStart; |
| uint32_t highValue; |
| |
| newTrie=trie->newTrie; |
| |
| /* find highStart and round it up */ |
| highValue=utrie2_get32(trie, 0x10ffff); |
| highStart=findHighStart(newTrie, highValue); |
| highStart=(highStart+(UTRIE2_CP_PER_INDEX_1_ENTRY-1))&~(UTRIE2_CP_PER_INDEX_1_ENTRY-1); |
| if(highStart==0x110000) { |
| highValue=trie->errorValue; |
| } |
| |
| /* |
| * Set trie->highStart only after utrie2_get32(trie, highStart). |
| * Otherwise utrie2_get32(trie, highStart) would try to read the highValue. |
| */ |
| trie->highStart=newTrie->highStart=highStart; |
| |
| #ifdef UTRIE2_DEBUG |
| printf("UTrie2: highStart U+%04lx highValue 0x%lx initialValue 0x%lx\n", |
| (long)highStart, (long)highValue, (long)trie->initialValue); |
| #endif |
| |
| if(highStart<0x110000) { |
| /* Blank out [highStart..10ffff] to release associated data blocks. */ |
| suppHighStart= highStart<=0x10000 ? 0x10000 : highStart; |
| utrie2_setRange32(trie, suppHighStart, 0x10ffff, trie->initialValue, TRUE, pErrorCode); |
| if(U_FAILURE(*pErrorCode)) { |
| return; |
| } |
| } |
| |
| compactData(newTrie); |
| if(highStart>0x10000) { |
| compactIndex2(newTrie); |
| #ifdef UTRIE2_DEBUG |
| } else { |
| printf("UTrie2: highStart U+%04lx count of 16-bit index-2 words %lu->%lu\n", |
| (long)highStart, (long)trie->newTrie->index2Length, (long)UTRIE2_INDEX_1_OFFSET); |
| #endif |
| } |
| |
| /* |
| * Store the highValue in the data array and round up the dataLength. |
| * Must be done after compactData() because that assumes that dataLength |
| * is a multiple of UTRIE2_DATA_BLOCK_LENGTH. |
| */ |
| newTrie->data[newTrie->dataLength++]=highValue; |
| while((newTrie->dataLength&(UTRIE2_DATA_GRANULARITY-1))!=0) { |
| newTrie->data[newTrie->dataLength++]=trie->initialValue; |
| } |
| |
| newTrie->isCompacted=TRUE; |
| } |
| |
| /* serialization ------------------------------------------------------------ */ |
| |
| /** |
| * Maximum length of the runtime index array. |
| * Limited by its own 16-bit index values, and by uint16_t UTrie2Header.indexLength. |
| * (The actual maximum length is lower, |
| * (0x110000>>UTRIE2_SHIFT_2)+UTRIE2_UTF8_2B_INDEX_2_LENGTH+UTRIE2_MAX_INDEX_1_LENGTH.) |
| */ |
| #define UTRIE2_MAX_INDEX_LENGTH 0xffff |
| |
| /** |
| * Maximum length of the runtime data array. |
| * Limited by 16-bit index values that are left-shifted by UTRIE2_INDEX_SHIFT, |
| * and by uint16_t UTrie2Header.shiftedDataLength. |
| */ |
| #define UTRIE2_MAX_DATA_LENGTH (0xffff<<UTRIE2_INDEX_SHIFT) |
| |
| /* Compact and internally serialize the trie. */ |
| U_CAPI void U_EXPORT2 |
| utrie2_freeze(UTrie2 *trie, UTrie2ValueBits valueBits, UErrorCode *pErrorCode) { |
| UNewTrie2 *newTrie; |
| UTrie2Header *header; |
| uint32_t *p; |
| uint16_t *dest16; |
| int32_t i, length; |
| int32_t allIndexesLength; |
| int32_t dataMove; /* >0 if the data is moved to the end of the index array */ |
| UChar32 highStart; |
| |
| /* argument check */ |
| if(U_FAILURE(*pErrorCode)) { |
| return; |
| } |
| if( trie==NULL || |
| valueBits<0 || UTRIE2_COUNT_VALUE_BITS<=valueBits |
| ) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| newTrie=trie->newTrie; |
| if(newTrie==NULL) { |
| /* already frozen */ |
| UTrie2ValueBits frozenValueBits= |
| trie->data16!=NULL ? UTRIE2_16_VALUE_BITS : UTRIE2_32_VALUE_BITS; |
| if(valueBits!=frozenValueBits) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| } |
| return; |
| } |
| |
| /* compact if necessary */ |
| if(!newTrie->isCompacted) { |
| compactTrie(trie, pErrorCode); |
| if(U_FAILURE(*pErrorCode)) { |
| return; |
| } |
| } |
| highStart=trie->highStart; |
| |
| if(highStart<=0x10000) { |
| allIndexesLength=UTRIE2_INDEX_1_OFFSET; |
| } else { |
| allIndexesLength=newTrie->index2Length; |
| } |
| if(valueBits==UTRIE2_16_VALUE_BITS) { |
| dataMove=allIndexesLength; |
| } else { |
| dataMove=0; |
| } |
| |
| /* are indexLength and dataLength within limits? */ |
| if( /* for unshifted indexLength */ |
| allIndexesLength>UTRIE2_MAX_INDEX_LENGTH || |
| /* for unshifted dataNullOffset */ |
| (dataMove+newTrie->dataNullOffset)>0xffff || |
| /* for unshifted 2-byte UTF-8 index-2 values */ |
| (dataMove+UNEWTRIE2_DATA_0800_OFFSET)>0xffff || |
| /* for shiftedDataLength */ |
| (dataMove+newTrie->dataLength)>UTRIE2_MAX_DATA_LENGTH |
| ) { |
| *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| return; |
| } |
| |
| /* calculate the total serialized length */ |
| length=sizeof(UTrie2Header)+allIndexesLength*2; |
| if(valueBits==UTRIE2_16_VALUE_BITS) { |
| length+=newTrie->dataLength*2; |
| } else { |
| length+=newTrie->dataLength*4; |
| } |
| |
| trie->memory=uprv_malloc(length); |
| if(trie->memory==NULL) { |
| *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| trie->length=length; |
| trie->isMemoryOwned=TRUE; |
| |
| trie->indexLength=allIndexesLength; |
| trie->dataLength=newTrie->dataLength; |
| if(highStart<=0x10000) { |
| trie->index2NullOffset=0xffff; |
| } else { |
| trie->index2NullOffset=UTRIE2_INDEX_2_OFFSET+newTrie->index2NullOffset; |
| } |
| trie->dataNullOffset=(uint16_t)(dataMove+newTrie->dataNullOffset); |
| trie->highValueIndex=dataMove+trie->dataLength-UTRIE2_DATA_GRANULARITY; |
| |
| /* set the header fields */ |
| header=(UTrie2Header *)trie->memory; |
| |
| header->signature=UTRIE2_SIG; /* "Tri2" */ |
| header->options=(uint16_t)valueBits; |
| |
| header->indexLength=(uint16_t)trie->indexLength; |
| header->shiftedDataLength=(uint16_t)(trie->dataLength>>UTRIE2_INDEX_SHIFT); |
| header->index2NullOffset=trie->index2NullOffset; |
| header->dataNullOffset=trie->dataNullOffset; |
| header->shiftedHighStart=(uint16_t)(highStart>>UTRIE2_SHIFT_1); |
| |
| /* fill the index and data arrays */ |
| dest16=(uint16_t *)(header+1); |
| trie->index=dest16; |
| |
| /* write the index-2 array values shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove */ |
| p=(uint32_t *)newTrie->index2; |
| for(i=UTRIE2_INDEX_2_BMP_LENGTH; i>0; --i) { |
| *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT); |
| } |
| |
| /* write UTF-8 2-byte index-2 values, not right-shifted */ |
| for(i=0; i<(0xc2-0xc0); ++i) { /* C0..C1 */ |
| *dest16++=(uint16_t)(dataMove+UTRIE2_BAD_UTF8_DATA_OFFSET); |
| } |
| for(; i<(0xe0-0xc0); ++i) { /* C2..DF */ |
| *dest16++=(uint16_t)(dataMove+newTrie->index2[i<<(6-UTRIE2_SHIFT_2)]); |
| } |
| |
| if(highStart>0x10000) { |
| int32_t index1Length=(highStart-0x10000)>>UTRIE2_SHIFT_1; |
| int32_t index2Offset=UTRIE2_INDEX_2_BMP_LENGTH+UTRIE2_UTF8_2B_INDEX_2_LENGTH+index1Length; |
| |
| /* write 16-bit index-1 values for supplementary code points */ |
| p=(uint32_t *)newTrie->index1+UTRIE2_OMITTED_BMP_INDEX_1_LENGTH; |
| for(i=index1Length; i>0; --i) { |
| *dest16++=(uint16_t)(UTRIE2_INDEX_2_OFFSET + *p++); |
| } |
| |
| /* |
| * write the index-2 array values for supplementary code points, |
| * shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove |
| */ |
| p=(uint32_t *)newTrie->index2+index2Offset; |
| for(i=newTrie->index2Length-index2Offset; i>0; --i) { |
| *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT); |
| } |
| } |
| |
| /* write the 16/32-bit data array */ |
| switch(valueBits) { |
| case UTRIE2_16_VALUE_BITS: |
| /* write 16-bit data values */ |
| trie->data16=dest16; |
| trie->data32=NULL; |
| p=newTrie->data; |
| for(i=newTrie->dataLength; i>0; --i) { |
| *dest16++=(uint16_t)*p++; |
| } |
| break; |
| case UTRIE2_32_VALUE_BITS: |
| /* write 32-bit data values */ |
| trie->data16=NULL; |
| trie->data32=(uint32_t *)dest16; |
| uprv_memcpy(dest16, newTrie->data, newTrie->dataLength*4); |
| break; |
| default: |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| |
| /* Delete the UNewTrie2. */ |
| uprv_free(newTrie->data); |
| uprv_free(newTrie); |
| trie->newTrie=NULL; |
| } |
| |
| U_CAPI UBool U_EXPORT2 |
| utrie2_isFrozen(const UTrie2 *trie) { |
| return (UBool)(trie->newTrie==NULL); |
| } |
| |
| U_CAPI int32_t U_EXPORT2 |
| utrie2_serialize(UTrie2 *trie, |
| void *data, int32_t capacity, |
| UErrorCode *pErrorCode) { |
| /* argument check */ |
| if(U_FAILURE(*pErrorCode)) { |
| return 0; |
| } |
| |
| if( trie==NULL || trie->memory==NULL || trie->newTrie!=NULL || |
| capacity<0 || (capacity>0 && (data==NULL || (U_POINTER_MASK_LSB(data, 3)!=0))) |
| ) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return 0; |
| } |
| |
| if(capacity>=trie->length) { |
| uprv_memcpy(data, trie->memory, trie->length); |
| } else { |
| *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| } |
| return trie->length; |
| } |