| /* |
| ******************************************************************************* |
| * Copyright (C) 1997-2010, International Business Machines Corporation and * |
| * others. All Rights Reserved. * |
| ******************************************************************************* |
| * |
| * File GREGOCAL.CPP |
| * |
| * Modification History: |
| * |
| * Date Name Description |
| * 02/05/97 clhuang Creation. |
| * 03/28/97 aliu Made highly questionable fix to computeFields to |
| * handle DST correctly. |
| * 04/22/97 aliu Cleaned up code drastically. Added monthLength(). |
| * Finished unimplemented parts of computeTime() for |
| * week-based date determination. Removed quetionable |
| * fix and wrote correct fix for computeFields() and |
| * daylight time handling. Rewrote inDaylightTime() |
| * and computeFields() to handle sensitive Daylight to |
| * Standard time transitions correctly. |
| * 05/08/97 aliu Added code review changes. Fixed isLeapYear() to |
| * not cutover. |
| * 08/12/97 aliu Added equivalentTo. Misc other fixes. Updated |
| * add() from Java source. |
| * 07/28/98 stephen Sync up with JDK 1.2 |
| * 09/14/98 stephen Changed type of kOneDay, kOneWeek to double. |
| * Fixed bug in roll() |
| * 10/15/99 aliu Fixed j31, incorrect WEEK_OF_YEAR computation. |
| * 10/15/99 aliu Fixed j32, cannot set date to Feb 29 2000 AD. |
| * {JDK bug 4210209 4209272} |
| * 11/15/99 weiv Added YEAR_WOY and DOW_LOCAL computation |
| * to timeToFields method, updated kMinValues, kMaxValues & kLeastMaxValues |
| * 12/09/99 aliu Fixed j81, calculation errors and roll bugs |
| * in year of cutover. |
| * 01/24/2000 aliu Revised computeJulianDay for YEAR YEAR_WOY WOY. |
| ******************************************************************************** |
| */ |
| |
| #include "unicode/utypes.h" |
| #include <float.h> |
| |
| #if !UCONFIG_NO_FORMATTING |
| |
| #include "unicode/gregocal.h" |
| #include "gregoimp.h" |
| #include "umutex.h" |
| #include "uassert.h" |
| |
| // ***************************************************************************** |
| // class GregorianCalendar |
| // ***************************************************************************** |
| |
| /** |
| * Note that the Julian date used here is not a true Julian date, since |
| * it is measured from midnight, not noon. This value is the Julian |
| * day number of January 1, 1970 (Gregorian calendar) at noon UTC. [LIU] |
| */ |
| |
| static const int16_t kNumDays[] |
| = {0,31,59,90,120,151,181,212,243,273,304,334}; // 0-based, for day-in-year |
| static const int16_t kLeapNumDays[] |
| = {0,31,60,91,121,152,182,213,244,274,305,335}; // 0-based, for day-in-year |
| static const int8_t kMonthLength[] |
| = {31,28,31,30,31,30,31,31,30,31,30,31}; // 0-based |
| static const int8_t kLeapMonthLength[] |
| = {31,29,31,30,31,30,31,31,30,31,30,31}; // 0-based |
| |
| // setTimeInMillis() limits the Julian day range to +/-7F000000. |
| // This would seem to limit the year range to: |
| // ms=+183882168921600000 jd=7f000000 December 20, 5828963 AD |
| // ms=-184303902528000000 jd=81000000 September 20, 5838270 BC |
| // HOWEVER, CalendarRegressionTest/Test4167060 shows that the actual |
| // range limit on the year field is smaller (~ +/-140000). [alan 3.0] |
| |
| static const int32_t kGregorianCalendarLimits[UCAL_FIELD_COUNT][4] = { |
| // Minimum Greatest Least Maximum |
| // Minimum Maximum |
| { 0, 0, 1, 1}, // ERA |
| { 1, 1, 140742, 144683}, // YEAR |
| { 0, 0, 11, 11}, // MONTH |
| { 1, 1, 52, 53}, // WEEK_OF_YEAR |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH |
| { 1, 1, 28, 31}, // DAY_OF_MONTH |
| { 1, 1, 365, 366}, // DAY_OF_YEAR |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK |
| { -1, -1, 4, 5}, // DAY_OF_WEEK_IN_MONTH |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET |
| { -140742, -140742, 140742, 144683}, // YEAR_WOY |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL |
| { -140742, -140742, 140742, 144683}, // EXTENDED_YEAR |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY |
| {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH |
| }; |
| |
| /* |
| * <pre> |
| * Greatest Least |
| * Field name Minimum Minimum Maximum Maximum |
| * ---------- ------- ------- ------- ------- |
| * ERA 0 0 1 1 |
| * YEAR 1 1 140742 144683 |
| * MONTH 0 0 11 11 |
| * WEEK_OF_YEAR 1 1 52 53 |
| * WEEK_OF_MONTH 0 0 4 6 |
| * DAY_OF_MONTH 1 1 28 31 |
| * DAY_OF_YEAR 1 1 365 366 |
| * DAY_OF_WEEK 1 1 7 7 |
| * DAY_OF_WEEK_IN_MONTH -1 -1 4 5 |
| * AM_PM 0 0 1 1 |
| * HOUR 0 0 11 11 |
| * HOUR_OF_DAY 0 0 23 23 |
| * MINUTE 0 0 59 59 |
| * SECOND 0 0 59 59 |
| * MILLISECOND 0 0 999 999 |
| * ZONE_OFFSET -12* -12* 12* 12* |
| * DST_OFFSET 0 0 1* 1* |
| * YEAR_WOY 1 1 140742 144683 |
| * DOW_LOCAL 1 1 7 7 |
| * </pre> |
| * (*) In units of one-hour |
| */ |
| |
| #if defined( U_DEBUG_CALSVC ) || defined (U_DEBUG_CAL) |
| #include <stdio.h> |
| #endif |
| |
| U_NAMESPACE_BEGIN |
| |
| UOBJECT_DEFINE_RTTI_IMPLEMENTATION(GregorianCalendar) |
| |
| // 00:00:00 UTC, October 15, 1582, expressed in ms from the epoch. |
| // Note that only Italy and other Catholic countries actually |
| // observed this cutover. Most other countries followed in |
| // the next few centuries, some as late as 1928. [LIU] |
| // in Java, -12219292800000L |
| //const UDate GregorianCalendar::kPapalCutover = -12219292800000L; |
| static const uint32_t kCutoverJulianDay = 2299161; |
| static const UDate kPapalCutover = (2299161.0 - kEpochStartAsJulianDay) * U_MILLIS_PER_DAY; |
| //static const UDate kPapalCutoverJulian = (2299161.0 - kEpochStartAsJulianDay); |
| |
| // ------------------------------------- |
| |
| GregorianCalendar::GregorianCalendar(UErrorCode& status) |
| : Calendar(status), |
| fGregorianCutover(kPapalCutover), |
| fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
| fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| { |
| setTimeInMillis(getNow(), status); |
| } |
| |
| // ------------------------------------- |
| |
| GregorianCalendar::GregorianCalendar(TimeZone* zone, UErrorCode& status) |
| : Calendar(zone, Locale::getDefault(), status), |
| fGregorianCutover(kPapalCutover), |
| fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
| fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| { |
| setTimeInMillis(getNow(), status); |
| } |
| |
| // ------------------------------------- |
| |
| GregorianCalendar::GregorianCalendar(const TimeZone& zone, UErrorCode& status) |
| : Calendar(zone, Locale::getDefault(), status), |
| fGregorianCutover(kPapalCutover), |
| fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
| fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| { |
| setTimeInMillis(getNow(), status); |
| } |
| |
| // ------------------------------------- |
| |
| GregorianCalendar::GregorianCalendar(const Locale& aLocale, UErrorCode& status) |
| : Calendar(TimeZone::createDefault(), aLocale, status), |
| fGregorianCutover(kPapalCutover), |
| fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
| fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| { |
| setTimeInMillis(getNow(), status); |
| } |
| |
| // ------------------------------------- |
| |
| GregorianCalendar::GregorianCalendar(TimeZone* zone, const Locale& aLocale, |
| UErrorCode& status) |
| : Calendar(zone, aLocale, status), |
| fGregorianCutover(kPapalCutover), |
| fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
| fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| { |
| setTimeInMillis(getNow(), status); |
| } |
| |
| // ------------------------------------- |
| |
| GregorianCalendar::GregorianCalendar(const TimeZone& zone, const Locale& aLocale, |
| UErrorCode& status) |
| : Calendar(zone, aLocale, status), |
| fGregorianCutover(kPapalCutover), |
| fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
| fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| { |
| setTimeInMillis(getNow(), status); |
| } |
| |
| // ------------------------------------- |
| |
| GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date, |
| UErrorCode& status) |
| : Calendar(TimeZone::createDefault(), Locale::getDefault(), status), |
| fGregorianCutover(kPapalCutover), |
| fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
| fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| { |
| set(UCAL_ERA, AD); |
| set(UCAL_YEAR, year); |
| set(UCAL_MONTH, month); |
| set(UCAL_DATE, date); |
| } |
| |
| // ------------------------------------- |
| |
| GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date, |
| int32_t hour, int32_t minute, UErrorCode& status) |
| : Calendar(TimeZone::createDefault(), Locale::getDefault(), status), |
| fGregorianCutover(kPapalCutover), |
| fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
| fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| { |
| set(UCAL_ERA, AD); |
| set(UCAL_YEAR, year); |
| set(UCAL_MONTH, month); |
| set(UCAL_DATE, date); |
| set(UCAL_HOUR_OF_DAY, hour); |
| set(UCAL_MINUTE, minute); |
| } |
| |
| // ------------------------------------- |
| |
| GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date, |
| int32_t hour, int32_t minute, int32_t second, |
| UErrorCode& status) |
| : Calendar(TimeZone::createDefault(), Locale::getDefault(), status), |
| fGregorianCutover(kPapalCutover), |
| fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
| fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| { |
| set(UCAL_ERA, AD); |
| set(UCAL_YEAR, year); |
| set(UCAL_MONTH, month); |
| set(UCAL_DATE, date); |
| set(UCAL_HOUR_OF_DAY, hour); |
| set(UCAL_MINUTE, minute); |
| set(UCAL_SECOND, second); |
| } |
| |
| // ------------------------------------- |
| |
| GregorianCalendar::~GregorianCalendar() |
| { |
| } |
| |
| // ------------------------------------- |
| |
| GregorianCalendar::GregorianCalendar(const GregorianCalendar &source) |
| : Calendar(source), |
| fGregorianCutover(source.fGregorianCutover), |
| fCutoverJulianDay(source.fCutoverJulianDay), fNormalizedGregorianCutover(source.fNormalizedGregorianCutover), fGregorianCutoverYear(source.fGregorianCutoverYear), |
| fIsGregorian(source.fIsGregorian), fInvertGregorian(source.fInvertGregorian) |
| { |
| } |
| |
| // ------------------------------------- |
| |
| Calendar* GregorianCalendar::clone() const |
| { |
| return new GregorianCalendar(*this); |
| } |
| |
| // ------------------------------------- |
| |
| GregorianCalendar & |
| GregorianCalendar::operator=(const GregorianCalendar &right) |
| { |
| if (this != &right) |
| { |
| Calendar::operator=(right); |
| fGregorianCutover = right.fGregorianCutover; |
| fNormalizedGregorianCutover = right.fNormalizedGregorianCutover; |
| fGregorianCutoverYear = right.fGregorianCutoverYear; |
| fCutoverJulianDay = right.fCutoverJulianDay; |
| } |
| return *this; |
| } |
| |
| // ------------------------------------- |
| |
| UBool GregorianCalendar::isEquivalentTo(const Calendar& other) const |
| { |
| // Calendar override. |
| return Calendar::isEquivalentTo(other) && |
| fGregorianCutover == ((GregorianCalendar*)&other)->fGregorianCutover; |
| } |
| |
| // ------------------------------------- |
| |
| void |
| GregorianCalendar::setGregorianChange(UDate date, UErrorCode& status) |
| { |
| if (U_FAILURE(status)) |
| return; |
| |
| fGregorianCutover = date; |
| |
| // Precompute two internal variables which we use to do the actual |
| // cutover computations. These are the normalized cutover, which is the |
| // midnight at or before the cutover, and the cutover year. The |
| // normalized cutover is in pure date milliseconds; it contains no time |
| // of day or timezone component, and it used to compare against other |
| // pure date values. |
| int32_t cutoverDay = (int32_t)ClockMath::floorDivide(fGregorianCutover, (double)kOneDay); |
| fNormalizedGregorianCutover = cutoverDay * kOneDay; |
| |
| // Handle the rare case of numeric overflow. If the user specifies a |
| // change of UDate(Long.MIN_VALUE), in order to get a pure Gregorian |
| // calendar, then the epoch day is -106751991168, which when multiplied |
| // by ONE_DAY gives 9223372036794351616 -- the negative value is too |
| // large for 64 bits, and overflows into a positive value. We correct |
| // this by using the next day, which for all intents is semantically |
| // equivalent. |
| if (cutoverDay < 0 && fNormalizedGregorianCutover > 0) { |
| fNormalizedGregorianCutover = (cutoverDay + 1) * kOneDay; |
| } |
| |
| // Normalize the year so BC values are represented as 0 and negative |
| // values. |
| GregorianCalendar *cal = new GregorianCalendar(getTimeZone(), status); |
| /* test for NULL */ |
| if (cal == 0) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| if(U_FAILURE(status)) |
| return; |
| cal->setTime(date, status); |
| fGregorianCutoverYear = cal->get(UCAL_YEAR, status); |
| if (cal->get(UCAL_ERA, status) == BC) |
| fGregorianCutoverYear = 1 - fGregorianCutoverYear; |
| fCutoverJulianDay = cutoverDay; |
| delete cal; |
| } |
| |
| |
| void GregorianCalendar::handleComputeFields(int32_t julianDay, UErrorCode& status) { |
| int32_t eyear, month, dayOfMonth, dayOfYear; |
| |
| |
| if(U_FAILURE(status)) { |
| return; |
| } |
| |
| #if defined (U_DEBUG_CAL) |
| fprintf(stderr, "%s:%d: jd%d- (greg's %d)- [cut=%d]\n", |
| __FILE__, __LINE__, julianDay, getGregorianDayOfYear(), fCutoverJulianDay); |
| #endif |
| |
| |
| if (julianDay >= fCutoverJulianDay) { |
| month = getGregorianMonth(); |
| dayOfMonth = getGregorianDayOfMonth(); |
| dayOfYear = getGregorianDayOfYear(); |
| eyear = getGregorianYear(); |
| } else { |
| // The Julian epoch day (not the same as Julian Day) |
| // is zero on Saturday December 30, 0 (Gregorian). |
| int32_t julianEpochDay = julianDay - (kJan1_1JulianDay - 2); |
| eyear = (int32_t) ClockMath::floorDivide(4*julianEpochDay + 1464, 1461); |
| |
| // Compute the Julian calendar day number for January 1, eyear |
| int32_t january1 = 365*(eyear-1) + ClockMath::floorDivide(eyear-1, (int32_t)4); |
| dayOfYear = (julianEpochDay - january1); // 0-based |
| |
| // Julian leap years occurred historically every 4 years starting |
| // with 8 AD. Before 8 AD the spacing is irregular; every 3 years |
| // from 45 BC to 9 BC, and then none until 8 AD. However, we don't |
| // implement this historical detail; instead, we implement the |
| // computatinally cleaner proleptic calendar, which assumes |
| // consistent 4-year cycles throughout time. |
| UBool isLeap = ((eyear&0x3) == 0); // equiv. to (eyear%4 == 0) |
| |
| // Common Julian/Gregorian calculation |
| int32_t correction = 0; |
| int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1 |
| if (dayOfYear >= march1) { |
| correction = isLeap ? 1 : 2; |
| } |
| month = (12 * (dayOfYear + correction) + 6) / 367; // zero-based month |
| dayOfMonth = dayOfYear - (isLeap?kLeapNumDays[month]:kNumDays[month]) + 1; // one-based DOM |
| ++dayOfYear; |
| #if defined (U_DEBUG_CAL) |
| // fprintf(stderr, "%d - %d[%d] + 1\n", dayOfYear, isLeap?kLeapNumDays[month]:kNumDays[month], month ); |
| // fprintf(stderr, "%s:%d: greg's HCF %d -> %d/%d/%d not %d/%d/%d\n", |
| // __FILE__, __LINE__,julianDay, |
| // eyear,month,dayOfMonth, |
| // getGregorianYear(), getGregorianMonth(), getGregorianDayOfMonth() ); |
| fprintf(stderr, "%s:%d: doy %d (greg's %d)- [cut=%d]\n", |
| __FILE__, __LINE__, dayOfYear, getGregorianDayOfYear(), fCutoverJulianDay); |
| #endif |
| |
| } |
| |
| // [j81] if we are after the cutover in its year, shift the day of the year |
| if((eyear == fGregorianCutoverYear) && (julianDay >= fCutoverJulianDay)) { |
| //from handleComputeMonthStart |
| int32_t gregShift = Grego::gregorianShift(eyear); |
| #if defined (U_DEBUG_CAL) |
| fprintf(stderr, "%s:%d: gregorian shift %d ::: doy%d => %d [cut=%d]\n", |
| __FILE__, __LINE__,gregShift, dayOfYear, dayOfYear+gregShift, fCutoverJulianDay); |
| #endif |
| dayOfYear += gregShift; |
| } |
| |
| internalSet(UCAL_MONTH, month); |
| internalSet(UCAL_DAY_OF_MONTH, dayOfMonth); |
| internalSet(UCAL_DAY_OF_YEAR, dayOfYear); |
| internalSet(UCAL_EXTENDED_YEAR, eyear); |
| int32_t era = AD; |
| if (eyear < 1) { |
| era = BC; |
| eyear = 1 - eyear; |
| } |
| internalSet(UCAL_ERA, era); |
| internalSet(UCAL_YEAR, eyear); |
| } |
| |
| |
| // ------------------------------------- |
| |
| UDate |
| GregorianCalendar::getGregorianChange() const |
| { |
| return fGregorianCutover; |
| } |
| |
| // ------------------------------------- |
| |
| UBool |
| GregorianCalendar::isLeapYear(int32_t year) const |
| { |
| // MSVC complains bitterly if we try to use Grego::isLeapYear here |
| // NOTE: year&0x3 == year%4 |
| return (year >= fGregorianCutoverYear ? |
| (((year&0x3) == 0) && ((year%100 != 0) || (year%400 == 0))) : // Gregorian |
| ((year&0x3) == 0)); // Julian |
| } |
| |
| // ------------------------------------- |
| |
| int32_t GregorianCalendar::handleComputeJulianDay(UCalendarDateFields bestField) |
| { |
| fInvertGregorian = FALSE; |
| |
| int32_t jd = Calendar::handleComputeJulianDay(bestField); |
| |
| if((bestField == UCAL_WEEK_OF_YEAR) && // if we are doing WOY calculations, we are counting relative to Jan 1 *julian* |
| (internalGet(UCAL_EXTENDED_YEAR)==fGregorianCutoverYear) && |
| jd >= fCutoverJulianDay) { |
| fInvertGregorian = TRUE; // So that the Julian Jan 1 will be used in handleComputeMonthStart |
| return Calendar::handleComputeJulianDay(bestField); |
| } |
| |
| |
| // The following check handles portions of the cutover year BEFORE the |
| // cutover itself happens. |
| //if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) { /* cutoverJulianDay)) { */ |
| if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) { /* cutoverJulianDay)) { */ |
| #if defined (U_DEBUG_CAL) |
| fprintf(stderr, "%s:%d: jd [invert] %d\n", |
| __FILE__, __LINE__, jd); |
| #endif |
| fInvertGregorian = TRUE; |
| jd = Calendar::handleComputeJulianDay(bestField); |
| #if defined (U_DEBUG_CAL) |
| fprintf(stderr, "%s:%d: fIsGregorian %s, fInvertGregorian %s - ", |
| __FILE__, __LINE__,fIsGregorian?"T":"F", fInvertGregorian?"T":"F"); |
| fprintf(stderr, " jd NOW %d\n", |
| jd); |
| #endif |
| } else { |
| #if defined (U_DEBUG_CAL) |
| fprintf(stderr, "%s:%d: jd [==] %d - %sfIsGregorian %sfInvertGregorian, %d\n", |
| __FILE__, __LINE__, jd, fIsGregorian?"T":"F", fInvertGregorian?"T":"F", bestField); |
| #endif |
| } |
| |
| if(fIsGregorian && (internalGet(UCAL_EXTENDED_YEAR) == fGregorianCutoverYear)) { |
| int32_t gregShift = Grego::gregorianShift(internalGet(UCAL_EXTENDED_YEAR)); |
| if (bestField == UCAL_DAY_OF_YEAR) { |
| #if defined (U_DEBUG_CAL) |
| fprintf(stderr, "%s:%d: [DOY%d] gregorian shift of JD %d += %d\n", |
| __FILE__, __LINE__, fFields[bestField],jd, gregShift); |
| #endif |
| jd -= gregShift; |
| } else if ( bestField == UCAL_WEEK_OF_MONTH ) { |
| int32_t weekShift = 14; |
| #if defined (U_DEBUG_CAL) |
| fprintf(stderr, "%s:%d: [WOY/WOM] gregorian week shift of %d += %d\n", |
| __FILE__, __LINE__, jd, weekShift); |
| #endif |
| jd += weekShift; // shift by weeks for week based fields. |
| } |
| } |
| |
| return jd; |
| } |
| |
| int32_t GregorianCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, |
| |
| UBool /* useMonth */) const |
| { |
| GregorianCalendar *nonConstThis = (GregorianCalendar*)this; // cast away const |
| |
| // If the month is out of range, adjust it into range, and |
| // modify the extended year value accordingly. |
| if (month < 0 || month > 11) { |
| eyear += ClockMath::floorDivide(month, 12, month); |
| } |
| |
| UBool isLeap = eyear%4 == 0; |
| int32_t y = eyear-1; |
| int32_t julianDay = 365*y + ClockMath::floorDivide(y, 4) + (kJan1_1JulianDay - 3); |
| |
| nonConstThis->fIsGregorian = (eyear >= fGregorianCutoverYear); |
| #if defined (U_DEBUG_CAL) |
| fprintf(stderr, "%s:%d: (hcms%d/%d) fIsGregorian %s, fInvertGregorian %s\n", |
| __FILE__, __LINE__, eyear,month, fIsGregorian?"T":"F", fInvertGregorian?"T":"F"); |
| #endif |
| if (fInvertGregorian) { |
| nonConstThis->fIsGregorian = !fIsGregorian; |
| } |
| if (fIsGregorian) { |
| isLeap = isLeap && ((eyear%100 != 0) || (eyear%400 == 0)); |
| // Add 2 because Gregorian calendar starts 2 days after |
| // Julian calendar |
| int32_t gregShift = Grego::gregorianShift(eyear); |
| #if defined (U_DEBUG_CAL) |
| fprintf(stderr, "%s:%d: (hcms%d/%d) gregorian shift of %d += %d\n", |
| __FILE__, __LINE__, eyear, month, julianDay, gregShift); |
| #endif |
| julianDay += gregShift; |
| } |
| |
| // At this point julianDay indicates the day BEFORE the first |
| // day of January 1, <eyear> of either the Julian or Gregorian |
| // calendar. |
| |
| if (month != 0) { |
| julianDay += isLeap?kLeapNumDays[month]:kNumDays[month]; |
| } |
| |
| return julianDay; |
| } |
| |
| int32_t GregorianCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const |
| { |
| // If the month is out of range, adjust it into range, and |
| // modify the extended year value accordingly. |
| if (month < 0 || month > 11) { |
| extendedYear += ClockMath::floorDivide(month, 12, month); |
| } |
| |
| return isLeapYear(extendedYear) ? kLeapMonthLength[month] : kMonthLength[month]; |
| } |
| |
| int32_t GregorianCalendar::handleGetYearLength(int32_t eyear) const { |
| return isLeapYear(eyear) ? 366 : 365; |
| } |
| |
| |
| int32_t |
| GregorianCalendar::monthLength(int32_t month) const |
| { |
| int32_t year = internalGet(UCAL_EXTENDED_YEAR); |
| return handleGetMonthLength(year, month); |
| } |
| |
| // ------------------------------------- |
| |
| int32_t |
| GregorianCalendar::monthLength(int32_t month, int32_t year) const |
| { |
| return isLeapYear(year) ? kLeapMonthLength[month] : kMonthLength[month]; |
| } |
| |
| // ------------------------------------- |
| |
| int32_t |
| GregorianCalendar::yearLength(int32_t year) const |
| { |
| return isLeapYear(year) ? 366 : 365; |
| } |
| |
| // ------------------------------------- |
| |
| int32_t |
| GregorianCalendar::yearLength() const |
| { |
| return isLeapYear(internalGet(UCAL_YEAR)) ? 366 : 365; |
| } |
| |
| // ------------------------------------- |
| |
| /** |
| * After adjustments such as add(MONTH), add(YEAR), we don't want the |
| * month to jump around. E.g., we don't want Jan 31 + 1 month to go to Mar |
| * 3, we want it to go to Feb 28. Adjustments which might run into this |
| * problem call this method to retain the proper month. |
| */ |
| void |
| GregorianCalendar::pinDayOfMonth() |
| { |
| int32_t monthLen = monthLength(internalGet(UCAL_MONTH)); |
| int32_t dom = internalGet(UCAL_DATE); |
| if(dom > monthLen) |
| set(UCAL_DATE, monthLen); |
| } |
| |
| // ------------------------------------- |
| |
| |
| UBool |
| GregorianCalendar::validateFields() const |
| { |
| for (int32_t field = 0; field < UCAL_FIELD_COUNT; field++) { |
| // Ignore DATE and DAY_OF_YEAR which are handled below |
| if (field != UCAL_DATE && |
| field != UCAL_DAY_OF_YEAR && |
| isSet((UCalendarDateFields)field) && |
| ! boundsCheck(internalGet((UCalendarDateFields)field), (UCalendarDateFields)field)) |
| return FALSE; |
| } |
| |
| // Values differ in Least-Maximum and Maximum should be handled |
| // specially. |
| if (isSet(UCAL_DATE)) { |
| int32_t date = internalGet(UCAL_DATE); |
| if (date < getMinimum(UCAL_DATE) || |
| date > monthLength(internalGet(UCAL_MONTH))) { |
| return FALSE; |
| } |
| } |
| |
| if (isSet(UCAL_DAY_OF_YEAR)) { |
| int32_t days = internalGet(UCAL_DAY_OF_YEAR); |
| if (days < 1 || days > yearLength()) { |
| return FALSE; |
| } |
| } |
| |
| // Handle DAY_OF_WEEK_IN_MONTH, which must not have the value zero. |
| // We've checked against minimum and maximum above already. |
| if (isSet(UCAL_DAY_OF_WEEK_IN_MONTH) && |
| 0 == internalGet(UCAL_DAY_OF_WEEK_IN_MONTH)) { |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| // ------------------------------------- |
| |
| UBool |
| GregorianCalendar::boundsCheck(int32_t value, UCalendarDateFields field) const |
| { |
| return value >= getMinimum(field) && value <= getMaximum(field); |
| } |
| |
| // ------------------------------------- |
| |
| UDate |
| GregorianCalendar::getEpochDay(UErrorCode& status) |
| { |
| complete(status); |
| // Divide by 1000 (convert to seconds) in order to prevent overflow when |
| // dealing with UDate(Long.MIN_VALUE) and UDate(Long.MAX_VALUE). |
| double wallSec = internalGetTime()/1000 + (internalGet(UCAL_ZONE_OFFSET) + internalGet(UCAL_DST_OFFSET))/1000; |
| |
| return ClockMath::floorDivide(wallSec, kOneDay/1000.0); |
| } |
| |
| // ------------------------------------- |
| |
| |
| // ------------------------------------- |
| |
| /** |
| * Compute the julian day number of the day BEFORE the first day of |
| * January 1, year 1 of the given calendar. If julianDay == 0, it |
| * specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian |
| * or Gregorian). |
| */ |
| double GregorianCalendar::computeJulianDayOfYear(UBool isGregorian, |
| int32_t year, UBool& isLeap) |
| { |
| isLeap = year%4 == 0; |
| int32_t y = year - 1; |
| double julianDay = 365.0*y + ClockMath::floorDivide(y, 4) + (kJan1_1JulianDay - 3); |
| |
| if (isGregorian) { |
| isLeap = isLeap && ((year%100 != 0) || (year%400 == 0)); |
| // Add 2 because Gregorian calendar starts 2 days after Julian calendar |
| julianDay += Grego::gregorianShift(year); |
| } |
| |
| return julianDay; |
| } |
| |
| // /** |
| // * Compute the day of week, relative to the first day of week, from |
| // * 0..6, of the current DOW_LOCAL or DAY_OF_WEEK fields. This is |
| // * equivalent to get(DOW_LOCAL) - 1. |
| // */ |
| // int32_t GregorianCalendar::computeRelativeDOW() const { |
| // int32_t relDow = 0; |
| // if (fStamp[UCAL_DOW_LOCAL] > fStamp[UCAL_DAY_OF_WEEK]) { |
| // relDow = internalGet(UCAL_DOW_LOCAL) - 1; // 1-based |
| // } else if (fStamp[UCAL_DAY_OF_WEEK] != kUnset) { |
| // relDow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek(); |
| // if (relDow < 0) relDow += 7; |
| // } |
| // return relDow; |
| // } |
| |
| // /** |
| // * Compute the day of week, relative to the first day of week, |
| // * from 0..6 of the given julian day. |
| // */ |
| // int32_t GregorianCalendar::computeRelativeDOW(double julianDay) const { |
| // int32_t relDow = julianDayToDayOfWeek(julianDay) - getFirstDayOfWeek(); |
| // if (relDow < 0) { |
| // relDow += 7; |
| // } |
| // return relDow; |
| // } |
| |
| // /** |
| // * Compute the DOY using the WEEK_OF_YEAR field and the julian day |
| // * of the day BEFORE January 1 of a year (a return value from |
| // * computeJulianDayOfYear). |
| // */ |
| // int32_t GregorianCalendar::computeDOYfromWOY(double julianDayOfYear) const { |
| // // Compute DOY from day of week plus week of year |
| |
| // // Find the day of the week for the first of this year. This |
| // // is zero-based, with 0 being the locale-specific first day of |
| // // the week. Add 1 to get first day of year. |
| // int32_t fdy = computeRelativeDOW(julianDayOfYear + 1); |
| |
| // return |
| // // Compute doy of first (relative) DOW of WOY 1 |
| // (((7 - fdy) < getMinimalDaysInFirstWeek()) |
| // ? (8 - fdy) : (1 - fdy)) |
| |
| // // Adjust for the week number. |
| // + (7 * (internalGet(UCAL_WEEK_OF_YEAR) - 1)) |
| |
| // // Adjust for the DOW |
| // + computeRelativeDOW(); |
| // } |
| |
| // ------------------------------------- |
| |
| double |
| GregorianCalendar::millisToJulianDay(UDate millis) |
| { |
| return (double)kEpochStartAsJulianDay + ClockMath::floorDivide(millis, (double)kOneDay); |
| } |
| |
| // ------------------------------------- |
| |
| UDate |
| GregorianCalendar::julianDayToMillis(double julian) |
| { |
| return (UDate) ((julian - kEpochStartAsJulianDay) * (double) kOneDay); |
| } |
| |
| // ------------------------------------- |
| |
| int32_t |
| GregorianCalendar::aggregateStamp(int32_t stamp_a, int32_t stamp_b) |
| { |
| return (((stamp_a != kUnset && stamp_b != kUnset) |
| ? uprv_max(stamp_a, stamp_b) |
| : (int32_t)kUnset)); |
| } |
| |
| // ------------------------------------- |
| |
| /** |
| * Roll a field by a signed amount. |
| * Note: This will be made public later. [LIU] |
| */ |
| |
| void |
| GregorianCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) { |
| roll((UCalendarDateFields) field, amount, status); |
| } |
| |
| void |
| GregorianCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) |
| { |
| if((amount == 0) || U_FAILURE(status)) { |
| return; |
| } |
| |
| // J81 processing. (gregorian cutover) |
| UBool inCutoverMonth = FALSE; |
| int32_t cMonthLen=0; // 'c' for cutover; in days |
| int32_t cDayOfMonth=0; // no discontinuity: [0, cMonthLen) |
| double cMonthStart=0.0; // in ms |
| |
| // Common code - see if we're in the cutover month of the cutover year |
| if(get(UCAL_EXTENDED_YEAR, status) == fGregorianCutoverYear) { |
| switch (field) { |
| case UCAL_DAY_OF_MONTH: |
| case UCAL_WEEK_OF_MONTH: |
| { |
| int32_t max = monthLength(internalGet(UCAL_MONTH)); |
| UDate t = internalGetTime(); |
| // We subtract 1 from the DAY_OF_MONTH to make it zero-based, and an |
| // additional 10 if we are after the cutover. Thus the monthStart |
| // value will be correct iff we actually are in the cutover month. |
| cDayOfMonth = internalGet(UCAL_DAY_OF_MONTH) - ((t >= fGregorianCutover) ? 10 : 0); |
| cMonthStart = t - ((cDayOfMonth - 1) * kOneDay); |
| // A month containing the cutover is 10 days shorter. |
| if ((cMonthStart < fGregorianCutover) && |
| (cMonthStart + (cMonthLen=(max-10))*kOneDay >= fGregorianCutover)) { |
| inCutoverMonth = TRUE; |
| } |
| } |
| default: |
| ; |
| } |
| } |
| |
| switch (field) { |
| case UCAL_WEEK_OF_YEAR: { |
| // Unlike WEEK_OF_MONTH, WEEK_OF_YEAR never shifts the day of the |
| // week. Also, rolling the week of the year can have seemingly |
| // strange effects simply because the year of the week of year |
| // may be different from the calendar year. For example, the |
| // date Dec 28, 1997 is the first day of week 1 of 1998 (if |
| // weeks start on Sunday and the minimal days in first week is |
| // <= 3). |
| int32_t woy = get(UCAL_WEEK_OF_YEAR, status); |
| // Get the ISO year, which matches the week of year. This |
| // may be one year before or after the calendar year. |
| int32_t isoYear = get(UCAL_YEAR_WOY, status); |
| int32_t isoDoy = internalGet(UCAL_DAY_OF_YEAR); |
| if (internalGet(UCAL_MONTH) == UCAL_JANUARY) { |
| if (woy >= 52) { |
| isoDoy += handleGetYearLength(isoYear); |
| } |
| } else { |
| if (woy == 1) { |
| isoDoy -= handleGetYearLength(isoYear - 1); |
| } |
| } |
| woy += amount; |
| // Do fast checks to avoid unnecessary computation: |
| if (woy < 1 || woy > 52) { |
| // Determine the last week of the ISO year. |
| // We do this using the standard formula we use |
| // everywhere in this file. If we can see that the |
| // days at the end of the year are going to fall into |
| // week 1 of the next year, we drop the last week by |
| // subtracting 7 from the last day of the year. |
| int32_t lastDoy = handleGetYearLength(isoYear); |
| int32_t lastRelDow = (lastDoy - isoDoy + internalGet(UCAL_DAY_OF_WEEK) - |
| getFirstDayOfWeek()) % 7; |
| if (lastRelDow < 0) lastRelDow += 7; |
| if ((6 - lastRelDow) >= getMinimalDaysInFirstWeek()) lastDoy -= 7; |
| int32_t lastWoy = weekNumber(lastDoy, lastRelDow + 1); |
| woy = ((woy + lastWoy - 1) % lastWoy) + 1; |
| } |
| set(UCAL_WEEK_OF_YEAR, woy); |
| set(UCAL_YEAR_WOY,isoYear); |
| return; |
| } |
| |
| case UCAL_DAY_OF_MONTH: |
| if( !inCutoverMonth ) { |
| Calendar::roll(field, amount, status); |
| return; |
| } else { |
| // [j81] 1582 special case for DOM |
| // The default computation works except when the current month |
| // contains the Gregorian cutover. We handle this special case |
| // here. [j81 - aliu] |
| double monthLen = cMonthLen * kOneDay; |
| double msIntoMonth = uprv_fmod(internalGetTime() - cMonthStart + |
| amount * kOneDay, monthLen); |
| if (msIntoMonth < 0) { |
| msIntoMonth += monthLen; |
| } |
| #if defined (U_DEBUG_CAL) |
| fprintf(stderr, "%s:%d: roll DOM %d -> %.0lf ms \n", |
| __FILE__, __LINE__,amount, cMonthLen, cMonthStart+msIntoMonth); |
| #endif |
| setTimeInMillis(cMonthStart + msIntoMonth, status); |
| return; |
| } |
| |
| case UCAL_WEEK_OF_MONTH: |
| if( !inCutoverMonth ) { |
| Calendar::roll(field, amount, status); |
| return; |
| } else { |
| #if defined (U_DEBUG_CAL) |
| fprintf(stderr, "%s:%d: roll WOM %d ??????????????????? \n", |
| __FILE__, __LINE__,amount); |
| #endif |
| // NOTE: following copied from the old |
| // GregorianCalendar::roll( WEEK_OF_MONTH ) code |
| |
| // This is tricky, because during the roll we may have to shift |
| // to a different day of the week. For example: |
| |
| // s m t w r f s |
| // 1 2 3 4 5 |
| // 6 7 8 9 10 11 12 |
| |
| // When rolling from the 6th or 7th back one week, we go to the |
| // 1st (assuming that the first partial week counts). The same |
| // thing happens at the end of the month. |
| |
| // The other tricky thing is that we have to figure out whether |
| // the first partial week actually counts or not, based on the |
| // minimal first days in the week. And we have to use the |
| // correct first day of the week to delineate the week |
| // boundaries. |
| |
| // Here's our algorithm. First, we find the real boundaries of |
| // the month. Then we discard the first partial week if it |
| // doesn't count in this locale. Then we fill in the ends with |
| // phantom days, so that the first partial week and the last |
| // partial week are full weeks. We then have a nice square |
| // block of weeks. We do the usual rolling within this block, |
| // as is done elsewhere in this method. If we wind up on one of |
| // the phantom days that we added, we recognize this and pin to |
| // the first or the last day of the month. Easy, eh? |
| |
| // Another wrinkle: To fix jitterbug 81, we have to make all this |
| // work in the oddball month containing the Gregorian cutover. |
| // This month is 10 days shorter than usual, and also contains |
| // a discontinuity in the days; e.g., the default cutover month |
| // is Oct 1582, and goes from day of month 4 to day of month 15. |
| |
| // Normalize the DAY_OF_WEEK so that 0 is the first day of the week |
| // in this locale. We have dow in 0..6. |
| int32_t dow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek(); |
| if (dow < 0) |
| dow += 7; |
| |
| // Find the day of month, compensating for cutover discontinuity. |
| int32_t dom = cDayOfMonth; |
| |
| // Find the day of the week (normalized for locale) for the first |
| // of the month. |
| int32_t fdm = (dow - dom + 1) % 7; |
| if (fdm < 0) |
| fdm += 7; |
| |
| // Get the first day of the first full week of the month, |
| // including phantom days, if any. Figure out if the first week |
| // counts or not; if it counts, then fill in phantom days. If |
| // not, advance to the first real full week (skip the partial week). |
| int32_t start; |
| if ((7 - fdm) < getMinimalDaysInFirstWeek()) |
| start = 8 - fdm; // Skip the first partial week |
| else |
| start = 1 - fdm; // This may be zero or negative |
| |
| // Get the day of the week (normalized for locale) for the last |
| // day of the month. |
| int32_t monthLen = cMonthLen; |
| int32_t ldm = (monthLen - dom + dow) % 7; |
| // We know monthLen >= DAY_OF_MONTH so we skip the += 7 step here. |
| |
| // Get the limit day for the blocked-off rectangular month; that |
| // is, the day which is one past the last day of the month, |
| // after the month has already been filled in with phantom days |
| // to fill out the last week. This day has a normalized DOW of 0. |
| int32_t limit = monthLen + 7 - ldm; |
| |
| // Now roll between start and (limit - 1). |
| int32_t gap = limit - start; |
| int32_t newDom = (dom + amount*7 - start) % gap; |
| if (newDom < 0) |
| newDom += gap; |
| newDom += start; |
| |
| // Finally, pin to the real start and end of the month. |
| if (newDom < 1) |
| newDom = 1; |
| if (newDom > monthLen) |
| newDom = monthLen; |
| |
| // Set the DAY_OF_MONTH. We rely on the fact that this field |
| // takes precedence over everything else (since all other fields |
| // are also set at this point). If this fact changes (if the |
| // disambiguation algorithm changes) then we will have to unset |
| // the appropriate fields here so that DAY_OF_MONTH is attended |
| // to. |
| |
| // If we are in the cutover month, manipulate ms directly. Don't do |
| // this in general because it doesn't work across DST boundaries |
| // (details, details). This takes care of the discontinuity. |
| setTimeInMillis(cMonthStart + (newDom-1)*kOneDay, status); |
| return; |
| } |
| |
| default: |
| Calendar::roll(field, amount, status); |
| return; |
| } |
| } |
| |
| // ------------------------------------- |
| |
| |
| /** |
| * Return the minimum value that this field could have, given the current date. |
| * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum(). |
| * @param field the time field. |
| * @return the minimum value that this field could have, given the current date. |
| * @deprecated ICU 2.6. Use getActualMinimum(UCalendarDateFields field) instead. |
| */ |
| int32_t GregorianCalendar::getActualMinimum(EDateFields field) const |
| { |
| return getMinimum((UCalendarDateFields)field); |
| } |
| |
| int32_t GregorianCalendar::getActualMinimum(EDateFields field, UErrorCode& /* status */) const |
| { |
| return getMinimum((UCalendarDateFields)field); |
| } |
| |
| /** |
| * Return the minimum value that this field could have, given the current date. |
| * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum(). |
| * @param field the time field. |
| * @return the minimum value that this field could have, given the current date. |
| * @draft ICU 2.6. |
| */ |
| int32_t GregorianCalendar::getActualMinimum(UCalendarDateFields field, UErrorCode& /* status */) const |
| { |
| return getMinimum(field); |
| } |
| |
| |
| // ------------------------------------ |
| |
| /** |
| * Old year limits were least max 292269054, max 292278994. |
| */ |
| |
| /** |
| * @stable ICU 2.0 |
| */ |
| int32_t GregorianCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const { |
| return kGregorianCalendarLimits[field][limitType]; |
| } |
| |
| /** |
| * Return the maximum value that this field could have, given the current date. |
| * For example, with the date "Feb 3, 1997" and the DAY_OF_MONTH field, the actual |
| * maximum would be 28; for "Feb 3, 1996" it s 29. Similarly for a Hebrew calendar, |
| * for some years the actual maximum for MONTH is 12, and for others 13. |
| * @stable ICU 2.0 |
| */ |
| int32_t GregorianCalendar::getActualMaximum(UCalendarDateFields field, UErrorCode& status) const |
| { |
| /* It is a known limitation that the code here (and in getActualMinimum) |
| * won't behave properly at the extreme limits of GregorianCalendar's |
| * representable range (except for the code that handles the YEAR |
| * field). That's because the ends of the representable range are at |
| * odd spots in the year. For calendars with the default Gregorian |
| * cutover, these limits are Sun Dec 02 16:47:04 GMT 292269055 BC to Sun |
| * Aug 17 07:12:55 GMT 292278994 AD, somewhat different for non-GMT |
| * zones. As a result, if the calendar is set to Aug 1 292278994 AD, |
| * the actual maximum of DAY_OF_MONTH is 17, not 30. If the date is Mar |
| * 31 in that year, the actual maximum month might be Jul, whereas is |
| * the date is Mar 15, the actual maximum might be Aug -- depending on |
| * the precise semantics that are desired. Similar considerations |
| * affect all fields. Nonetheless, this effect is sufficiently arcane |
| * that we permit it, rather than complicating the code to handle such |
| * intricacies. - liu 8/20/98 |
| |
| * UPDATE: No longer true, since we have pulled in the limit values on |
| * the year. - Liu 11/6/00 */ |
| |
| switch (field) { |
| |
| case UCAL_YEAR: |
| /* The year computation is no different, in principle, from the |
| * others, however, the range of possible maxima is large. In |
| * addition, the way we know we've exceeded the range is different. |
| * For these reasons, we use the special case code below to handle |
| * this field. |
| * |
| * The actual maxima for YEAR depend on the type of calendar: |
| * |
| * Gregorian = May 17, 292275056 BC - Aug 17, 292278994 AD |
| * Julian = Dec 2, 292269055 BC - Jan 3, 292272993 AD |
| * Hybrid = Dec 2, 292269055 BC - Aug 17, 292278994 AD |
| * |
| * We know we've exceeded the maximum when either the month, date, |
| * time, or era changes in response to setting the year. We don't |
| * check for month, date, and time here because the year and era are |
| * sufficient to detect an invalid year setting. NOTE: If code is |
| * added to check the month and date in the future for some reason, |
| * Feb 29 must be allowed to shift to Mar 1 when setting the year. |
| */ |
| { |
| if(U_FAILURE(status)) return 0; |
| Calendar *cal = clone(); |
| if(!cal) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return 0; |
| } |
| |
| cal->setLenient(TRUE); |
| |
| int32_t era = cal->get(UCAL_ERA, status); |
| UDate d = cal->getTime(status); |
| |
| /* Perform a binary search, with the invariant that lowGood is a |
| * valid year, and highBad is an out of range year. |
| */ |
| int32_t lowGood = kGregorianCalendarLimits[UCAL_YEAR][1]; |
| int32_t highBad = kGregorianCalendarLimits[UCAL_YEAR][2]+1; |
| while ((lowGood + 1) < highBad) { |
| int32_t y = (lowGood + highBad) / 2; |
| cal->set(UCAL_YEAR, y); |
| if (cal->get(UCAL_YEAR, status) == y && cal->get(UCAL_ERA, status) == era) { |
| lowGood = y; |
| } else { |
| highBad = y; |
| cal->setTime(d, status); // Restore original fields |
| } |
| } |
| |
| delete cal; |
| return lowGood; |
| } |
| |
| default: |
| return Calendar::getActualMaximum(field,status); |
| } |
| } |
| |
| |
| int32_t GregorianCalendar::handleGetExtendedYear() { |
| // the year to return |
| int32_t year = kEpochYear; |
| |
| // year field to use |
| int32_t yearField = UCAL_EXTENDED_YEAR; |
| |
| // There are three separate fields which could be used to |
| // derive the proper year. Use the one most recently set. |
| if (fStamp[yearField] < fStamp[UCAL_YEAR]) |
| yearField = UCAL_YEAR; |
| if (fStamp[yearField] < fStamp[UCAL_YEAR_WOY]) |
| yearField = UCAL_YEAR_WOY; |
| |
| // based on the "best" year field, get the year |
| switch(yearField) { |
| case UCAL_EXTENDED_YEAR: |
| year = internalGet(UCAL_EXTENDED_YEAR, kEpochYear); |
| break; |
| |
| case UCAL_YEAR: |
| { |
| // The year defaults to the epoch start, the era to AD |
| int32_t era = internalGet(UCAL_ERA, AD); |
| if (era == BC) { |
| year = 1 - internalGet(UCAL_YEAR, 1); // Convert to extended year |
| } else { |
| year = internalGet(UCAL_YEAR, kEpochYear); |
| } |
| } |
| break; |
| |
| case UCAL_YEAR_WOY: |
| year = handleGetExtendedYearFromWeekFields(internalGet(UCAL_YEAR_WOY), internalGet(UCAL_WEEK_OF_YEAR)); |
| #if defined (U_DEBUG_CAL) |
| // if(internalGet(UCAL_YEAR_WOY) != year) { |
| fprintf(stderr, "%s:%d: hGEYFWF[%d,%d] -> %d\n", |
| __FILE__, __LINE__,internalGet(UCAL_YEAR_WOY),internalGet(UCAL_WEEK_OF_YEAR),year); |
| //} |
| #endif |
| break; |
| |
| default: |
| year = kEpochYear; |
| } |
| return year; |
| } |
| |
| int32_t GregorianCalendar::handleGetExtendedYearFromWeekFields(int32_t yearWoy, int32_t woy) |
| { |
| // convert year to extended form |
| int32_t era = internalGet(UCAL_ERA, AD); |
| if(era == BC) { |
| yearWoy = 1 - yearWoy; |
| } |
| return Calendar::handleGetExtendedYearFromWeekFields(yearWoy, woy); |
| } |
| |
| |
| // ------------------------------------- |
| |
| UBool |
| GregorianCalendar::inDaylightTime(UErrorCode& status) const |
| { |
| if (U_FAILURE(status) || !getTimeZone().useDaylightTime()) |
| return FALSE; |
| |
| // Force an update of the state of the Calendar. |
| ((GregorianCalendar*)this)->complete(status); // cast away const |
| |
| return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE); |
| } |
| |
| // ------------------------------------- |
| |
| /** |
| * Return the ERA. We need a special method for this because the |
| * default ERA is AD, but a zero (unset) ERA is BC. |
| */ |
| int32_t |
| GregorianCalendar::internalGetEra() const { |
| return isSet(UCAL_ERA) ? internalGet(UCAL_ERA) : (int32_t)AD; |
| } |
| |
| const char * |
| GregorianCalendar::getType() const { |
| //static const char kGregorianType = "gregorian"; |
| |
| return "gregorian"; |
| } |
| |
| const UDate GregorianCalendar::fgSystemDefaultCentury = DBL_MIN; |
| const int32_t GregorianCalendar::fgSystemDefaultCenturyYear = -1; |
| |
| UDate GregorianCalendar::fgSystemDefaultCenturyStart = DBL_MIN; |
| int32_t GregorianCalendar::fgSystemDefaultCenturyStartYear = -1; |
| |
| |
| UBool GregorianCalendar::haveDefaultCentury() const |
| { |
| return TRUE; |
| } |
| |
| UDate GregorianCalendar::defaultCenturyStart() const |
| { |
| return internalGetDefaultCenturyStart(); |
| } |
| |
| int32_t GregorianCalendar::defaultCenturyStartYear() const |
| { |
| return internalGetDefaultCenturyStartYear(); |
| } |
| |
| UDate |
| GregorianCalendar::internalGetDefaultCenturyStart() const |
| { |
| // lazy-evaluate systemDefaultCenturyStart |
| UBool needsUpdate; |
| UMTX_CHECK(NULL, (fgSystemDefaultCenturyStart == fgSystemDefaultCentury), needsUpdate); |
| |
| if (needsUpdate) { |
| initializeSystemDefaultCentury(); |
| } |
| |
| // use defaultCenturyStart unless it's the flag value; |
| // then use systemDefaultCenturyStart |
| |
| return fgSystemDefaultCenturyStart; |
| } |
| |
| int32_t |
| GregorianCalendar::internalGetDefaultCenturyStartYear() const |
| { |
| // lazy-evaluate systemDefaultCenturyStartYear |
| UBool needsUpdate; |
| UMTX_CHECK(NULL, (fgSystemDefaultCenturyStart == fgSystemDefaultCentury), needsUpdate); |
| |
| if (needsUpdate) { |
| initializeSystemDefaultCentury(); |
| } |
| |
| // use defaultCenturyStart unless it's the flag value; |
| // then use systemDefaultCenturyStartYear |
| |
| return fgSystemDefaultCenturyStartYear; |
| } |
| |
| void |
| GregorianCalendar::initializeSystemDefaultCentury() |
| { |
| // initialize systemDefaultCentury and systemDefaultCenturyYear based |
| // on the current time. They'll be set to 80 years before |
| // the current time. |
| UErrorCode status = U_ZERO_ERROR; |
| Calendar *calendar = new GregorianCalendar(status); |
| if (calendar != NULL && U_SUCCESS(status)) |
| { |
| calendar->setTime(Calendar::getNow(), status); |
| calendar->add(UCAL_YEAR, -80, status); |
| |
| UDate newStart = calendar->getTime(status); |
| int32_t newYear = calendar->get(UCAL_YEAR, status); |
| umtx_lock(NULL); |
| if (fgSystemDefaultCenturyStart == fgSystemDefaultCentury) |
| { |
| fgSystemDefaultCenturyStartYear = newYear; |
| fgSystemDefaultCenturyStart = newStart; |
| } |
| umtx_unlock(NULL); |
| delete calendar; |
| } |
| // We have no recourse upon failure unless we want to propagate the failure |
| // out. |
| } |
| |
| |
| U_NAMESPACE_END |
| |
| #endif /* #if !UCONFIG_NO_FORMATTING */ |
| |
| //eof |