blob: 6c9384535ccac239b07e995a89a04db83b5cf6c1 [file] [log] [blame]
/*
* Copyright (C) 2014 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <asm/arch/clock.h>
#include <asm/arch/iomux.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/mx6-pins.h>
#include <asm/arch/sys_proto.h>
#include <asm/gpio.h>
#include <asm/imx-common/iomux-v3.h>
#include <asm/imx-common/boot_mode.h>
#include <asm/io.h>
#include <linux/sizes.h>
#include <common.h>
#include <fsl_esdhc.h>
#include <mmc.h>
#include <miiphy.h>
#include <netdev.h>
#include <asm/arch/crm_regs.h>
#ifdef CONFIG_SYS_I2C_MXC
#include <i2c.h>
#include <asm/imx-common/mxc_i2c.h>
#endif
#ifdef CONFIG_MXC_RDC
#include <asm/imx-common/rdc-sema.h>
#include <asm/arch/imx-rdc.h>
#endif
#ifdef CONFIG_VIDEO_MXS
#include <linux/fb.h>
#include <mxsfb.h>
#endif
#ifdef CONFIG_MAX7310_IOEXP
#include <gpio_exp.h>
#endif
#ifdef CONFIG_FASTBOOT
#include <fastboot.h>
#ifdef CONFIG_ANDROID_RECOVERY
#include <recovery.h>
#endif
#endif /*CONFIG_FASTBOOT*/
DECLARE_GLOBAL_DATA_PTR;
#define UART_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS)
#define USDHC_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_22K_UP | PAD_CTL_SPEED_LOW | \
PAD_CTL_DSE_80ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS)
#define ENET_PAD_CTRL (PAD_CTL_PUS_100K_UP | PAD_CTL_PUE | \
PAD_CTL_SPEED_HIGH | \
PAD_CTL_DSE_48ohm | PAD_CTL_SRE_FAST)
#define ENET_CLK_PAD_CTRL (PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_120ohm | PAD_CTL_SRE_FAST)
#define ENET_RX_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_SPEED_HIGH | PAD_CTL_SRE_FAST)
#define I2C_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_HYS | \
PAD_CTL_ODE | PAD_CTL_SRE_FAST)
#define LCD_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_PUS_100K_UP | PAD_CTL_PUE | \
PAD_CTL_PKE | PAD_CTL_SPEED_MED | PAD_CTL_DSE_40ohm)
#define BUTTON_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_22K_UP | PAD_CTL_DSE_40ohm)
#define GPMI_PAD_CTRL0 (PAD_CTL_PKE | PAD_CTL_PUE | PAD_CTL_PUS_100K_UP)
#define GPMI_PAD_CTRL1 (PAD_CTL_DSE_40ohm | PAD_CTL_SPEED_MED | \
PAD_CTL_SRE_FAST)
#define GPMI_PAD_CTRL2 (GPMI_PAD_CTRL0 | GPMI_PAD_CTRL1)
#ifdef CONFIG_SYS_I2C_MXC
#define PC MUX_PAD_CTRL(I2C_PAD_CTRL)
/* I2C2 for PMIC */
struct i2c_pads_info i2c_pad_info2 = {
.scl = {
.i2c_mode = MX6SX_PAD_GPIO1_IO02__I2C2_SCL | PC,
.gpio_mode = MX6SX_PAD_GPIO1_IO02__GPIO1_IO_2 | PC,
.gp = IMX_GPIO_NR(1, 2),
},
.sda = {
.i2c_mode = MX6SX_PAD_GPIO1_IO03__I2C2_SDA | PC,
.gpio_mode = MX6SX_PAD_GPIO1_IO03__GPIO1_IO_3 | PC,
.gp = IMX_GPIO_NR(1, 3),
},
};
/* I2C3 */
struct i2c_pads_info i2c_pad_info3 = {
.scl = {
.i2c_mode = MX6SX_PAD_KEY_COL4__I2C3_SCL | PC,
.gpio_mode = MX6SX_PAD_KEY_COL4__GPIO2_IO_14 | PC,
.gp = IMX_GPIO_NR(2, 14),
},
.sda = {
.i2c_mode = MX6SX_PAD_KEY_ROW4__I2C3_SDA | PC,
.gpio_mode = MX6SX_PAD_KEY_ROW4__GPIO2_IO_19 | PC,
.gp = IMX_GPIO_NR(2, 19),
},
};
#endif
int dram_init(void)
{
gd->ram_size = PHYS_SDRAM_SIZE;
return 0;
}
static iomux_v3_cfg_t const uart1_pads[] = {
MX6SX_PAD_GPIO1_IO04__UART1_TX | MUX_PAD_CTRL(UART_PAD_CTRL),
MX6SX_PAD_GPIO1_IO05__UART1_RX | MUX_PAD_CTRL(UART_PAD_CTRL),
};
static iomux_v3_cfg_t const usdhc3_pads[] = {
MX6SX_PAD_SD3_CLK__USDHC3_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD3_CMD__USDHC3_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD3_DATA0__USDHC3_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD3_DATA1__USDHC3_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD3_DATA2__USDHC3_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD3_DATA3__USDHC3_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD3_DATA4__USDHC3_DATA4 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD3_DATA5__USDHC3_DATA5 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD3_DATA6__USDHC3_DATA6 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD3_DATA7__USDHC3_DATA7 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
/* CD pin */
MX6SX_PAD_USB_H_DATA__GPIO7_IO_10 | MUX_PAD_CTRL(NO_PAD_CTRL),
/* RST_B, used for power reset cycle */
MX6SX_PAD_KEY_COL1__GPIO2_IO_11 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
static iomux_v3_cfg_t const usdhc4_pads[] = {
MX6SX_PAD_SD4_CLK__USDHC4_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD4_CMD__USDHC4_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD4_DATA0__USDHC4_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD4_DATA1__USDHC4_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD4_DATA2__USDHC4_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD4_DATA3__USDHC4_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD4_DATA4__USDHC4_DATA4 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD4_DATA5__USDHC4_DATA5 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD4_DATA6__USDHC4_DATA6 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6SX_PAD_SD4_DATA7__USDHC4_DATA7 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
/* CD pin */
MX6SX_PAD_USB_H_STROBE__GPIO7_IO_11 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
#ifdef CONFIG_FEC_MXC
static iomux_v3_cfg_t const fec1_pads[] = {
MX6SX_PAD_ENET1_MDC__ENET1_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6SX_PAD_ENET1_MDIO__ENET1_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6SX_PAD_RGMII1_RX_CTL__ENET1_RX_EN | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6SX_PAD_RGMII1_RD0__ENET1_RX_DATA_0 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6SX_PAD_RGMII1_RD1__ENET1_RX_DATA_1 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6SX_PAD_RGMII1_RD2__ENET1_RX_DATA_2 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6SX_PAD_RGMII1_RD3__ENET1_RX_DATA_3 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6SX_PAD_RGMII1_RXC__ENET1_RX_CLK | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6SX_PAD_RGMII1_TX_CTL__ENET1_TX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6SX_PAD_RGMII1_TD0__ENET1_TX_DATA_0 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6SX_PAD_RGMII1_TD1__ENET1_TX_DATA_1 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6SX_PAD_RGMII1_TD2__ENET1_TX_DATA_2 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6SX_PAD_RGMII1_TD3__ENET1_TX_DATA_3 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6SX_PAD_RGMII1_TXC__ENET1_RGMII_TXC | MUX_PAD_CTRL(ENET_PAD_CTRL),
};
static iomux_v3_cfg_t const fec2_pads[] = {
MX6SX_PAD_ENET1_MDC__ENET2_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6SX_PAD_ENET1_MDIO__ENET2_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6SX_PAD_RGMII2_RX_CTL__ENET2_RX_EN | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6SX_PAD_RGMII2_RD0__ENET2_RX_DATA_0 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6SX_PAD_RGMII2_RD1__ENET2_RX_DATA_1 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6SX_PAD_RGMII2_RD2__ENET2_RX_DATA_2 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6SX_PAD_RGMII2_RD3__ENET2_RX_DATA_3 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6SX_PAD_RGMII2_RXC__ENET2_RX_CLK | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6SX_PAD_RGMII2_TX_CTL__ENET2_TX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6SX_PAD_RGMII2_TD0__ENET2_TX_DATA_0 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6SX_PAD_RGMII2_TD1__ENET2_TX_DATA_1 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6SX_PAD_RGMII2_TD2__ENET2_TX_DATA_2 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6SX_PAD_RGMII2_TD3__ENET2_TX_DATA_3 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6SX_PAD_RGMII2_TXC__ENET2_RGMII_TXC | MUX_PAD_CTRL(ENET_PAD_CTRL),
};
static void setup_iomux_fec(int fec_id)
{
if (0 == fec_id)
imx_iomux_v3_setup_multiple_pads(fec1_pads, ARRAY_SIZE(fec1_pads));
else
imx_iomux_v3_setup_multiple_pads(fec2_pads, ARRAY_SIZE(fec2_pads));
}
#endif
#ifdef CONFIG_MAX7310_IOEXP
#define CPU_PER_RST_B IOEXP_GPIO_NR(1, 4)
#define LVDS_EN_PIN IOEXP_GPIO_NR(1, 7)
#define STEER_ENET IOEXP_GPIO_NR(2, 2)
int setup_max7310(void)
{
/* Must call this function after i2c has setup */
#ifdef CONFIG_SYS_I2C_MXC
gpio_exp_setup_port(1, 2, 0x30);
gpio_exp_setup_port(2, 2, 0x32);
return 0;
#else
return -EPERM;
#endif
}
#endif
static void setup_iomux_uart(void)
{
imx_iomux_v3_setup_multiple_pads(uart1_pads, ARRAY_SIZE(uart1_pads));
}
#ifdef CONFIG_QSPI
#define QSPI_PAD_CTRL1 \
(PAD_CTL_SRE_FAST | PAD_CTL_SPEED_MED | \
PAD_CTL_PKE | PAD_CTL_PUE | PAD_CTL_PUS_47K_UP | PAD_CTL_DSE_60ohm)
static iomux_v3_cfg_t const quadspi_pads[] = {
MX6SX_PAD_QSPI1A_SS0_B__QSPI1_A_SS0_B | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6SX_PAD_QSPI1A_SCLK__QSPI1_A_SCLK | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6SX_PAD_QSPI1A_DATA0__QSPI1_A_DATA_0 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6SX_PAD_QSPI1A_DATA1__QSPI1_A_DATA_1 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6SX_PAD_QSPI1A_DATA2__QSPI1_A_DATA_2 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6SX_PAD_QSPI1A_DATA3__QSPI1_A_DATA_3 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6SX_PAD_QSPI1B_SS0_B__QSPI1_B_SS0_B | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6SX_PAD_QSPI1B_SCLK__QSPI1_B_SCLK | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6SX_PAD_QSPI1B_DATA0__QSPI1_B_DATA_0 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6SX_PAD_QSPI1B_DATA1__QSPI1_B_DATA_1 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6SX_PAD_QSPI1B_DATA2__QSPI1_B_DATA_2 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
MX6SX_PAD_QSPI1B_DATA3__QSPI1_B_DATA_3 | MUX_PAD_CTRL(QSPI_PAD_CTRL1),
};
int board_qspi_init(void)
{
/* Set the iomux */
imx_iomux_v3_setup_multiple_pads(quadspi_pads, ARRAY_SIZE(quadspi_pads));
/* Set the clock */
enable_qspi_clk(0);
return 0;
}
#endif
#ifdef CONFIG_SYS_USE_NAND
iomux_v3_cfg_t gpmi_pads[] = {
MX6SX_PAD_NAND_CLE__RAWNAND_CLE | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6SX_PAD_NAND_ALE__RAWNAND_ALE | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6SX_PAD_NAND_WP_B__RAWNAND_WP_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6SX_PAD_NAND_READY_B__RAWNAND_READY_B | MUX_PAD_CTRL(GPMI_PAD_CTRL0),
MX6SX_PAD_NAND_CE0_B__RAWNAND_CE0_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6SX_PAD_NAND_RE_B__RAWNAND_RE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6SX_PAD_NAND_WE_B__RAWNAND_WE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6SX_PAD_NAND_DATA00__RAWNAND_DATA00 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6SX_PAD_NAND_DATA01__RAWNAND_DATA01 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6SX_PAD_NAND_DATA02__RAWNAND_DATA02 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6SX_PAD_NAND_DATA03__RAWNAND_DATA03 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6SX_PAD_NAND_DATA04__RAWNAND_DATA04 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6SX_PAD_NAND_DATA05__RAWNAND_DATA05 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6SX_PAD_NAND_DATA06__RAWNAND_DATA06 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6SX_PAD_NAND_DATA07__RAWNAND_DATA07 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
};
static void setup_gpmi_nand(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
/* config gpmi nand iomux */
imx_iomux_v3_setup_multiple_pads(gpmi_pads, ARRAY_SIZE(gpmi_pads));
/* Disable the QSPI2 root clock */
clrbits_le32(&mxc_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK
| MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
/* config gpmi and bch clock to 100 MHz */
clrsetbits_le32(&mxc_ccm->cs2cdr,
MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK,
MXC_CCM_CS2CDR_QSPI2_CLK_PODF(0) |
MXC_CCM_CS2CDR_QSPI2_CLK_PRED(3) |
MXC_CCM_CS2CDR_QSPI2_CLK_SEL(3));
/* enable gpmi and bch clock gating */
setbits_le32(&mxc_ccm->CCGR4,
MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK |
MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
/* enable apbh clock gating */
setbits_le32(&mxc_ccm->CCGR0, MXC_CCM_CCGR0_APBHDMA_MASK);
}
#endif
#ifdef CONFIG_FSL_ESDHC
static struct fsl_esdhc_cfg usdhc_cfg[3] = {
{USDHC3_BASE_ADDR},
{USDHC4_BASE_ADDR},
};
#define USDHC3_CD_GPIO IMX_GPIO_NR(7, 10)
#define USDHC3_RST_GPIO IMX_GPIO_NR(2, 11)
#define USDHC4_CD_GPIO IMX_GPIO_NR(7, 11)
int mmc_get_env_devno(void)
{
u32 soc_sbmr = readl(SRC_BASE_ADDR + 0x4);
int dev_no;
u32 bootsel;
bootsel = (soc_sbmr & 0x000000FF) >> 6 ;
/* If not boot from sd/mmc, use default value */
if (bootsel != 1)
return CONFIG_SYS_MMC_ENV_DEV;
/* BOOT_CFG2[3] and BOOT_CFG2[4] */
dev_no = (soc_sbmr & 0x00001800) >> 11;
/* need ubstract 1 to map to the mmc device id
* see the comments in board_mmc_init function
*/
dev_no -= 2;
return dev_no;
}
int mmc_map_to_kernel_blk(int dev_no)
{
return dev_no + 2;
}
int board_mmc_getcd(struct mmc *mmc)
{
struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv;
int ret = 0;
switch (cfg->esdhc_base) {
case USDHC3_BASE_ADDR:
ret = !gpio_get_value(USDHC3_CD_GPIO);
break;
case USDHC4_BASE_ADDR:
ret = !gpio_get_value(USDHC4_CD_GPIO);
break;
}
return ret;
}
int board_mmc_init(bd_t *bis)
{
int i;
/*
* According to the board_mmc_init() the following map is done:
* (U-boot device node) (Physical Port)
* mmc0 USDHC3
* mmc1 USDHC4
*/
for (i = 0; i < CONFIG_SYS_FSL_USDHC_NUM; i++) {
switch (i) {
case 0:
imx_iomux_v3_setup_multiple_pads(
usdhc3_pads, ARRAY_SIZE(usdhc3_pads));
gpio_direction_input(USDHC3_CD_GPIO);
/* Need to set steer to B0 to A*/
gpio_direction_output(USDHC3_RST_GPIO, 1);
usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK);
break;
case 1:
imx_iomux_v3_setup_multiple_pads(
usdhc4_pads, ARRAY_SIZE(usdhc4_pads));
gpio_direction_input(USDHC4_CD_GPIO);
usdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC4_CLK);
break;
default:
printf("Warning: you configured more USDHC controllers"
"(%d) than supported by the board\n", i + 1);
return 0;
}
if (fsl_esdhc_initialize(bis, &usdhc_cfg[i]))
printf("Warning: failed to initialize mmc dev %d\n", i);
}
return 0;
}
int check_mmc_autodetect(void)
{
char *autodetect_str = getenv("mmcautodetect");
if ((autodetect_str != NULL) &&
(strcmp(autodetect_str, "yes") == 0)) {
return 1;
}
return 0;
}
void board_late_mmc_init(void)
{
char cmd[32];
char mmcblk[32];
u32 dev_no = mmc_get_env_devno();
if (!check_mmc_autodetect())
return;
setenv_ulong("mmcdev", dev_no);
/* Set mmcblk env */
sprintf(mmcblk, "/dev/mmcblk%dp2 rootwait rw",
mmc_map_to_kernel_blk(dev_no));
setenv("mmcroot", mmcblk);
sprintf(cmd, "mmc dev %d", dev_no);
run_command(cmd, 0);
}
#endif
#ifdef CONFIG_VIDEO_MXS
static iomux_v3_cfg_t const lvds_ctrl_pads[] = {
/* Use GPIO for Brightness adjustment, duty cycle = period */
MX6SX_PAD_SD1_DATA1__GPIO6_IO_3 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
static iomux_v3_cfg_t const lcd_pads[] = {
MX6SX_PAD_LCD1_CLK__LCDIF1_CLK | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_ENABLE__LCDIF1_ENABLE | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_HSYNC__LCDIF1_HSYNC | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_VSYNC__LCDIF1_VSYNC | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA00__LCDIF1_DATA_0 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA01__LCDIF1_DATA_1 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA02__LCDIF1_DATA_2 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA03__LCDIF1_DATA_3 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA04__LCDIF1_DATA_4 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA05__LCDIF1_DATA_5 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA06__LCDIF1_DATA_6 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA07__LCDIF1_DATA_7 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA08__LCDIF1_DATA_8 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA09__LCDIF1_DATA_9 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA10__LCDIF1_DATA_10 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA11__LCDIF1_DATA_11 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA12__LCDIF1_DATA_12 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA13__LCDIF1_DATA_13 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA14__LCDIF1_DATA_14 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA15__LCDIF1_DATA_15 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA16__LCDIF1_DATA_16 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_DATA17__LCDIF1_DATA_17 | MUX_PAD_CTRL(LCD_PAD_CTRL),
MX6SX_PAD_LCD1_RESET__GPIO3_IO_27 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
struct lcd_panel_info_t {
unsigned int lcdif_base_addr;
int depth;
void (*enable)(struct lcd_panel_info_t const *dev);
struct fb_videomode mode;
};
void do_enable_lvds(struct lcd_panel_info_t const *dev)
{
enable_lcdif_clock(dev->lcdif_base_addr);
enable_lvds(dev->lcdif_base_addr);
imx_iomux_v3_setup_multiple_pads(lvds_ctrl_pads,
ARRAY_SIZE(lvds_ctrl_pads));
#ifdef CONFIG_MAX7310_IOEXP
/* LVDS Enable pin */
gpio_exp_direction_output(LVDS_EN_PIN , 1);
#endif
/* Set Brightness to high */
gpio_direction_output(IMX_GPIO_NR(6, 3) , 1);
}
void do_enable_parallel_lcd(struct lcd_panel_info_t const *dev)
{
enable_lcdif_clock(dev->lcdif_base_addr);
imx_iomux_v3_setup_multiple_pads(lcd_pads, ARRAY_SIZE(lcd_pads));
/* Power up the LCD */
gpio_direction_output(IMX_GPIO_NR(3, 27) , 1);
}
static struct lcd_panel_info_t const displays[] = {{
.lcdif_base_addr = LCDIF2_BASE_ADDR,
.depth = 18,
.enable = do_enable_lvds,
.mode = {
.name = "Hannstar-XGA",
.xres = 1024,
.yres = 768,
.pixclock = 15385,
.left_margin = 220,
.right_margin = 40,
.upper_margin = 21,
.lower_margin = 7,
.hsync_len = 60,
.vsync_len = 10,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED
} }, {
.lcdif_base_addr = LCDIF1_BASE_ADDR,
.depth = 18,
.enable = do_enable_parallel_lcd,
.mode = {
.name = "Boundary-LCD",
.xres = 800,
.yres = 480,
.pixclock = 29850,
.left_margin = 89,
.right_margin = 164,
.upper_margin = 23,
.lower_margin = 10,
.hsync_len = 10,
.vsync_len = 10,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED
} } };
int board_video_skip(void)
{
int i;
int ret;
char const *panel = getenv("panel");
if (!panel) {
panel = displays[0].mode.name;
printf("No panel detected: default to %s\n", panel);
i = 0;
} else {
for (i = 0; i < ARRAY_SIZE(displays); i++) {
if (!strcmp(panel, displays[i].mode.name))
break;
}
}
if (i < ARRAY_SIZE(displays)) {
ret = mxs_lcd_panel_setup(displays[i].mode, displays[i].depth,
displays[i].lcdif_base_addr);
if (!ret) {
if (displays[i].enable)
displays[i].enable(displays+i);
printf("Display: %s (%ux%u)\n",
displays[i].mode.name,
displays[i].mode.xres,
displays[i].mode.yres);
} else
printf("LCD %s cannot be configured: %d\n",
displays[i].mode.name, ret);
} else {
printf("unsupported panel %s\n", panel);
return -EINVAL;
}
return 0;
}
#endif
#ifdef CONFIG_FEC_MXC
int board_eth_init(bd_t *bis)
{
int ret;
setup_iomux_fec(CONFIG_FEC_ENET_DEV);
ret = fecmxc_initialize_multi(bis, CONFIG_FEC_ENET_DEV,
CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
if (ret)
printf("FEC%d MXC: %s:failed\n", CONFIG_FEC_ENET_DEV, __func__);
return 0;
}
static int setup_fec(int fec_id)
{
struct iomuxc_gpr_base_regs *const iomuxc_gpr_regs
= (struct iomuxc_gpr_base_regs *) IOMUXC_GPR_BASE_ADDR;
int ret;
if (0 == fec_id)
/* Use 125M anatop REF_CLK1 for ENET1, clear gpr1[13], gpr1[17]*/
clrsetbits_le32(&iomuxc_gpr_regs->gpr[1], IOMUX_GPR1_FEC1_MASK, 0);
else
/* Use 125M anatop REF_CLK1 for ENET2, clear gpr1[14], gpr1[18]*/
clrsetbits_le32(&iomuxc_gpr_regs->gpr[1], IOMUX_GPR1_FEC2_MASK, 0);
ret = enable_fec_anatop_clock(fec_id, ENET_125MHz);
if (ret)
return ret;
enable_enet_clock();
return 0;
}
int board_phy_config(struct phy_device *phydev)
{
/* Enable 1.8V(SEL_1P5_1P8_POS_REG) on Phy control debug reg 0 */
phy_write(phydev, MDIO_DEVAD_NONE, 0x1d, 0x1f);
phy_write(phydev, MDIO_DEVAD_NONE, 0x1e, 0x8);
/* rgmii tx clock delay enable */
phy_write(phydev, MDIO_DEVAD_NONE, 0x1d, 0x05);
phy_write(phydev, MDIO_DEVAD_NONE, 0x1e, 0x100);
if (phydev->drv->config)
phydev->drv->config(phydev);
return 0;
}
#endif
#ifdef CONFIG_PFUZE100_PMIC_I2C
#define PFUZE100_DEVICEID 0x0
#define PFUZE100_REVID 0x3
#define PFUZE100_FABID 0x4
#define PFUZE100_SW1ABVOL 0x20
#define PFUZE100_SW1ABSTBY 0x21
#define PFUZE100_SW1ABCONF 0x24
#define PFUZE100_SW1CVOL 0x2e
#define PFUZE100_SW1CSTBY 0x2f
#define PFUZE100_SW1CCONF 0x32
#define PFUZE100_SW1ABC_SETP(x) ((x - 3000) / 250)
#define PFUZE100_VGEN5CTL 0x70
/* set all switches APS in normal and PFM mode in standby */
static int setup_pmic_mode(int chip)
{
unsigned char offset, i, switch_num, value;
if (!chip) {
/* pfuze100 */
switch_num = 6;
offset = 0x31;
} else {
/* pfuze200 */
switch_num = 4;
offset = 0x38;
}
value = 0xc;
if (i2c_write(0x8, 0x23, 1, &value, 1)) {
printf("Set SW1AB mode error!\n");
return -1;
}
for (i = 0; i < switch_num - 1; i++) {
if (i2c_write(0x8, offset + i * 7, 1, &value, 1)) {
printf("Set switch%x mode error!\n", offset);
return -1;
}
}
return 0;
}
static int setup_pmic_voltages(void)
{
unsigned char value, rev_id = 0;
i2c_set_bus_num(CONFIG_PMIC_I2C_BUS);
i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_PMIC_I2C_SLAVE);
if (!i2c_probe(CONFIG_PMIC_I2C_SLAVE)) {
if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_DEVICEID, 1, &value, 1)) {
printf("Read device ID error!\n");
return -1;
}
if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_REVID, 1, &rev_id, 1)) {
printf("Read Rev ID error!\n");
return -1;
}
printf("Found PFUZE100! deviceid 0x%x, revid 0x%x\n", value, rev_id);
if (setup_pmic_mode(value & 0xf)) {
printf("setup pmic mode error!\n");
return -1;
}
/* set SW1AB standby volatage 0.975V */
if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1ABSTBY, 1, &value, 1)) {
printf("Read SW1ABSTBY error!\n");
return -1;
}
value &= ~0x3f;
value |= PFUZE100_SW1ABC_SETP(9750);
if (i2c_write(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1ABSTBY, 1, &value, 1)) {
printf("Set SW1ABSTBY error!\n");
return -1;
}
/* set SW1AB/VDDARM step ramp up time from 16us to 4us/25mV */
if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1ABCONF, 1, &value, 1)) {
printf("Read SW1ABCONFIG error!\n");
return -1;
}
value &= ~0xc0;
value |= 0x40;
if (i2c_write(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1ABCONF, 1, &value, 1)) {
printf("Set SW1ABCONFIG error!\n");
return -1;
}
/* set SW1C standby volatage 0.975V */
if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1CSTBY, 1, &value, 1)) {
printf("Read SW1CSTBY error!\n");
return -1;
}
value &= ~0x3f;
value |= PFUZE100_SW1ABC_SETP(9750);
if (i2c_write(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1CSTBY, 1, &value, 1)) {
printf("Set SW1CSTBY error!\n");
return -1;
}
/* set SW1C/VDDSOC step ramp up time to from 16us to 4us/25mV */
if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1CCONF, 1, &value, 1)) {
printf("Read SW1CCONFIG error!\n");
return -1;
}
value &= ~0xc0;
value |= 0x40;
if (i2c_write(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1CCONF, 1, &value, 1)) {
printf("Set SW1CCONFIG error!\n");
return -1;
}
/* Enable power of VGEN5 3V3, needed for SD3 */
if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_VGEN5CTL, 1, &value, 1)) {
printf("Read VGEN5CTL error!\n");
return -1;
}
value &= ~0x1F;
value |= 0x1F;
if (i2c_write(CONFIG_PMIC_I2C_SLAVE, PFUZE100_VGEN5CTL, 1, &value, 1)) {
printf("Set VGEN5CTL error!\n");
return -1;
}
}
return 0;
}
#ifdef CONFIG_LDO_BYPASS_CHECK
void ldo_mode_set(int ldo_bypass)
{
unsigned char value;
/* switch to ldo_bypass mode */
if (ldo_bypass) {
/* decrease VDDARM to 1.15V */
if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1ABVOL, 1, &value, 1)) {
printf("Read SW1AB error!\n");
return;
}
value &= ~0x3f;
value |= PFUZE100_SW1ABC_SETP(11500);
if (i2c_write(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1ABVOL, 1, &value, 1)) {
printf("Set SW1AB error!\n");
return;
}
/* increase VDDSOC to 1.15V */
if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1CVOL, 1, &value, 1)) {
printf("Read SW1C error!\n");
return;
}
value &= ~0x3f;
value |= PFUZE100_SW1ABC_SETP(11500);
if (i2c_write(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1CVOL, 1, &value, 1)) {
printf("Set SW1C error!\n");
return;
}
set_anatop_bypass(1);
printf("switch to ldo_bypass mode!\n");
}
}
#endif
#endif
#ifdef CONFIG_MXC_RDC
static rdc_peri_cfg_t const shared_resources[] = {
(RDC_PER_GPIO1 | RDC_DOMAIN(0) | RDC_DOMAIN(1)),
};
#endif
int board_early_init_f(void)
{
#ifdef CONFIG_MXC_RDC
imx_rdc_setup_peripherals(shared_resources, ARRAY_SIZE(shared_resources));
#endif
#ifdef CONFIG_SYS_AUXCORE_FASTUP
arch_auxiliary_core_up(0, CONFIG_SYS_AUXCORE_BOOTDATA);
#endif
setup_iomux_uart();
return 0;
}
int board_init(void)
{
/* Address of boot parameters */
gd->bd->bi_boot_params = PHYS_SDRAM + 0x100;
#ifdef CONFIG_SYS_I2C_MXC
setup_i2c(1, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info2);
setup_i2c(2, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info3);
#endif
#ifdef CONFIG_MAX7310_IOEXP
setup_max7310();
/* Reset CPU_PER_RST_B signal for enet phy and PCIE */
gpio_exp_direction_output(CPU_PER_RST_B, 0);
udelay(500);
gpio_exp_direction_output(CPU_PER_RST_B, 1);
/* Set steering signal to L for selecting B0 */
gpio_exp_direction_output(STEER_ENET, 0);
#endif
#ifdef CONFIG_FEC_MXC
setup_fec(CONFIG_FEC_ENET_DEV);
#endif
#ifdef CONFIG_SYS_USE_NAND
setup_gpmi_nand();
#endif
#ifdef CONFIG_QSPI
board_qspi_init();
#endif
return 0;
}
#ifdef CONFIG_CMD_BMODE
static const struct boot_mode board_boot_modes[] = {
{"sda", MAKE_CFGVAL(0x42, 0x30, 0x00, 0x00)},
{"sdb", MAKE_CFGVAL(0x40, 0x38, 0x00, 0x00)},
{"qspi1", MAKE_CFGVAL(0x10, 0x00, 0x00, 0x00)},
{"nand", MAKE_CFGVAL(0x82, 0x00, 0x00, 0x00)},
{NULL, 0},
};
#endif
int board_late_init(void)
{
#ifdef CONFIG_CMD_BMODE
add_board_boot_modes(board_boot_modes);
#endif
#ifdef CONFIG_PFUZE100_PMIC_I2C
int ret = 0;
ret = setup_pmic_voltages();
if (ret)
return -1;
#endif
#ifdef CONFIG_ENV_IS_IN_MMC
board_late_mmc_init();
#endif
/* set WDOG_B to reset whole system */
set_wdog_reset((struct wdog_regs *)WDOG1_BASE_ADDR);
return 0;
}
u32 get_board_rev(void)
{
return get_cpu_rev();
}
int checkboard(void)
{
puts("Board: MX6SX SABRE AUTO\n");
return 0;
}
#ifdef CONFIG_USB_EHCI_MX6
iomux_v3_cfg_t const usb_otg1_pads[] = {
MX6SX_PAD_GPIO1_IO09__USB_OTG1_PWR | MUX_PAD_CTRL(NO_PAD_CTRL),
MX6SX_PAD_GPIO1_IO10__ANATOP_OTG1_ID | MUX_PAD_CTRL(NO_PAD_CTRL)
};
iomux_v3_cfg_t const usb_host2_pads[] = {
MX6SX_PAD_GPIO1_IO12__USB_OTG2_PWR | MUX_PAD_CTRL(NO_PAD_CTRL),
};
int board_ehci_hcd_init(int port)
{
switch (port) {
case 0:
imx_iomux_v3_setup_multiple_pads(usb_otg1_pads,
ARRAY_SIZE(usb_otg1_pads));
break;
case 1:
imx_iomux_v3_setup_multiple_pads(usb_host2_pads,
ARRAY_SIZE(usb_host2_pads));
break;
default:
printf("MXC USB port %d not yet supported\n", port);
return 1;
}
return 0;
}
#endif
#ifdef CONFIG_FASTBOOT
void board_fastboot_setup(void)
{
switch (get_boot_device()) {
#if defined(CONFIG_FASTBOOT_STORAGE_MMC)
case SD3_BOOT:
case MMC3_BOOT:
if (!getenv("fastboot_dev"))
setenv("fastboot_dev", "mmc0");
if (!getenv("bootcmd"))
setenv("bootcmd", "booti mmc0");
break;
case SD4_BOOT:
case MMC4_BOOT:
if (!getenv("fastboot_dev"))
setenv("fastboot_dev", "mmc1");
if (!getenv("bootcmd"))
setenv("bootcmd", "booti mmc1");
break;
#endif /*CONFIG_FASTBOOT_STORAGE_MMC*/
#if defined(CONFIG_FASTBOOT_STORAGE_NAND)
case NAND_BOOT:
if (!getenv("fastboot_dev"))
setenv("fastboot_dev", "nand");
if (!getenv("fbparts"))
setenv("fbparts", ANDROID_FASTBOOT_NAND_PARTS);
if (!getenv("bootcmd"))
setenv("bootcmd",
"nand read ${loadaddr} ${boot_nand_offset} "
"${boot_nand_size};booti ${loadaddr}");
break;
#endif /*CONFIG_FASTBOOT_STORAGE_NAND*/
default:
printf("unsupported boot devices\n");
break;
}
}
#ifdef CONFIG_ANDROID_RECOVERY
int check_recovery_cmd_file(void)
{
int recovery_mode = 0;
recovery_mode = recovery_check_and_clean_flag();
return recovery_mode;
}
void board_recovery_setup(void)
{
int bootdev = get_boot_device();
switch (bootdev) {
#if defined(CONFIG_FASTBOOT_STORAGE_MMC)
case SD3_BOOT:
case MMC3_BOOT:
if (!getenv("bootcmd_android_recovery"))
setenv("bootcmd_android_recovery", "booti mmc0 recovery");
break;
case SD4_BOOT:
case MMC4_BOOT:
if (!getenv("bootcmd_android_recovery"))
setenv("bootcmd_android_recovery", "booti mmc1 recovery");
break;
#endif /*CONFIG_FASTBOOT_STORAGE_MMC*/
#if defined(CONFIG_FASTBOOT_STORAGE_NAND)
case NAND_BOOT:
if (!getenv("bootcmd_android_recovery"))
setenv("bootcmd_android_recovery",
"nand read ${loadaddr} ${recovery_nand_offset} "
"${recovery_nand_size};booti ${loadaddr}");
break;
#endif /*CONFIG_FASTBOOT_STORAGE_NAND*/
default:
printf("Unsupported bootup device for recovery: dev: %d\n",
bootdev);
return;
}
printf("setup env for recovery..\n");
setenv("bootcmd", "run bootcmd_android_recovery");
}
#endif /*CONFIG_ANDROID_RECOVERY*/
#endif /*CONFIG_FASTBOOT*/
#ifdef CONFIG_IMX_UDC
iomux_v3_cfg_t const otg_udc_pads[] = {
(MX6SX_PAD_GPIO1_IO10__ANATOP_OTG1_ID | MUX_PAD_CTRL(NO_PAD_CTRL)),
};
void udc_pins_setting(void)
{
imx_iomux_v3_setup_multiple_pads(otg_udc_pads,
ARRAY_SIZE(otg_udc_pads));
}
#endif /*CONFIG_IMX_UDC*/