blob: aa4b17c07a18b9aa409eddf5bd9ae5b9d37fa783 [file] [log] [blame]
/* lzo_swd.ch -- sliding window dictionary
This file is part of the LZO real-time data compression library.
Copyright (C) 2008 Markus Franz Xaver Johannes Oberhumer
Copyright (C) 2007 Markus Franz Xaver Johannes Oberhumer
Copyright (C) 2006 Markus Franz Xaver Johannes Oberhumer
Copyright (C) 2005 Markus Franz Xaver Johannes Oberhumer
Copyright (C) 2004 Markus Franz Xaver Johannes Oberhumer
Copyright (C) 2003 Markus Franz Xaver Johannes Oberhumer
Copyright (C) 2002 Markus Franz Xaver Johannes Oberhumer
Copyright (C) 2001 Markus Franz Xaver Johannes Oberhumer
Copyright (C) 2000 Markus Franz Xaver Johannes Oberhumer
Copyright (C) 1999 Markus Franz Xaver Johannes Oberhumer
Copyright (C) 1998 Markus Franz Xaver Johannes Oberhumer
Copyright (C) 1997 Markus Franz Xaver Johannes Oberhumer
Copyright (C) 1996 Markus Franz Xaver Johannes Oberhumer
All Rights Reserved.
The LZO library is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
The LZO library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the LZO library; see the file COPYING.
If not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
Markus F.X.J. Oberhumer
<markus@oberhumer.com>
http://www.oberhumer.com/opensource/lzo/
*/
#if (LZO_UINT_MAX < LZO_0xffffffffL)
# error "LZO_UINT_MAX"
#endif
/***********************************************************************
//
************************************************************************/
#ifndef SWD_N
# define SWD_N N
#endif
#ifndef SWD_F
# define SWD_F F
#endif
#ifndef SWD_THRESHOLD
# define SWD_THRESHOLD THRESHOLD
#endif
/* unsigned type for dictionary access - don't waste memory here */
#if (0UL + SWD_N + SWD_F + SWD_F < 0UL + USHRT_MAX)
typedef unsigned short swd_uint;
# define SWD_UINT_MAX USHRT_MAX
#elif (0UL + SWD_N + SWD_F + SWD_F < 0UL + UINT_MAX)
typedef unsigned swd_uint;
# define SWD_UINT_MAX UINT_MAX
#else
typedef lzo_uint swd_uint;
# define SWD_UINT_MAX LZO_UINT_MAX
#endif
#define swd_uintp swd_uint __LZO_MMODEL *
#define SWD_UINT(x) ((swd_uint)(x))
#ifndef SWD_HSIZE
# define SWD_HSIZE 16384
#endif
#ifndef SWD_MAX_CHAIN
# define SWD_MAX_CHAIN 2048
#endif
#if !defined(HEAD3)
#if 1
# define HEAD3(b,p) \
((DMUL(0x9f5f,(((((lzo_xint)b[p]<<5)^b[p+1])<<5)^b[p+2]))>>5) & (SWD_HSIZE-1))
#else
# define HEAD3(b,p) \
((DMUL(0x9f5f,(((((lzo_xint)b[p+2]<<5)^b[p+1])<<5)^b[p]))>>5) & (SWD_HSIZE-1))
#endif
#endif
#if (SWD_THRESHOLD == 1) && !defined(HEAD2)
# if 1 && defined(LZO_UNALIGNED_OK_2)
# define HEAD2(b,p) (* (lzo_ushortp) &(b[p]))
# else
# define HEAD2(b,p) (b[p] ^ ((unsigned)b[p+1]<<8))
# endif
# define NIL2 SWD_UINT_MAX
#endif
typedef struct
{
/* public - "built-in" */
lzo_uint n;
lzo_uint f;
lzo_uint threshold;
/* public - configuration */
lzo_uint max_chain;
lzo_uint nice_length;
lzo_bool use_best_off;
lzo_uint lazy_insert;
/* public - output */
lzo_uint m_len;
lzo_uint m_off;
lzo_uint look;
int b_char;
#if defined(SWD_BEST_OFF)
lzo_uint best_off[ SWD_BEST_OFF ];
#endif
/* semi public */
LZO_COMPRESS_T *c;
lzo_uint m_pos;
#if defined(SWD_BEST_OFF)
lzo_uint best_pos[ SWD_BEST_OFF ];
#endif
/* private */
const lzo_bytep dict;
const lzo_bytep dict_end;
lzo_uint dict_len;
/* private */
lzo_uint ip; /* input pointer (lookahead) */
lzo_uint bp; /* buffer pointer */
lzo_uint rp; /* remove pointer */
lzo_uint b_size;
lzo_bytep b_wrap;
lzo_uint node_count;
lzo_uint first_rp;
#if defined(__LZO_MMODEL_HUGE)
# define A(type, n) ((((n) * sizeof(type)) + 3UL) &~ 3UL)
# define O_b(s) (0L)
# define O_head3(s) (O_b(s) + A(char, 0UL + SWD_N + SWD_F + SWD_F))
# define O_succ3(s) (O_head3(s) + A(swd_uint, 0UL + SWD_HSIZE))
# define O_best3(s) (O_succ3(s) + A(swd_uint, 0UL + SWD_N + SWD_F))
# define O_llen3(s) (O_best3(s) + A(swd_uint, 0UL + SWD_N + SWD_F))
# ifdef HEAD2
# define O_head2(s) (O_llen3(s) + A(swd_uint, 0UL + SWD_HSIZE))
# define O_END(s) (O_head2(s) + A(swd_uint, 0UL + 65536L))
# else
# define O_END(s) (O_llen3(s) + A(swd_uint, 0UL + SWD_HSIZE))
# endif
# define S_DEF(s,type,off) ((type) ((lzo_bytep)s + 0L + sizeof(*s) + off))
# define s_b(s) S_DEF(s, lzo_bytep, O_b(s))
# define s_head3(s) S_DEF(s, swd_uintp, O_head3(s))
# define s_succ3(s) S_DEF(s, swd_uintp, O_succ3(s))
# define s_best3(s) S_DEF(s, swd_uintp, O_best3(s))
# define s_llen3(s) S_DEF(s, swd_uintp, O_llen3(s))
# ifdef HEAD2
# define s_head2(s) S_DEF(s, swd_uintp, O_head2(s))
# endif
#elif defined(__LZO_CHECKER)
/* malloc arrays of the exact size to detect any overrun */
unsigned char *b;
swd_uint *head3;
swd_uint *succ3;
swd_uint *best3;
swd_uint *llen3;
# ifdef HEAD2
swd_uint *head2;
# endif
#else
unsigned char b [ SWD_N + SWD_F + SWD_F ];
swd_uint head3 [ SWD_HSIZE ];
swd_uint succ3 [ SWD_N + SWD_F ];
swd_uint best3 [ SWD_N + SWD_F ];
swd_uint llen3 [ SWD_HSIZE ];
# ifdef HEAD2
swd_uint head2 [ 65536L ];
# endif
#endif
}
lzo_swd_t;
#define lzo_swd_p lzo_swd_t __LZO_MMODEL *
#if defined(__LZO_MMODEL_HUGE)
#define SIZEOF_LZO_SWD_T O_END(0)
#else
#define s_b(s) s->b
#define s_head3(s) s->head3
#define s_succ3(s) s->succ3
#define s_best3(s) s->best3
#define s_llen3(s) s->llen3
#ifdef HEAD2
#define s_head2(s) s->head2
#endif
#define SIZEOF_LZO_SWD_T (sizeof(lzo_swd_t))
#endif
/* Access macro for head3.
* head3[key] may be uninitialized, but then its value will never be used.
*/
#if defined(__LZO_CHECKER)
# define s_get_head3(s,key) \
((s->llen3[key] == 0) ? SWD_UINT_MAX : s_head3(s)[key])
#else
# define s_get_head3(s,key) s_head3(s)[key]
#endif
/***********************************************************************
//
************************************************************************/
static
void swd_initdict(lzo_swd_p s, const lzo_bytep dict, lzo_uint dict_len)
{
s->dict = s->dict_end = NULL;
s->dict_len = 0;
if (!dict || dict_len <= 0)
return;
if (dict_len > s->n)
{
dict += dict_len - s->n;
dict_len = s->n;
}
s->dict = dict;
s->dict_len = dict_len;
s->dict_end = dict + dict_len;
lzo_memcpy(s_b(s),dict,dict_len);
s->ip = dict_len;
}
static
void swd_insertdict(lzo_swd_p s, lzo_uint node, lzo_uint len)
{
lzo_uint key;
s->node_count = s->n - len;
s->first_rp = node;
while (len-- > 0)
{
key = HEAD3(s_b(s),node);
s_succ3(s)[node] = s_get_head3(s,key);
s_head3(s)[key] = SWD_UINT(node);
s_best3(s)[node] = SWD_UINT(s->f + 1);
s_llen3(s)[key]++;
assert(s_llen3(s)[key] <= SWD_N);
#ifdef HEAD2
key = HEAD2(s_b(s),node);
s_head2(s)[key] = SWD_UINT(node);
#endif
node++;
}
}
/***********************************************************************
//
************************************************************************/
static
int swd_init(lzo_swd_p s, const lzo_bytep dict, lzo_uint dict_len)
{
lzo_uint i = 0;
int c = 0;
#if defined(__LZO_CHECKER)
s->b = malloc(SWD_N + SWD_F + SWD_F);
s->head3 = malloc(sizeof(swd_uint) * SWD_HSIZE);
s->succ3 = malloc(sizeof(swd_uint) * (SWD_N + SWD_F));
s->best3 = malloc(sizeof(swd_uint) * (SWD_N + SWD_F));
s->llen3 = malloc(sizeof(swd_uint) * SWD_HSIZE);
#ifdef HEAD2
s->head2 = malloc(sizeof(swd_uint) * 65536L);
#endif
#endif
s->n = SWD_N;
s->f = SWD_F;
s->threshold = SWD_THRESHOLD;
/* defaults */
s->max_chain = SWD_MAX_CHAIN;
s->nice_length = SWD_F;
s->use_best_off = 0;
s->lazy_insert = 0;
s->b_size = s->n + s->f;
#if 0
if (2 * s->f >= s->n || s->b_size + s->f >= SWD_UINT_MAX)
return LZO_E_ERROR;
#else
LZO_COMPILE_TIME_ASSERT(!(0ul + 2 * SWD_F >= SWD_N))
LZO_COMPILE_TIME_ASSERT(!(0ul + SWD_N + SWD_F + SWD_F >= SWD_UINT_MAX))
#endif
s->b_wrap = s_b(s) + s->b_size;
s->node_count = s->n;
lzo_memset(s_llen3(s), 0, sizeof(s_llen3(s)[0]) * (lzo_uint)SWD_HSIZE);
#ifdef HEAD2
#if 1
lzo_memset(s_head2(s), 0xff, sizeof(s_head2(s)[0]) * 65536L);
assert(s_head2(s)[0] == NIL2);
#else
for (i = 0; i < 65536L; i++)
s_head2(s)[i] = NIL2;
#endif
#endif
s->ip = 0;
swd_initdict(s,dict,dict_len);
s->bp = s->ip;
s->first_rp = s->ip;
assert(s->ip + s->f <= s->b_size);
#if 1
s->look = (lzo_uint) (s->c->in_end - s->c->ip);
if (s->look > 0)
{
if (s->look > s->f)
s->look = s->f;
lzo_memcpy(&s_b(s)[s->ip],s->c->ip,s->look);
s->c->ip += s->look;
s->ip += s->look;
}
#else
s->look = 0;
while (s->look < s->f)
{
if ((c = getbyte(*(s->c))) < 0)
break;
s_b(s)[s->ip] = LZO_BYTE(c);
s->ip++;
s->look++;
}
#endif
if (s->ip == s->b_size)
s->ip = 0;
if (s->look >= 2 && s->dict_len > 0)
swd_insertdict(s,0,s->dict_len);
s->rp = s->first_rp;
if (s->rp >= s->node_count)
s->rp -= s->node_count;
else
s->rp += s->b_size - s->node_count;
#if defined(__LZO_CHECKER)
/* initialize memory for the first few HEAD3 (if s->ip is not far
* enough ahead to do this job for us). The value doesn't matter. */
if (s->look < 3)
lzo_memset(&s_b(s)[s->bp+s->look],0,3);
#endif
LZO_UNUSED(i);
LZO_UNUSED(c);
return LZO_E_OK;
}
static
void swd_exit(lzo_swd_p s)
{
#if defined(__LZO_CHECKER)
/* free in reverse order of allocations */
#ifdef HEAD2
free(s->head2); s->head2 = NULL;
#endif
free(s->llen3); s->llen3 = NULL;
free(s->best3); s->best3 = NULL;
free(s->succ3); s->succ3 = NULL;
free(s->head3); s->head3 = NULL;
free(s->b); s->b = NULL;
#else
LZO_UNUSED(s);
#endif
}
#define swd_pos2off(s,pos) \
(s->bp > (pos) ? s->bp - (pos) : s->b_size - ((pos) - s->bp))
/***********************************************************************
//
************************************************************************/
static __lzo_inline
void swd_getbyte(lzo_swd_p s)
{
int c;
if ((c = getbyte(*(s->c))) < 0)
{
if (s->look > 0)
--s->look;
#if defined(__LZO_CHECKER)
/* initialize memory - value doesn't matter */
s_b(s)[s->ip] = 0;
if (s->ip < s->f)
s->b_wrap[s->ip] = 0;
#endif
}
else
{
s_b(s)[s->ip] = LZO_BYTE(c);
if (s->ip < s->f)
s->b_wrap[s->ip] = LZO_BYTE(c);
}
if (++s->ip == s->b_size)
s->ip = 0;
if (++s->bp == s->b_size)
s->bp = 0;
if (++s->rp == s->b_size)
s->rp = 0;
}
/***********************************************************************
// remove node from lists
************************************************************************/
static __lzo_inline
void swd_remove_node(lzo_swd_p s, lzo_uint node)
{
if (s->node_count == 0)
{
lzo_uint key;
#ifdef LZO_DEBUG
if (s->first_rp != LZO_UINT_MAX)
{
if (node != s->first_rp)
printf("Remove %5u: %5u %5u %5u %5u %6u %6u\n",
node, s->rp, s->ip, s->bp, s->first_rp,
s->ip - node, s->ip - s->bp);
assert(node == s->first_rp);
s->first_rp = LZO_UINT_MAX;
}
#endif
key = HEAD3(s_b(s),node);
assert(s_llen3(s)[key] > 0);
--s_llen3(s)[key];
#ifdef HEAD2
key = HEAD2(s_b(s),node);
assert(s_head2(s)[key] != NIL2);
if ((lzo_uint) s_head2(s)[key] == node)
s_head2(s)[key] = NIL2;
#endif
}
else
--s->node_count;
}
/***********************************************************************
//
************************************************************************/
static
void swd_accept(lzo_swd_p s, lzo_uint n)
{
assert(n <= s->look);
while (n--)
{
lzo_uint key;
swd_remove_node(s,s->rp);
/* add bp into HEAD3 */
key = HEAD3(s_b(s),s->bp);
s_succ3(s)[s->bp] = s_get_head3(s,key);
s_head3(s)[key] = SWD_UINT(s->bp);
s_best3(s)[s->bp] = SWD_UINT(s->f + 1);
s_llen3(s)[key]++;
assert(s_llen3(s)[key] <= SWD_N);
#ifdef HEAD2
/* add bp into HEAD2 */
key = HEAD2(s_b(s),s->bp);
s_head2(s)[key] = SWD_UINT(s->bp);
#endif
swd_getbyte(s);
}
}
/***********************************************************************
//
************************************************************************/
static
void swd_search(lzo_swd_p s, lzo_uint node, lzo_uint cnt)
{
const lzo_bytep p1;
const lzo_bytep p2;
const lzo_bytep px;
lzo_uint m_len = s->m_len;
const lzo_bytep b = s_b(s);
const lzo_bytep bp = s_b(s) + s->bp;
const lzo_bytep bx = s_b(s) + s->bp + s->look;
unsigned char scan_end1;
assert(s->m_len > 0);
scan_end1 = bp[m_len - 1];
for ( ; cnt-- > 0; node = s_succ3(s)[node])
{
p1 = bp;
p2 = b + node;
px = bx;
assert(m_len < s->look);
if (
#if 1
p2[m_len - 1] == scan_end1 &&
p2[m_len] == p1[m_len] &&
#endif
p2[0] == p1[0] &&
p2[1] == p1[1])
{
lzo_uint i;
assert(lzo_memcmp(bp,&b[node],3) == 0);
#if 0 && defined(LZO_UNALIGNED_OK_4)
p1 += 3; p2 += 3;
while (p1 < px && * (const lzo_uint32p) p1 == * (const lzo_uint32p) p2)
p1 += 4, p2 += 4;
while (p1 < px && *p1 == *p2)
p1 += 1, p2 += 1;
#else
p1 += 2; p2 += 2;
do {} while (++p1 < px && *p1 == *++p2);
#endif
i = pd(p1, bp);
#ifdef LZO_DEBUG
if (lzo_memcmp(bp,&b[node],i) != 0)
printf("%5ld %5ld %02x%02x %02x%02x\n",
(long)s->bp, (long) node,
bp[0], bp[1], b[node], b[node+1]);
#endif
assert(lzo_memcmp(bp,&b[node],i) == 0);
#if defined(SWD_BEST_OFF)
if (i < SWD_BEST_OFF)
{
if (s->best_pos[i] == 0)
s->best_pos[i] = node + 1;
}
#endif
if (i > m_len)
{
s->m_len = m_len = i;
s->m_pos = node;
if (m_len == s->look)
return;
if (m_len >= s->nice_length)
return;
if (m_len > (lzo_uint) s_best3(s)[node])
return;
scan_end1 = bp[m_len - 1];
}
}
}
}
/***********************************************************************
//
************************************************************************/
#ifdef HEAD2
static
lzo_bool swd_search2(lzo_swd_p s)
{
lzo_uint key;
assert(s->look >= 2);
assert(s->m_len > 0);
key = s_head2(s)[ HEAD2(s_b(s),s->bp) ];
if (key == NIL2)
return 0;
#ifdef LZO_DEBUG
if (lzo_memcmp(&s_b(s)[s->bp],&s_b(s)[key],2) != 0)
printf("%5ld %5ld %02x%02x %02x%02x\n", (long)s->bp, (long)key,
s_b(s)[s->bp], s_b(s)[s->bp+1], s_b(s)[key], s_b(s)[key+1]);
#endif
assert(lzo_memcmp(&s_b(s)[s->bp],&s_b(s)[key],2) == 0);
#if defined(SWD_BEST_OFF)
if (s->best_pos[2] == 0)
s->best_pos[2] = key + 1;
#endif
if (s->m_len < 2)
{
s->m_len = 2;
s->m_pos = key;
}
return 1;
}
#endif
/***********************************************************************
//
************************************************************************/
static
void swd_findbest(lzo_swd_p s)
{
lzo_uint key;
lzo_uint cnt, node;
lzo_uint len;
assert(s->m_len > 0);
/* get current head, add bp into HEAD3 */
key = HEAD3(s_b(s),s->bp);
node = s_succ3(s)[s->bp] = s_get_head3(s,key);
cnt = s_llen3(s)[key]++;
assert(s_llen3(s)[key] <= SWD_N + SWD_F);
if (cnt > s->max_chain && s->max_chain > 0)
cnt = s->max_chain;
s_head3(s)[key] = SWD_UINT(s->bp);
s->b_char = s_b(s)[s->bp];
len = s->m_len;
if (s->m_len >= s->look)
{
if (s->look == 0)
s->b_char = -1;
s->m_off = 0;
s_best3(s)[s->bp] = SWD_UINT(s->f + 1);
}
else
{
#ifdef HEAD2
if (swd_search2(s))
#endif
if (s->look >= 3)
swd_search(s,node,cnt);
if (s->m_len > len)
s->m_off = swd_pos2off(s,s->m_pos);
s_best3(s)[s->bp] = SWD_UINT(s->m_len);
#if defined(SWD_BEST_OFF)
if (s->use_best_off)
{
int i;
for (i = 2; i < SWD_BEST_OFF; i++)
if (s->best_pos[i] > 0)
s->best_off[i] = swd_pos2off(s,s->best_pos[i]-1);
else
s->best_off[i] = 0;
}
#endif
}
swd_remove_node(s,s->rp);
#ifdef HEAD2
/* add bp into HEAD2 */
key = HEAD2(s_b(s),s->bp);
s_head2(s)[key] = SWD_UINT(s->bp);
#endif
}
#undef HEAD3
#undef HEAD2
#undef s_get_head3
/*
vi:ts=4:et
*/