blob: 8df203fe1441a8af17f8cb422e9f5598f7649a59 [file] [log] [blame]
// Boost CRC test program file ---------------------------------------------//
// Copyright 2001, 2003, 2004 Daryle Walker. Use, modification, and
// distribution are subject to the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or a copy at
// <http://www.boost.org/LICENSE_1_0.txt>.)
// See <http://www.boost.org/libs/crc/> for the library's home page.
// Revision History
// 28 Aug 2004 Added CRC tests for polynominals shorter than 8 bits
// (Daryle Walker, by patch from Bert Klaps)
// 23 Aug 2003 Adjust to updated Test framework (Daryle Walker)
// 14 May 2001 Initial version (Daryle Walker)
#include <boost/config.hpp> // for BOOST_MSVC, etc.
#include <boost/crc.hpp> // for boost::crc_basic, etc.
#include <boost/cstdint.hpp> // for boost::uint16_t, etc.
#include <boost/cstdlib.hpp> // for boost::exit_success
#include <boost/integer.hpp> // for boost::uint_t
#include <boost/random/linear_congruential.hpp> // for boost::minstd_rand
#include <boost/test/minimal.hpp> // for main, etc.
#include <boost/timer.hpp> // for boost::timer
#include <algorithm> // for std::for_each, std::generate_n, std::count
#include <climits> // for CHAR_BIT
#include <cstddef> // for std::size_t
#include <iostream> // for std::cout (std::ostream and std::endl indirectly)
#if CHAR_BIT != 8
#error The expected results assume an eight-bit byte.
#endif
#if !(defined(BOOST_NO_DEPENDENT_TYPES_IN_TEMPLATE_VALUE_PARAMETERS) || (defined(BOOST_MSVC) && (BOOST_MSVC <= 1300)))
#define CRC_PARM_TYPE typename boost::uint_t<Bits>::fast
#else
#define CRC_PARM_TYPE unsigned long
#endif
#if !defined(BOOST_MSVC) && !defined(__GNUC__)
#define PRIVATE_DECLARE_BOOST( TypeName ) using boost:: TypeName
#else
#define PRIVATE_DECLARE_BOOST( TypeName ) typedef boost:: TypeName TypeName
#endif
// Types
template < std::size_t Bits, CRC_PARM_TYPE TrPo, CRC_PARM_TYPE InRe,
CRC_PARM_TYPE FiXo, bool ReIn, bool ReRe >
class crc_tester
{
public:
// All the following were separate function templates, but they have
// been moved to class-static member functions of a class template
// because MS VC++ 6 can't handle function templates that can't
// deduce all their template arguments from their function arguments.
typedef typename boost::uint_t<Bits>::fast value_type;
static void master_test( char const *test_name, value_type expected );
private:
typedef boost::crc_optimal<Bits, TrPo, InRe, FiXo, ReIn, ReRe>
optimal_crc_type;
typedef boost::crc_basic<Bits> basic_crc_type;
static void compute_test( value_type expected );
static void interrupt_test( value_type expected );
static void error_test();
}; // crc_tester
// Global data
unsigned char const std_data[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39 };
std::size_t const std_data_len = sizeof( std_data ) / sizeof( std_data[0] );
boost::uint16_t const std_crc_ccitt_result = 0x29B1;
boost::uint16_t const std_crc_16_result = 0xBB3D;
boost::uint32_t const std_crc_32_result = 0xCBF43926;
// Function prototypes
void timing_test();
boost::uint32_t basic_crc32( void const *buffer, std::size_t byte_count );
boost::uint32_t optimal_crc32( void const *buffer, std::size_t byte_count );
boost::uint32_t quick_crc32( void const *buffer, std::size_t byte_count );
boost::uint32_t quick_reflect( boost::uint32_t value, std::size_t bits );
double time_trial( char const *name,
boost::uint32_t (*crc_func)(void const *, std::size_t),
boost::uint32_t expected, void const *data, std::size_t length );
void augmented_tests();
boost::uint32_t native_to_big( boost::uint32_t x );
boost::uint32_t big_to_native( boost::uint32_t x );
void small_crc_test1();
void small_crc_test2();
// Macro to compact code
#define PRIVATE_TESTER_NAME crc_tester<Bits, TrPo, InRe, FiXo, ReIn, ReRe>
// Run a test on slow and fast CRC computers and function
template < std::size_t Bits, CRC_PARM_TYPE TrPo, CRC_PARM_TYPE InRe,
CRC_PARM_TYPE FiXo, bool ReIn, bool ReRe >
void
PRIVATE_TESTER_NAME::compute_test
(
typename PRIVATE_TESTER_NAME::value_type expected
)
{
std::cout << "\tDoing computation tests." << std::endl;
optimal_crc_type fast_crc;
basic_crc_type slow_crc( TrPo, InRe, FiXo, ReIn, ReRe );
value_type const func_result = boost::crc<Bits, TrPo, InRe, FiXo, ReIn,
ReRe>( std_data, std_data_len );
fast_crc.process_bytes( std_data, std_data_len );
slow_crc.process_bytes( std_data, std_data_len );
BOOST_CHECK( fast_crc.checksum() == expected );
BOOST_CHECK( slow_crc.checksum() == expected );
BOOST_CHECK( func_result == expected );
}
// Run a test in two runs, and check all the inspectors
template < std::size_t Bits, CRC_PARM_TYPE TrPo, CRC_PARM_TYPE InRe,
CRC_PARM_TYPE FiXo, bool ReIn, bool ReRe >
void
PRIVATE_TESTER_NAME::interrupt_test
(
typename PRIVATE_TESTER_NAME::value_type expected
)
{
std::cout << "\tDoing interrupt tests." << std::endl;
// Process the first half of the data (also test accessors)
optimal_crc_type fast_crc1;
basic_crc_type slow_crc1( fast_crc1.get_truncated_polynominal(),
fast_crc1.get_initial_remainder(), fast_crc1.get_final_xor_value(),
fast_crc1.get_reflect_input(), fast_crc1.get_reflect_remainder() );
BOOST_CHECK( fast_crc1.get_interim_remainder() ==
slow_crc1.get_initial_remainder() );
std::size_t const mid_way = std_data_len / 2;
unsigned char const * const std_data_end = std_data + std_data_len;
fast_crc1.process_bytes( std_data, mid_way );
slow_crc1.process_bytes( std_data, mid_way );
BOOST_CHECK( fast_crc1.checksum() == slow_crc1.checksum() );
// Process the second half of the data (also test accessors)
boost::crc_optimal<optimal_crc_type::bit_count,
optimal_crc_type::truncated_polynominal, optimal_crc_type::initial_remainder,
optimal_crc_type::final_xor_value, optimal_crc_type::reflect_input,
optimal_crc_type::reflect_remainder>
fast_crc2( fast_crc1.get_interim_remainder() );
boost::crc_basic<basic_crc_type::bit_count> slow_crc2(
slow_crc1.get_truncated_polynominal(), slow_crc1.get_interim_remainder(),
slow_crc1.get_final_xor_value(), slow_crc1.get_reflect_input(),
slow_crc1.get_reflect_remainder() );
fast_crc2.process_block( std_data + mid_way, std_data_end );
slow_crc2.process_block( std_data + mid_way, std_data_end );
BOOST_CHECK( fast_crc2.checksum() == slow_crc2.checksum() );
BOOST_CHECK( fast_crc2.checksum() == expected );
BOOST_CHECK( slow_crc2.checksum() == expected );
}
// Run a test to see if a single-bit error is detected
template < std::size_t Bits, CRC_PARM_TYPE TrPo, CRC_PARM_TYPE InRe,
CRC_PARM_TYPE FiXo, bool ReIn, bool ReRe >
void
PRIVATE_TESTER_NAME::error_test
(
)
{
PRIVATE_DECLARE_BOOST( uint32_t );
// A single-bit error is ensured to be detected if the polynominal
// has at least two bits set. The highest bit is what is removed
// to give the truncated polynominal, and it is always set. This
// means that the truncated polynominal needs at least one of its
// bits set, which implies that it cannot be zero.
if ( !(TrPo & boost::detail::mask_uint_t<Bits>::sig_bits_fast) )
{
BOOST_FAIL( "truncated CRC polymonial is zero" );
}
std::cout << "\tDoing error tests." << std::endl;
// Create a random block of data
uint32_t ran_data[ 256 ];
std::size_t const ran_length = sizeof(ran_data) / sizeof(ran_data[0]);
std::generate_n( ran_data, ran_length, boost::minstd_rand() );
// Create computers and compute the checksum of the data
optimal_crc_type fast_tester;
basic_crc_type slow_tester( TrPo, InRe, FiXo, ReIn, ReRe );
fast_tester.process_bytes( ran_data, sizeof(ran_data) );
slow_tester.process_bytes( ran_data, sizeof(ran_data) );
uint32_t const fast_checksum = fast_tester.checksum();
uint32_t const slow_checksum = slow_tester.checksum();
BOOST_CHECK( fast_checksum == slow_checksum );
// Do the checksum again (and test resetting ability)
fast_tester.reset();
slow_tester.reset( InRe );
fast_tester.process_bytes( ran_data, sizeof(ran_data) );
slow_tester.process_bytes( ran_data, sizeof(ran_data) );
BOOST_CHECK( fast_tester.checksum() == slow_tester.checksum() );
BOOST_CHECK( fast_tester.checksum() == fast_checksum );
BOOST_CHECK( slow_tester.checksum() == slow_checksum );
// Produce a single-bit error
ran_data[ ran_data[0] % ran_length ] ^= ( 1 << (ran_data[1] % 32) );
// Compute the checksum of the errorenous data
// (and continue testing resetting ability)
fast_tester.reset( InRe );
slow_tester.reset();
fast_tester.process_bytes( ran_data, sizeof(ran_data) );
slow_tester.process_bytes( ran_data, sizeof(ran_data) );
BOOST_CHECK( fast_tester.checksum() == slow_tester.checksum() );
BOOST_CHECK( fast_tester.checksum() != fast_checksum );
BOOST_CHECK( slow_tester.checksum() != slow_checksum );
}
// Run the other CRC object tests
template < std::size_t Bits, CRC_PARM_TYPE TrPo, CRC_PARM_TYPE InRe,
CRC_PARM_TYPE FiXo, bool ReIn, bool ReRe >
void
PRIVATE_TESTER_NAME::master_test
(
char const * test_name,
typename PRIVATE_TESTER_NAME::value_type expected
)
{
std::cout << "Doing test suite for " << test_name << '.' << std::endl;
compute_test( expected );
interrupt_test( expected );
error_test();
}
// Undo limited macros
#undef PRIVATE_TESTER_NAME
// A CRC-32 computer based on crc_basic, for timing
boost::uint32_t
basic_crc32
(
void const * buffer,
std::size_t byte_count
)
{
static boost::crc_basic<32> computer( 0x04C11DB7, 0xFFFFFFFF, 0xFFFFFFFF,
true, true );
computer.reset();
computer.process_bytes( buffer, byte_count );
return computer.checksum();
}
// A CRC-32 computer based on crc_optimal, for timing
inline
boost::uint32_t
optimal_crc32
(
void const * buffer,
std::size_t byte_count
)
{
static boost::crc_32_type computer;
computer.reset();
computer.process_bytes( buffer, byte_count );
return computer.checksum();
}
// Reflect the lower "bits" bits of a "value"
boost::uint32_t
quick_reflect
(
boost::uint32_t value,
std::size_t bits
)
{
boost::uint32_t reflection = 0;
for ( std::size_t i = 0 ; i < bits ; ++i )
{
if ( value & (1u << i) )
{
reflection |= 1 << ( bits - 1 - i );
}
}
return reflection;
}
// A customized CRC-32 computer, for timing
boost::uint32_t
quick_crc32
(
void const * buffer,
std::size_t byte_count
)
{
PRIVATE_DECLARE_BOOST( uint32_t );
typedef unsigned char byte_type;
// Compute the CRC table (first run only)
static bool did_init = false;
static uint32_t crc_table[ 1ul << CHAR_BIT ];
if ( !did_init )
{
uint32_t const value_high_bit = static_cast<uint32_t>(1) << 31u;
byte_type dividend = 0;
do
{
uint32_t remainder = 0;
for ( byte_type mask = 1u << (CHAR_BIT - 1u) ; mask ; mask >>= 1 )
{
if ( dividend & mask )
{
remainder ^= value_high_bit;
}
if ( remainder & value_high_bit )
{
remainder <<= 1;
remainder ^= 0x04C11DB7u;
}
else
{
remainder <<= 1;
}
}
crc_table[ quick_reflect(dividend, CHAR_BIT) ]
= quick_reflect( remainder, 32 );
}
while ( ++dividend );
did_init = true;
}
// Compute the CRC of the data
uint32_t rem = 0xFFFFFFFF;
byte_type const * const b_begin = static_cast<byte_type const *>( buffer );
byte_type const * const b_end = b_begin + byte_count;
for ( byte_type const *p = b_begin ; p < b_end ; ++p )
{
byte_type const byte_index = *p ^ rem;
rem >>= CHAR_BIT;
rem ^= crc_table[ byte_index ];
}
return ~rem;
}
// Run an individual timing trial
double
time_trial
(
char const * name,
boost::uint32_t (*crc_func)(void const *, std::size_t),
boost::uint32_t expected,
void const * data,
std::size_t length
)
{
PRIVATE_DECLARE_BOOST( uint32_t );
using std::cout;
// Limits of a trial
static uint32_t const max_count = 1L << 16; // ~square-root of max
static double const max_time = 3.14159; // easy as pi(e)
// Mark the trial
cout << '\t' << name << " CRC-32: ";
// Trial loop
uint32_t trial_count = 0, wrong_count = 0;
double elapsed_time = 0.0;
boost::timer t;
do
{
uint32_t const scratch = (*crc_func)( data, length );
if ( scratch != expected )
{
++wrong_count;
}
elapsed_time = t.elapsed();
++trial_count;
} while ( (trial_count < max_count) && (elapsed_time < max_time) );
if ( wrong_count )
{
BOOST_ERROR( "at least one time trial didn't match expected" );
}
// Report results
double const rate = trial_count / elapsed_time;
cout << trial_count << " runs, " << elapsed_time << " s, " << rate
<< " run/s" << std::endl;
return rate;
}
// Time runs of Boost CRCs vs. a customized CRC function
void
timing_test
(
)
{
PRIVATE_DECLARE_BOOST( uint32_t );
using std::cout;
using std::endl;
cout << "Doing timing tests." << endl;
// Create a random block of data
boost::int32_t ran_data[ 256 ];
std::size_t const ran_length = sizeof(ran_data) / sizeof(ran_data[0]);
std::generate_n( ran_data, ran_length, boost::minstd_rand() );
// Use the first runs as a check. This gives a chance for first-
// time static initialization to not interfere in the timings.
uint32_t const basic_result = basic_crc32( ran_data, sizeof(ran_data) );
uint32_t const optimal_result = optimal_crc32( ran_data, sizeof(ran_data) );
uint32_t const quick_result = quick_crc32( ran_data, sizeof(ran_data) );
BOOST_CHECK( basic_result == optimal_result );
BOOST_CHECK( optimal_result == quick_result );
BOOST_CHECK( quick_result == basic_result );
// Run trials
double const basic_rate = time_trial( "Boost-Basic", basic_crc32,
basic_result, ran_data, sizeof(ran_data) );
double const optimal_rate = time_trial( "Boost-Optimal", optimal_crc32,
optimal_result, ran_data, sizeof(ran_data) );
double const quick_rate = time_trial( "Reference", quick_crc32,
quick_result, ran_data, sizeof(ran_data) );
// Report results
cout << "\tThe optimal Boost version is " << (quick_rate - optimal_rate)
/ quick_rate * 100.0 << "% slower than the reference version.\n";
cout << "\tThe basic Boost version is " << (quick_rate - basic_rate)
/ quick_rate * 100.0 << "% slower than the reference version.\n";
cout << "\tThe basic Boost version is " << (optimal_rate - basic_rate)
/ optimal_rate * 100.0 << "% slower than the optimal Boost version."
<< endl;
}
// Reformat an integer to the big-endian storage format
boost::uint32_t
native_to_big
(
boost::uint32_t x
)
{
boost::uint32_t temp;
unsigned char * tp = reinterpret_cast<unsigned char *>( &temp );
for ( std::size_t i = sizeof(x) ; i > 0 ; --i )
{
tp[ i - 1 ] = static_cast<unsigned char>( x );
x >>= CHAR_BIT;
}
return temp;
}
// Restore an integer from the big-endian storage format
boost::uint32_t
big_to_native
(
boost::uint32_t x
)
{
boost::uint32_t temp = 0;
unsigned char * xp = reinterpret_cast<unsigned char *>( &x );
for ( std::size_t i = 0 ; i < sizeof(x) ; ++i )
{
temp <<= CHAR_BIT;
temp |= xp[ i ];
}
return temp;
}
// Run tests on using CRCs on augmented messages
void
augmented_tests
(
)
{
#define PRIVATE_ACRC_FUNC boost::augmented_crc<32, 0x04C11DB7>
using std::size_t;
PRIVATE_DECLARE_BOOST( uint32_t );
std::cout << "Doing CRC-augmented message tests." << std::endl;
// Create a random block of data, with space for a CRC.
uint32_t ran_data[ 257 ];
size_t const ran_length = sizeof(ran_data) / sizeof(ran_data[0]);
size_t const data_length = ran_length - 1;
std::generate_n( ran_data, data_length, boost::minstd_rand() );
// When creating a CRC for an augmented message, use
// zeros in the appended CRC spot for the first run.
uint32_t & ran_crc = ran_data[ data_length ];
ran_crc = 0;
// Compute the CRC with augmented-CRC computing function
typedef boost::uint_t<32>::fast return_type;
ran_crc = PRIVATE_ACRC_FUNC( ran_data, sizeof(ran_data) );
// With the appended CRC set, running the checksum again should get zero.
// NOTE: CRC algorithm assumes numbers are in big-endian format
ran_crc = native_to_big( ran_crc );
uint32_t ran_crc_check = PRIVATE_ACRC_FUNC( ran_data, sizeof(ran_data) );
BOOST_CHECK( 0 == ran_crc_check );
// Compare that result with other CRC computing functions
// and classes, which don't accept augmented messages.
typedef boost::crc_optimal<32, 0x04C11DB7> fast_crc_type;
typedef boost::crc_basic<32> slow_crc_type;
fast_crc_type fast_tester;
slow_crc_type slow_tester( 0x04C11DB7 );
size_t const data_size = data_length * sizeof(ran_data[0]);
uint32_t const func_tester = boost::crc<32, 0x04C11DB7, 0, 0, false,
false>( ran_data, data_size );
fast_tester.process_bytes( ran_data, data_size );
slow_tester.process_bytes( ran_data, data_size );
BOOST_CHECK( fast_tester.checksum() == slow_tester.checksum() );
ran_crc = big_to_native( ran_crc );
BOOST_CHECK( fast_tester.checksum() == ran_crc );
BOOST_CHECK( func_tester == ran_crc );
// Do a single-bit error test
ran_crc = native_to_big( ran_crc );
ran_data[ ran_data[0] % ran_length ] ^= ( 1 << (ran_data[1] % 32) );
ran_crc_check = PRIVATE_ACRC_FUNC( ran_data, sizeof(ran_data) );
BOOST_CHECK( 0 != ran_crc_check );
// Run a version of these tests with a nonzero initial remainder.
uint32_t const init_rem = ran_data[ ran_data[2] % ran_length ];
ran_crc = 0;
ran_crc = PRIVATE_ACRC_FUNC( ran_data, sizeof(ran_data), init_rem );
// Have some fun by processing data in two steps.
size_t const mid_index = ran_length / 2;
ran_crc = native_to_big( ran_crc );
ran_crc_check = PRIVATE_ACRC_FUNC( ran_data, mid_index
* sizeof(ran_data[0]), init_rem );
ran_crc_check = PRIVATE_ACRC_FUNC( &ran_data[mid_index], sizeof(ran_data)
- mid_index * sizeof(ran_data[0]), ran_crc_check );
BOOST_CHECK( 0 == ran_crc_check );
// This substep translates an augmented-CRC initial
// remainder to an unaugmented-CRC initial remainder.
uint32_t const zero = 0;
uint32_t const new_init_rem = PRIVATE_ACRC_FUNC( &zero, sizeof(zero),
init_rem );
slow_crc_type slow_tester2( 0x04C11DB7, new_init_rem );
slow_tester2.process_bytes( ran_data, data_size );
ran_crc = big_to_native( ran_crc );
BOOST_CHECK( slow_tester2.checksum() == ran_crc );
// Redo single-bit error test
ran_data[ ran_data[3] % ran_length ] ^= ( 1 << (ran_data[4] % 32) );
ran_crc_check = PRIVATE_ACRC_FUNC( ran_data, sizeof(ran_data), init_rem );
BOOST_CHECK( 0 != ran_crc_check );
#undef PRIVATE_ACRC_FUNC
}
// Run tests on CRCs below a byte in size (here, 3 bits)
void
small_crc_test1
(
)
{
std::cout << "Doing short-CRC (3-bit augmented) message tests."
<< std::endl;
// The CRC standard is a SDH/SONET Low Order LCAS control word with CRC-3
// taken from ITU-T G.707 (12/03) XIII.2.
// Four samples, each four bytes; should all have a CRC of zero
unsigned char const samples[4][4]
= {
{ 0x3A, 0xC4, 0x08, 0x06 },
{ 0x42, 0xC5, 0x0A, 0x41 },
{ 0x4A, 0xC5, 0x08, 0x22 },
{ 0x52, 0xC4, 0x08, 0x05 }
};
// Basic computer
boost::crc_basic<3> tester1( 0x03 );
tester1.process_bytes( samples[0], 4 );
BOOST_CHECK( tester1.checksum() == 0 );
tester1.reset();
tester1.process_bytes( samples[1], 4 );
BOOST_CHECK( tester1.checksum() == 0 );
tester1.reset();
tester1.process_bytes( samples[2], 4 );
BOOST_CHECK( tester1.checksum() == 0 );
tester1.reset();
tester1.process_bytes( samples[3], 4 );
BOOST_CHECK( tester1.checksum() == 0 );
// Optimal computer
#define PRIVATE_CRC_FUNC boost::crc<3, 0x03, 0, 0, false, false>
#define PRIVATE_ACRC_FUNC boost::augmented_crc<3, 0x03>
BOOST_CHECK( 0 == PRIVATE_CRC_FUNC(samples[0], 4) );
BOOST_CHECK( 0 == PRIVATE_CRC_FUNC(samples[1], 4) );
BOOST_CHECK( 0 == PRIVATE_CRC_FUNC(samples[2], 4) );
BOOST_CHECK( 0 == PRIVATE_CRC_FUNC(samples[3], 4) );
// maybe the fix to CRC functions needs to be applied to augmented CRCs?
#undef PRIVATE_ACRC_FUNC
#undef PRIVATE_CRC_FUNC
}
// Run tests on CRCs below a byte in size (here, 7 bits)
void
small_crc_test2
(
)
{
std::cout << "Doing short-CRC (7-bit augmented) message tests."
<< std::endl;
// The CRC standard is a SDH/SONET J0/J1/J2/N1/N2/TR TTI (trace message)
// with CRC-7, o.a. ITU-T G.707 Annex B, G.832 Annex A.
// Two samples, each sixteen bytes
// Sample 1 is '\x80' + ASCII("123456789ABCDEF")
// Sample 2 is '\x80' + ASCII("TTI UNAVAILABLE")
unsigned char const samples[2][16]
= {
{ 0x80, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x41,
0x42, 0x43, 0x44, 0x45, 0x46 },
{ 0x80, 0x54, 0x54, 0x49, 0x20, 0x55, 0x4E, 0x41, 0x56, 0x41, 0x49,
0x4C, 0x41, 0x42, 0x4C, 0x45 }
};
unsigned const results[2] = { 0x62, 0x23 };
// Basic computer
boost::crc_basic<7> tester1( 0x09 );
tester1.process_bytes( samples[0], 16 );
BOOST_CHECK( tester1.checksum() == results[0] );
tester1.reset();
tester1.process_bytes( samples[1], 16 );
BOOST_CHECK( tester1.checksum() == results[1] );
// Optimal computer
#define PRIVATE_CRC_FUNC boost::crc<7, 0x09, 0, 0, false, false>
#define PRIVATE_ACRC_FUNC boost::augmented_crc<7, 0x09>
BOOST_CHECK( results[0] == PRIVATE_CRC_FUNC(samples[0], 16) );
BOOST_CHECK( results[1] == PRIVATE_CRC_FUNC(samples[1], 16) );
// maybe the fix to CRC functions needs to be applied to augmented CRCs?
#undef PRIVATE_ACRC_FUNC
#undef PRIVATE_CRC_FUNC
}
#ifndef BOOST_MSVC
// Explicit template instantiations
// (needed to fix a link error in Metrowerks CodeWarrior Pro 5.3)
template class crc_tester<16, 0x1021, 0xFFFF, 0, false, false>;
template class crc_tester<16, 0x8005, 0, 0, true, true>;
template class crc_tester<32, 0x04C11DB7, 0xFFFFFFFF, 0xFFFFFFFF, true, true>;
#endif
// Main testing function
int
test_main
(
int , // "argc" is unused
char * [] // "argv" is unused
)
{
using std::cout;
using std::endl;
// Run simulations on some CRC types
typedef crc_tester<16, 0x1021, 0xFFFF, 0, false, false> crc_ccitt_tester;
typedef crc_tester<16, 0x8005, 0, 0, true, true> crc_16_tester;
typedef crc_tester<32, 0x04C11DB7, 0xFFFFFFFF, 0xFFFFFFFF, true, true>
crc_32_tester;
crc_ccitt_tester::master_test( "CRC-CCITT", std_crc_ccitt_result );
crc_16_tester::master_test( "CRC-16", std_crc_16_result );
crc_32_tester::master_test( "CRC-32", std_crc_32_result );
// Run a timing comparison test
timing_test();
// Test using augmented messages
augmented_tests();
// Test with CRC types smaller than a byte
small_crc_test1();
small_crc_test2();
// Try a CRC based on the (x + 1) polynominal, which is a factor in
// many real-life polynominals and doesn't fit evenly in a byte.
cout << "Doing one-bit polynominal CRC test." << endl;
boost::crc_basic<1> crc_1( 1 );
crc_1.process_bytes( std_data, std_data_len );
BOOST_CHECK( crc_1.checksum() == 1 );
// Test the function object interface
cout << "Doing functional object interface test." << endl;
boost::crc_optimal<16, 0x8005, 0, 0, true, true> crc_16;
crc_16 = std::for_each( std_data, std_data + std_data_len, crc_16 );
BOOST_CHECK( crc_16() == std_crc_16_result );
return boost::exit_success;
}