blob: e17e70a299c13ec0d0efa8632cf80177b22c4e7b [file] [log] [blame]
/*
Copyright 2005-2007 Adobe Systems Incorporated
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
See http://opensource.adobe.com/gil for most recent version including documentation.
*/
// pixel.cpp : Tests GIL pixels.
//
#include <iterator>
#include <iostream>
#include <boost/type_traits.hpp>
#include <boost/mpl/vector.hpp>
#include <boost/mpl/size.hpp>
#include <boost/mpl/at.hpp>
#include <boost/mpl/size.hpp>
#include <boost/gil/planar_pixel_reference.hpp>
#include <boost/gil/packed_pixel.hpp>
#include <boost/gil/rgb.hpp>
#include <boost/gil/gray.hpp>
#include <boost/gil/rgba.hpp>
#include <boost/gil/cmyk.hpp>
#include <boost/gil/pixel.hpp>
#include <boost/gil/typedefs.hpp>
#include <boost/gil/channel_algorithm.hpp>
#include <boost/gil/color_convert.hpp>
#include <boost/gil/gil_concept.hpp>
#include <boost/gil/metafunctions.hpp>
#include <boost/gil/bit_aligned_pixel_reference.hpp>
// Testing pixel references and values, pixel operations, color conversion
using namespace boost::gil;
using std::swap;
using namespace boost;
void error_if(bool condition);
struct increment {
template <typename Incrementable> void operator()(Incrementable& x) const { ++x; }
};
struct prev {
template <typename Subtractable>
typename channel_traits<Subtractable>::value_type operator()(const Subtractable& x) const { return x-1; }
};
struct set_to_one{ int operator()() const { return 1; } };
// Construct with two pixel types. They must be compatible and the second must be mutable
template <typename C1, typename C2>
struct do_basic_test : public C1, public C2 {
typedef typename C1::type pixel1_t;
typedef typename C2::type pixel2_t;
typedef typename C1::pixel_t::value_type pixel1_value_t;
typedef typename C2::pixel_t::value_type pixel2_value_t;
typedef pixel1_value_t pixel_value_t;
do_basic_test(const pixel_value_t& v) : C1(v), C2(v) {}
void test_all() {
test_heterogeneous();
// test homogeneous algorithms - fill, max, min
static const int num_chan = num_channels<typename C2::pixel_t>::value;
static_fill(C2::_pixel, gil::at_c<0>(C1::_pixel)+1);
error_if(gil::at_c<0>(C2::_pixel) != gil::at_c<num_chan-1>(C2::_pixel));
C2::_pixel = C1::_pixel;
error_if(static_max(C2::_pixel) != static_max(C1::_pixel));
error_if(static_min(C2::_pixel) != static_min(C1::_pixel));
error_if(static_max(C2::_pixel) < static_min(C2::_pixel));
// test operator[]
C2::_pixel[0] = C1::_pixel[0]+1;
error_if(C2::_pixel[0] != C1::_pixel[0]+1);
}
void test_heterogeneous() {
// Both must be pixel types (not necessarily pixel values). The second must be mutable. They must be compatible
boost::function_requires<PixelConcept<typename C1::pixel_t> >();
boost::function_requires<MutablePixelConcept<typename C2::pixel_t> >();
boost::function_requires<PixelsCompatibleConcept<typename C1::pixel_t,typename C2::pixel_t> >();
C2::_pixel = C1::_pixel; // test operator=
error_if(C1::_pixel != C2::_pixel); // test operator==
// construct a pixel value from it
pixel1_value_t v1(C1::_pixel);
pixel2_value_t v2(C2::_pixel);
error_if(v1 != v2);
// construct from a pixel value
pixel1_t c1(v1);
pixel2_t c2(v2);
error_if(c1 != c2);
// Invert the first semantic channel.
C2::_pixel = C1::_pixel;
semantic_at_c<0>(C2::_pixel) = channel_invert(semantic_at_c<0>(C2::_pixel));
error_if(C1::_pixel == C2::_pixel); // now they must not be equal
// test pixel algorithms
C2::_pixel = C1::_pixel;
static_for_each(C2::_pixel, increment());
static_transform(C2::_pixel, C2::_pixel, prev());
error_if(C1::_pixel!=C2::_pixel);
static_generate(C2::_pixel, set_to_one());
error_if(gil::at_c<0>(C2::_pixel) != 1);
// Test swap if both are mutable and if their value type is the same
// (We know the second one is mutable)
typedef typename boost::add_reference<typename C1::type>::type p1_ref;
test_swap(
boost::mpl::bool_<
pixel_reference_is_mutable<p1_ref>::value &&
boost::is_same<pixel1_value_t,pixel2_value_t>::value> ());
}
void test_swap(boost::mpl::false_) {}
void test_swap(boost::mpl::true_) {
// test swap
static_fill(C1::_pixel, 0);
static_fill(C2::_pixel, 1);
pixel_value_t pv1(C1::_pixel);
pixel_value_t pv2(C2::_pixel);
error_if(C2::_pixel == C1::_pixel);
swap(C1::_pixel, C2::_pixel);
error_if(C1::_pixel != pv2 || C2::_pixel != pv1);
}
};
template <typename PixelValue, int Tag=0>
class value_core {
public:
typedef PixelValue type;
typedef type pixel_t;
type _pixel;
value_core() : _pixel(0) {}
value_core(const type& val) : _pixel(val) { // test copy constructor
boost::function_requires<PixelValueConcept<pixel_t> >();
type p2; // test default constructor
}
};
template <typename PixelRef, int Tag=0>
class reference_core : public value_core<typename boost::remove_reference<PixelRef>::type::value_type, Tag> {
public:
typedef PixelRef type;
typedef typename boost::remove_reference<PixelRef>::type pixel_t;
typedef value_core<typename pixel_t::value_type, Tag> parent_t;
type _pixel;
reference_core() : parent_t(), _pixel(parent_t::_pixel) {}
reference_core(const typename pixel_t::value_type& val) : parent_t(val), _pixel(parent_t::_pixel) {
boost::function_requires<PixelConcept<pixel_t> >();
}
};
// Use a subset of pixel models that covers all color spaces, channel depths, reference/value, planar/interleaved, const/mutable
// color conversion will be invoked on pairs of them. Having an exhaustive binary check would be too big/expensive.
typedef mpl::vector<
value_core<gray8_pixel_t>,
reference_core<gray16_pixel_t&>,
value_core<bgr8_pixel_t>,
reference_core<rgb8_planar_ref_t>,
value_core<argb32_pixel_t>,
reference_core<cmyk32f_pixel_t&>,
reference_core<abgr16c_ref_t>, // immutable reference
reference_core<rgb32fc_planar_ref_t>
> representative_pixels_t;
template <typename Vector, typename Fun, int K>
struct for_each_impl {
static void apply(Fun fun) {
for_each_impl<Vector,Fun,K-1>::apply(fun);
fun(typename mpl::at_c<Vector,K>::type());
}
};
template <typename Vector, typename Fun>
struct for_each_impl<Vector,Fun,-1> {
static void apply(Fun fun) {}
};
template <typename Vector, typename Fun>
void for_each(Fun fun) {
for_each_impl<Vector,Fun, mpl::size<Vector>::value-1>::apply(fun);
}
template <typename Pixel1>
struct ccv2 {
template <typename P1, typename P2>
void color_convert_compatible(const P1& p1, P2& p2, mpl::true_) {
typedef typename P1::value_type value_t;
p2 = p1;
value_t converted;
color_convert(p1, converted);
error_if(converted != p2);
}
template <typename P1, typename P2>
void color_convert_compatible(const P1& p1, P2& p2, mpl::false_) {
color_convert(p1,p2);
}
template <typename P1, typename P2>
void color_convert_impl(const P1& p1, P2& p2) {
color_convert_compatible(p1, p2, mpl::bool_<pixels_are_compatible<P1,P2>::value>());
}
template <typename Pixel2>
void operator()(Pixel2) {
// convert from Pixel1 to Pixel2 (or, if Pixel2 is immutable, to its value type)
static const int p2_is_mutable = pixel_reference_is_mutable<typename Pixel2::type>::type::value;
typedef typename boost::remove_reference<typename Pixel2::type>::type pixel_model_t;
typedef typename pixel_model_t::value_type p2_value_t;
typedef typename mpl::if_c<p2_is_mutable, Pixel2, value_core<p2_value_t> >::type pixel2_mutable;
Pixel1 p1;
pixel2_mutable p2;
color_convert_impl(p1._pixel, p2._pixel);
}
};
struct ccv1 {
template <typename Pixel>
void operator()(Pixel) {
for_each<representative_pixels_t>(ccv2<Pixel>());
}
};
void test_color_convert() {
for_each<representative_pixels_t>(ccv1());
}
void test_packed_pixel() {
typedef packed_pixel_type<uint16_t, mpl::vector3_c<unsigned,5,6,5>, rgb_layout_t>::type rgb565_pixel_t;
boost::function_requires<PixelValueConcept<rgb565_pixel_t> >();
BOOST_STATIC_ASSERT((sizeof(rgb565_pixel_t)==2));
// define a bgr556 pixel
typedef packed_pixel_type<uint16_t, mpl::vector3_c<unsigned,5,6,5>, bgr_layout_t>::type bgr556_pixel_t;
boost::function_requires<PixelValueConcept<bgr556_pixel_t> >();
// Create a zero packed pixel and a full regular unpacked pixel.
rgb565_pixel_t r565;//((uint16_t)0);
rgb8_pixel_t rgb_full(255,255,255);
// Convert all channels of the unpacked pixel to the packed one & assert the packed one is full
get_color(r565,red_t()) = channel_convert<kth_element_type<rgb565_pixel_t, 0>::type>(get_color(rgb_full,red_t()));
get_color(r565,green_t()) = channel_convert<kth_element_type<rgb565_pixel_t, 1>::type>(get_color(rgb_full,green_t()));
get_color(r565,blue_t()) = channel_convert<kth_element_type<rgb565_pixel_t, 2>::type>(get_color(rgb_full,blue_t()));
error_if(r565 != rgb565_pixel_t((uint16_t)65535));
// rgb565 is compatible with bgr556. Test interoperability
boost::function_requires<PixelsCompatibleConcept<rgb565_pixel_t,bgr556_pixel_t> >();
do_basic_test<value_core<rgb565_pixel_t,0>, value_core<bgr556_pixel_t,1> >(r565).test_heterogeneous();
color_convert(r565,rgb_full);
color_convert(rgb_full,r565);
// Test bit-aligned pixel reference
typedef const bit_aligned_pixel_reference<boost::uint8_t, boost::mpl::vector3_c<int,1,2,1>, bgr_layout_t, true> bgr121_ref_t;
typedef const bit_aligned_pixel_reference<boost::uint8_t, boost::mpl::vector3_c<int,1,2,1>, rgb_layout_t, true> rgb121_ref_t;
typedef rgb121_ref_t::value_type rgb121_pixel_t;
rgb121_pixel_t p121;
do_basic_test<reference_core<bgr121_ref_t,0>, reference_core<rgb121_ref_t,1> >(p121).test_heterogeneous();
do_basic_test<value_core<rgb121_pixel_t,0>, reference_core<rgb121_ref_t,1> >(p121).test_heterogeneous();
BOOST_STATIC_ASSERT((pixel_reference_is_proxy<rgb8_planar_ref_t>::value));
BOOST_STATIC_ASSERT((pixel_reference_is_proxy<bgr121_ref_t>::value));
BOOST_STATIC_ASSERT(!(pixel_reference_is_proxy<rgb8_pixel_t>::value));
BOOST_STATIC_ASSERT(!(pixel_reference_is_proxy<rgb8_pixel_t&>::value));
BOOST_STATIC_ASSERT(!(pixel_reference_is_proxy<const rgb8_pixel_t&>::value));
BOOST_STATIC_ASSERT( (pixel_reference_is_mutable< rgb8_pixel_t&>::value));
BOOST_STATIC_ASSERT(!(pixel_reference_is_mutable<const rgb8_pixel_t&>::value));
BOOST_STATIC_ASSERT((pixel_reference_is_mutable<const rgb8_planar_ref_t&>::value));
BOOST_STATIC_ASSERT((pixel_reference_is_mutable< rgb8_planar_ref_t >::value));
BOOST_STATIC_ASSERT(!(pixel_reference_is_mutable<const rgb8c_planar_ref_t&>::value));
BOOST_STATIC_ASSERT(!(pixel_reference_is_mutable< rgb8c_planar_ref_t >::value));
BOOST_STATIC_ASSERT( (pixel_reference_is_mutable<bgr121_ref_t>::value));
BOOST_STATIC_ASSERT(!(pixel_reference_is_mutable<bgr121_ref_t::const_reference>::value));
}
void test_pixel() {
test_packed_pixel();
rgb8_pixel_t rgb8(1,2,3);
do_basic_test<value_core<rgb8_pixel_t,0>, reference_core<rgb8_pixel_t&,1> >(rgb8).test_all();
do_basic_test<value_core<bgr8_pixel_t,0>, reference_core<rgb8_planar_ref_t,1> >(rgb8).test_all();
do_basic_test<reference_core<rgb8_planar_ref_t,0>, reference_core<bgr8_pixel_t&,1> >(rgb8).test_all();
do_basic_test<reference_core<const rgb8_pixel_t&,0>, reference_core<rgb8_pixel_t&,1> >(rgb8).test_all();
test_color_convert();
// Semantic vs physical channel accessors. Named channel accessors
bgr8_pixel_t bgr8(rgb8);
error_if(bgr8[0] == rgb8[0]);
error_if(dynamic_at_c(bgr8,0) == dynamic_at_c(rgb8,0));
error_if(gil::at_c<0>(bgr8) == gil::at_c<0>(rgb8));
error_if(semantic_at_c<0>(bgr8) != semantic_at_c<0>(rgb8));
error_if(get_color(bgr8,blue_t()) != get_color(rgb8,blue_t()));
// Assigning a grayscale channel to a pixel
gray16_pixel_t g16(34);
g16 = 8;
bits16 g = get_color(g16,gray_color_t());
error_if(g != 8);
error_if(g16 != 8);
}
int main(int argc, char* argv[]) {
test_pixel();
return 0;
}