blob: 0d1d1152d476241fe48f3f26e2b8bbb680d1ae16 [file] [log] [blame]
//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#include <boost/config.hpp>
#include <iostream>
#include <algorithm>
#include <boost/graph/adjacency_list.hpp>
using namespace std;
using namespace boost;
/*
Edge Basics
This example demonstrates the GGCL Edge interface
There is not much to the Edge interface. Basically just two
functions to access the source and target vertex:
source(e)
target(e)
and one associated type for the vertex type:
edge_traits<Edge>::vertex_type
Sample output:
(0,1) (0,2) (0,3) (0,4) (2,0) (2,4) (3,0) (3,1)
*/
template <class Graph>
struct exercise_edge {
exercise_edge(Graph& g) : G(g) {}
typedef typename boost::graph_traits<Graph>::edge_descriptor Edge;
typedef typename boost::graph_traits<Graph>::vertex_descriptor Vertex;
void operator()(Edge e) const
{
//begin
// Get the associated vertex type out of the edge using the
// edge_traits class
// Use the source() and target() functions to access the vertices
// that belong to Edge e
Vertex src = source(e, G);
Vertex targ = target(e, G);
// print out the vertex id's just because
cout << "(" << src << "," << targ << ") ";
//end
}
Graph& G;
};
int
main()
{
typedef adjacency_list<> MyGraph;
typedef pair<int,int> Pair;
Pair edge_array[8] = { Pair(0,1), Pair(0,2), Pair(0,3), Pair(0,4),
Pair(2,0), Pair(3,0), Pair(2,4), Pair(3,1) };
// Construct a graph using the edge_array (passing in pointers
// (iterators) to the beginning and end of the array), and
// specifying the number of vertices as 5
MyGraph G(5);
for (int i=0; i<8; ++i)
add_edge(edge_array[i].first, edge_array[i].second, G);
// Use the STL for_each algorithm to "exercise" all of the edges in
// the graph
for_each(edges(G).first, edges(G).second, exercise_edge<MyGraph>(G));
cout << endl;
return 0;
}