blob: 91d5a0d47d19e87178be4b21d6941e4537e18795 [file] [log] [blame]
// (C) Copyright Andrew Sutton 2007
//
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0 (See accompanying file
// LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
//[inclusive_mean_geodesic_example
#include <iostream>
#include <iomanip>
#include <boost/graph/directed_graph.hpp>
#include <boost/graph/exterior_property.hpp>
#include <boost/graph/floyd_warshall_shortest.hpp>
#include <boost/graph/geodesic_distance.hpp>
#include "helper.hpp"
using namespace std;
using namespace boost;
// This template structure defines the function that we will apply
// to compute both the per-vertex mean geodesic distances and the
// graph's mean geodesic distance.
template <typename Graph,
typename DistanceType,
typename ResultType,
typename Divides = divides<ResultType> >
struct inclusive_average
{
typedef DistanceType distance_type;
typedef ResultType result_type;
result_type operator ()(distance_type d, const Graph& g)
{
if(d == numeric_values<distance_type>::infinity()) {
return numeric_values<result_type>::infinity();
}
else {
return div(result_type(d), result_type(num_vertices(g)));
}
}
Divides div;
};
// The Page type stores the name of each vertex in the graph and
// represents web pages that can be navigated to.
struct WebPage
{
string name;
};
// The Link type stores an associated probability of traveling
// from one page to another.
struct Link
{
float probability;
};
// Declare the graph type and its vertex and edge types.
typedef directed_graph<WebPage, Link> Graph;
typedef graph_traits<Graph>::vertex_descriptor Vertex;
typedef graph_traits<Graph>::edge_descriptor Edge;
// The name map provides an abstract accessor for the names of
// each vertex. This is used during graph creation.
typedef property_map<Graph, string WebPage::*>::type NameMap;
// Declare a matrix type and its corresponding property map that
// will contain the distances between each pair of vertices.
typedef exterior_vertex_property<Graph, float> DistanceProperty;
typedef DistanceProperty::matrix_type DistanceMatrix;
typedef DistanceProperty::matrix_map_type DistanceMatrixMap;
// Declare the weight map as an accessor into the bundled
// edge property.
typedef property_map<Graph, float Link::*>::type WeightMap;
// Declare a container and its corresponding property map that
// will contain the resulting mean geodesic distances of each
// vertex in the graph.
typedef exterior_vertex_property<Graph, float> GeodesicProperty;
typedef GeodesicProperty::container_type GeodesicContainer;
typedef GeodesicProperty::map_type GeodesicMap;
static float exclusive_geodesics(const Graph&, DistanceMatrixMap, GeodesicMap);
static float inclusive_geodesics(const Graph&, DistanceMatrixMap, GeodesicMap);
int
main(int argc, char *argv[])
{
// Create the graph, a name map that providse abstract access
// to the web page names, and the weight map as an accessor to
// the edge weights (or probabilities).
Graph g;
NameMap nm(get(&WebPage::name, g));
WeightMap wm(get(&Link::probability, g));
// Read the weighted graph from standard input.
read_weighted_graph(g, nm, wm, cin);
// Compute the distances between all pairs of vertices using
// the Floyd-Warshall algorithm. The weight map was created
// above so it could be populated when the graph was read in.
DistanceMatrix distances(num_vertices(g));
DistanceMatrixMap dm(distances, g);
floyd_warshall_all_pairs_shortest_paths(g, dm, weight_map(wm));
// Create the containers and the respective property maps that
// will contain the mean geodesics averaged both including
// self-loop distances and excluding them.
GeodesicContainer exclude(num_vertices(g));
GeodesicContainer include(num_vertices(g));
GeodesicMap exmap(exclude, g);
GeodesicMap inmap(include, g);
float ex = exclusive_geodesics(g, dm, exmap);
float in = inclusive_geodesics(g, dm, inmap);
// Print the mean geodesic distance of each vertex and finally,
// the graph itself.
cout << setw(12) << setiosflags(ios::left) << "vertex";
cout << setw(12) << setiosflags(ios::left) << "excluding";
cout << setw(12) << setiosflags(ios::left) << "including" << endl;
graph_traits<Graph>::vertex_iterator i, end;
for(tie(i, end) = vertices(g); i != end; ++i) {
cout << setw(12) << setiosflags(ios::left)
<< g[*i].name
<< setw(12) << get(exmap, *i)
<< setw(12) << get(inmap, *i) << endl;
}
cout << "small world (excluding self-loops): " << ex << endl;
cout << "small world (including self-loops): " << in << endl;
return 0;
}
float
exclusive_geodesics(const Graph& g, DistanceMatrixMap dm, GeodesicMap gm)
{
// Compute the mean geodesic distances, which excludes distances
// of self-loops by default. Return the measure for the entire graph.
return all_mean_geodesics(g, dm, gm);
}
float
inclusive_geodesics(const Graph &g, DistanceMatrixMap dm, GeodesicMap gm)
{
// Create a new measure object for computing the mean geodesic
// distance of all vertices. This measure will actually be used
// for both averages.
inclusive_average<Graph, float, float> m;
// Compute the mean geodesic distance using the inclusive average
// to account for self-loop distances. Return the measure for the
// entire graph.
return all_mean_geodesics(g, dm, gm, m);
}
//]