blob: fcb606720ff1579539655a5631ca6b66de102eb5 [file] [log] [blame]
// Copyright 2002 Rensselaer Polytechnic Institute
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Lauren Foutz
// Scott Hill
#include <boost/graph/floyd_warshall_shortest.hpp>
#include <map>
#include <algorithm>
#include <iostream>
#include <boost/random/linear_congruential.hpp>
#include <boost/graph/graph_utility.hpp>
#include <boost/graph/properties.hpp>
#include <boost/graph/bellman_ford_shortest_paths.hpp>
#include <boost/graph/random.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/adjacency_matrix.hpp>
#include <boost/test/minimal.hpp>
#include <algorithm>
using namespace boost;
template<typename T>
inline const T& my_min(const T& x, const T& y)
{ return x < y? x : y; }
template<typename Graph>
bool acceptance_test(Graph& g, int vec, int e)
{
boost::minstd_rand ran(vec);
{
typename boost::property_map<Graph, boost::vertex_name_t>::type index =
boost::get(boost::vertex_name, g);
typename boost::graph_traits<Graph>::vertex_iterator firstv, lastv,
firstv2, lastv2;
int x = 0;
for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv;
firstv++){
boost::put(index, *firstv, x);
x++;
}
for(int i = 0; i < e; i++){
boost::add_edge(index[ran() % vec], index[ran() % vec], g);
}
typename boost::graph_traits<Graph>::edge_iterator first, last;
typename boost::property_map<Graph, boost::edge_weight_t>::type
local_edge_map = boost::get(boost::edge_weight, g);
for(boost::tie(first, last) = boost::edges(g); first != last; first++){
if (ran() % vec != 0){
boost::put(local_edge_map, *first, ran() % 100);
} else {
boost::put(local_edge_map, *first, 0 - (ran() % 100));
}
}
int int_inf =
std::numeric_limits<int>::max BOOST_PREVENT_MACRO_SUBSTITUTION();
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex_des;
std::map<vertex_des,int> matrixRow;
std::map<vertex_des, std::map<vertex_des ,int> > matrix;
typedef typename boost::property_map<Graph, boost::vertex_distance_t>::type
distance_type;
distance_type distance_row = boost::get(boost::vertex_distance, g);
for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv;
firstv++){
boost::put(distance_row, *firstv, int_inf);
matrixRow[*firstv] = int_inf;
}
for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv;
firstv++){
matrix[*firstv] = matrixRow;
}
for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv;
firstv++){
matrix[*firstv][*firstv] = 0;
}
std::map<vertex_des, std::map<vertex_des, int> > matrix3(matrix);
std::map<vertex_des, std::map<vertex_des, int> > matrix4(matrix);
for(boost::tie(first, last) = boost::edges(g); first != last; first++){
if (matrix[boost::source(*first, g)][boost::target(*first, g)] != int_inf)
{
matrix[boost::source(*first, g)][boost::target(*first, g)] =
my_min
(boost::get(local_edge_map, *first),
matrix[boost::source(*first, g)][boost::target(*first, g)]);
} else {
matrix[boost::source(*first, g)][boost::target(*first, g)] =
boost::get(local_edge_map, *first);
}
}
bool is_undirected =
boost::is_same<typename boost::graph_traits<Graph>::directed_category,
boost::undirected_tag>::value;
if (is_undirected){
for(boost::tie(first, last) = boost::edges(g); first != last; first++){
if (matrix[boost::target(*first, g)][boost::source(*first, g)] != int_inf)
{
matrix[boost::target(*first, g)][boost::source(*first, g)] =
my_min
(boost::get(local_edge_map, *first),
matrix[boost::target(*first, g)][boost::source(*first, g)]);
} else {
matrix[boost::target(*first, g)][boost::source(*first, g)] =
boost::get(local_edge_map, *first);
}
}
}
bool bellman, floyd1, floyd2, floyd3;
floyd1 =
boost::floyd_warshall_initialized_all_pairs_shortest_paths
(g,
matrix, weight_map(boost::get(boost::edge_weight, g)).
distance_inf(int_inf). distance_zero(0));
floyd2 =
boost::floyd_warshall_all_pairs_shortest_paths
(g, matrix3,
weight_map(local_edge_map).
distance_inf(int_inf). distance_zero(0));
floyd3 = boost::floyd_warshall_all_pairs_shortest_paths(g, matrix4);
boost::dummy_property_map dummy_map;
std::map<vertex_des, std::map<vertex_des, int> > matrix2;
for(boost::tie(firstv, lastv) = vertices(g); firstv != lastv; firstv++){
boost::put(distance_row, *firstv, 0);
bellman =
boost::bellman_ford_shortest_paths
(g, vec,
weight_map(boost::get(boost::edge_weight, g)).
distance_map(boost::get(boost::vertex_distance, g)).
predecessor_map(dummy_map));
distance_row = boost::get(boost::vertex_distance, g);
for(boost::tie(firstv2, lastv2) = vertices(g); firstv2 != lastv2;
firstv2++){
matrix2[*firstv][*firstv2] = boost::get(distance_row, *firstv2);
boost::put(distance_row, *firstv2, int_inf);
}
if(bellman == false){
break;
}
}
if (bellman != floyd1 || bellman != floyd2 || bellman != floyd3){
std::cout <<
"A negative cycle was detected in one algorithm but not the others. "
<< std::endl;
return false;
}
else if (bellman == false && floyd1 == false && floyd2 == false &&
floyd3 == false){
return true;
}
else {
typename boost::graph_traits<Graph>::vertex_iterator first1, first2,
last1, last2;
for (boost::tie(first1, last1) = boost::vertices(g); first1 != last1;
first1++){
for (boost::tie(first2, last2) = boost::vertices(g); first2 != last2;
first2++){
if (matrix2[*first1][*first2] != matrix[*first1][*first2]){
std::cout << "Algorithms do not match at matrix point "
<< index[*first1] << " " << index[*first2]
<< " Bellman results: " << matrix2[*first1][*first2]
<< " floyd 1 results " << matrix[*first1][*first2]
<< std::endl;
return false;
}
if (matrix2[*first1][*first2] != matrix3[*first1][*first2]){
std::cout << "Algorithms do not match at matrix point "
<< index[*first1] << " " << index[*first2]
<< " Bellman results: " << matrix2[*first1][*first2]
<< " floyd 2 results " << matrix3[*first1][*first2]
<< std::endl;
return false;
}
if (matrix2[*first1][*first2] != matrix4[*first1][*first2]){
std::cout << "Algorithms do not match at matrix point "
<< index[*first1] << " " << index[*first2]
<< " Bellman results: " << matrix2[*first1][*first2]
<< " floyd 3 results " << matrix4[*first1][*first2]
<< std::endl;
return false;
}
}
}
}
}
return true;
}
template<typename Graph>
bool acceptance_test2(Graph& g, int vec, int e)
{
boost::minstd_rand ran(vec);
{
typename boost::property_map<Graph, boost::vertex_name_t>::type index =
boost::get(boost::vertex_name, g);
typename boost::graph_traits<Graph>::vertex_iterator firstv, lastv,
firstv2, lastv2;
int x = 0;
for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv;
firstv++){
boost::put(index, *firstv, x);
x++;
}
boost::generate_random_graph(g, vec, e, ran, true);
typename boost::graph_traits<Graph>::edge_iterator first, last;
typename boost::property_map<Graph, boost::edge_weight_t>::type
local_edge_map = boost::get(boost::edge_weight, g);
for(boost::tie(first, last) = boost::edges(g); first != last; first++){
if (ran() % vec != 0){
boost::put(local_edge_map, *first, ran() % 100);
} else {
boost::put(local_edge_map, *first, 0 - (ran() % 100));
}
}
int int_inf =
std::numeric_limits<int>::max BOOST_PREVENT_MACRO_SUBSTITUTION();
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex_des;
std::map<vertex_des,int> matrixRow;
std::map<vertex_des, std::map<vertex_des ,int> > matrix;
typedef typename boost::property_map<Graph, boost::vertex_distance_t>::type
distance_type;
distance_type distance_row = boost::get(boost::vertex_distance, g);
for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv;
firstv++){
boost::put(distance_row, *firstv, int_inf);
matrixRow[*firstv] = int_inf;
}
for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv;
firstv++){
matrix[*firstv] = matrixRow;
}
for(boost::tie(firstv, lastv) = boost::vertices(g); firstv != lastv;
firstv++){
matrix[*firstv][*firstv] = 0;
}
std::map<vertex_des, std::map<vertex_des, int> > matrix3(matrix);
std::map<vertex_des, std::map<vertex_des, int> > matrix4(matrix);
for(boost::tie(first, last) = boost::edges(g); first != last; first++){
if (matrix[boost::source(*first, g)][boost::target(*first, g)] != int_inf)
{
matrix[boost::source(*first, g)][boost::target(*first, g)] =
my_min
(boost::get(local_edge_map, *first),
matrix[boost::source(*first, g)][boost::target(*first, g)]);
} else {
matrix[boost::source(*first, g)][boost::target(*first, g)] =
boost::get(local_edge_map, *first);
}
}
bool is_undirected =
boost::is_same<typename boost::graph_traits<Graph>::directed_category,
boost::undirected_tag>::value;
if (is_undirected){
for(boost::tie(first, last) = boost::edges(g); first != last; first++){
if (matrix[boost::target(*first, g)][boost::source(*first, g)]
!= int_inf){
matrix[boost::target(*first, g)][boost::source(*first, g)] =
my_min
(boost::get(local_edge_map, *first),
matrix[boost::target(*first, g)][boost::source(*first, g)]);
} else {
matrix[boost::target(*first, g)][boost::source(*first, g)] =
boost::get(local_edge_map, *first);
}
}
}
bool bellman, floyd1, floyd2, floyd3;
floyd1 =
boost::floyd_warshall_initialized_all_pairs_shortest_paths
(g,
matrix, weight_map(boost::get(boost::edge_weight, g)).
distance_inf(int_inf). distance_zero(0));
floyd2 =
boost::floyd_warshall_all_pairs_shortest_paths
(g, matrix3,
weight_map(local_edge_map).
distance_inf(int_inf). distance_zero(0));
floyd3 = boost::floyd_warshall_all_pairs_shortest_paths(g, matrix4);
boost::dummy_property_map dummy_map;
std::map<vertex_des, std::map<vertex_des, int> > matrix2;
for(boost::tie(firstv, lastv) = vertices(g); firstv != lastv; firstv++){
boost::put(distance_row, *firstv, 0);
bellman =
boost::bellman_ford_shortest_paths
(g, vec,
weight_map(boost::get(boost::edge_weight, g)).
distance_map(boost::get(boost::vertex_distance, g)).
predecessor_map(dummy_map));
distance_row = boost::get(boost::vertex_distance, g);
for(boost::tie(firstv2, lastv2) = vertices(g); firstv2 != lastv2;
firstv2++){
matrix2[*firstv][*firstv2] = boost::get(distance_row, *firstv2);
boost::put(distance_row, *firstv2, int_inf);
}
if(bellman == false){
break;
}
}
if (bellman != floyd1 || bellman != floyd2 || bellman != floyd3){
std::cout <<
"A negative cycle was detected in one algorithm but not the others. "
<< std::endl;
return false;
}
else if (bellman == false && floyd1 == false && floyd2 == false &&
floyd3 == false){
return true;
}
else {
typename boost::graph_traits<Graph>::vertex_iterator first1, first2,
last1, last2;
for (boost::tie(first1, last1) = boost::vertices(g); first1 != last1;
first1++){
for (boost::tie(first2, last2) = boost::vertices(g); first2 != last2;
first2++){
if (matrix2[*first1][*first2] != matrix[*first1][*first2]){
std::cout << "Algorithms do not match at matrix point "
<< index[*first1] << " " << index[*first2]
<< " Bellman results: " << matrix2[*first1][*first2]
<< " floyd 1 results " << matrix[*first1][*first2]
<< std::endl;
return false;
}
if (matrix2[*first1][*first2] != matrix3[*first1][*first2]){
std::cout << "Algorithms do not match at matrix point "
<< index[*first1] << " " << index[*first2]
<< " Bellman results: " << matrix2[*first1][*first2]
<< " floyd 2 results " << matrix3[*first1][*first2]
<< std::endl;
return false;
}
if (matrix2[*first1][*first2] != matrix4[*first1][*first2]){
std::cout << "Algorithms do not match at matrix point "
<< index[*first1] << " " << index[*first2]
<< " Bellman results: " << matrix2[*first1][*first2]
<< " floyd 3 results " << matrix4[*first1][*first2]
<< std::endl;
return false;
}
}
}
}
}
return true;
}
int test_main(int, char*[])
{
typedef boost::adjacency_list<boost::listS, boost::listS, boost::directedS,
boost::property<boost::vertex_distance_t, int,
boost::property<boost::vertex_name_t, int> > ,
boost::property<boost::edge_weight_t, int> > Digraph;
Digraph adjlist_digraph;
BOOST_CHECK(acceptance_test2(adjlist_digraph, 100, 2000));
typedef boost::adjacency_matrix<boost::undirectedS,
boost::property<boost::vertex_distance_t, int,
boost::property<boost::vertex_name_t, int> > ,
boost::property<boost::edge_weight_t, int> > Graph;
Graph matrix_graph(100);
BOOST_CHECK(acceptance_test(matrix_graph, 100, 2000));
return 0;
}