blob: 3cd665bdfc32479b67c2167799b01a8c2d4c128e [file] [log] [blame]
//=======================================================================
// Copyright 2009 Trustees of Indiana University.
// Authors: Michael Hansen, Andrew Lumsdaine
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#include <fstream>
#include <iostream>
#include <set>
#include <boost/foreach.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/graph/grid_graph.hpp>
#include <boost/random.hpp>
#include <boost/test/minimal.hpp>
#define DIMENSIONS 3
using namespace boost;
// Function that prints a vertex to std::cout
template <typename Vertex>
void print_vertex(Vertex vertex_to_print) {
std::cout << "(";
for (std::size_t dimension_index = 0;
dimension_index < DIMENSIONS;
++dimension_index) {
std::cout << vertex_to_print[dimension_index];
if (dimension_index != (DIMENSIONS - 1)) {
std::cout << ", ";
}
}
std::cout << ")";
}
int test_main(int argc, char* argv[]) {
std::size_t random_seed = time(0);
if (argc > 1) {
random_seed = lexical_cast<std::size_t>(argv[1]);
}
minstd_rand generator(random_seed);
typedef grid_graph<DIMENSIONS> Graph;
typedef graph_traits<Graph>::vertices_size_type vertices_size_type;
typedef graph_traits<Graph>::edges_size_type edges_size_type;
typedef graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef graph_traits<Graph>::edge_descriptor edge_descriptor;
std::cout << "Dimensions: " << DIMENSIONS << ", lengths: ";
// Randomly generate the dimension lengths (3-10) and wrapping
array<Graph::vertices_size_type, DIMENSIONS> lengths;
array<bool, DIMENSIONS> wrapped;
for (int dimension_index = 0;
dimension_index < DIMENSIONS;
++dimension_index) {
lengths[dimension_index] = 3 + (generator() % 8);
wrapped[dimension_index] = ((generator() % 2) == 0);
std::cout << lengths[dimension_index] <<
(wrapped[dimension_index] ? " [W]" : " [U]") << ", ";
}
std::cout << std::endl;
Graph graph(lengths, wrapped);
// Verify dimension lengths and wrapping
for (int dimension_index = 0;
dimension_index < DIMENSIONS;
++dimension_index) {
BOOST_REQUIRE(graph.length(dimension_index) == lengths[dimension_index]);
BOOST_REQUIRE(graph.wrapped(dimension_index) == wrapped[dimension_index]);
}
// Verify matching indices
for (vertices_size_type vertex_index = 0;
vertex_index < num_vertices(graph);
++vertex_index) {
BOOST_REQUIRE(get(boost::vertex_index, graph, vertex(vertex_index, graph)) == vertex_index);
}
for (edges_size_type edge_index = 0;
edge_index < num_edges(graph);
++edge_index) {
edge_descriptor current_edge = edge_at(edge_index, graph);
BOOST_REQUIRE(get(boost::edge_index, graph, current_edge) == edge_index);
}
// Verify all vertices are within bounds
vertices_size_type vertex_count = 0;
BOOST_FOREACH(vertex_descriptor current_vertex, vertices(graph)) {
vertices_size_type current_index =
get(boost::vertex_index, graph, current_vertex);
for (int dimension_index = 0;
dimension_index < DIMENSIONS;
++dimension_index) {
BOOST_REQUIRE(/*(current_vertex[dimension_index] >= 0) && */ // Always true
(current_vertex[dimension_index] < lengths[dimension_index]));
}
// Verify out-edges of this vertex
edges_size_type out_edge_count = 0;
std::set<vertices_size_type> target_vertices;
BOOST_FOREACH(edge_descriptor out_edge,
out_edges(current_vertex, graph)) {
target_vertices.insert
(get(boost::vertex_index, graph, target(out_edge, graph)));
++out_edge_count;
}
BOOST_REQUIRE(out_edge_count == out_degree(current_vertex, graph));
// Verify in-edges of this vertex
edges_size_type in_edge_count = 0;
BOOST_FOREACH(edge_descriptor in_edge,
in_edges(current_vertex, graph)) {
BOOST_REQUIRE(target_vertices.count
(get(boost::vertex_index, graph, source(in_edge, graph))) > 0);
++in_edge_count;
}
BOOST_REQUIRE(in_edge_count == in_degree(current_vertex, graph));
// The number of out-edges and in-edges should be the same
BOOST_REQUIRE(degree(current_vertex, graph) ==
out_degree(current_vertex, graph) +
in_degree(current_vertex, graph));
// Verify adjacent vertices to this vertex
vertices_size_type adjacent_count = 0;
BOOST_FOREACH(vertex_descriptor adjacent_vertex,
adjacent_vertices(current_vertex, graph)) {
BOOST_REQUIRE(target_vertices.count
(get(boost::vertex_index, graph, adjacent_vertex)) > 0);
++adjacent_count;
}
BOOST_REQUIRE(adjacent_count == out_degree(current_vertex, graph));
// Verify that this vertex is not listed as connected to any
// vertices outside of its adjacent vertices.
BOOST_FOREACH(vertex_descriptor unconnected_vertex, vertices(graph)) {
vertices_size_type unconnected_index =
get(boost::vertex_index, graph, unconnected_vertex);
if ((unconnected_index == current_index) ||
(target_vertices.count(unconnected_index) > 0)) {
continue;
}
BOOST_REQUIRE(!edge(current_vertex, unconnected_vertex, graph).second);
BOOST_REQUIRE(!edge(unconnected_vertex, current_vertex, graph).second);
}
++vertex_count;
}
BOOST_REQUIRE(vertex_count == num_vertices(graph));
// Verify all edges are within bounds
edges_size_type edge_count = 0;
BOOST_FOREACH(edge_descriptor current_edge, edges(graph)) {
vertices_size_type source_index =
get(boost::vertex_index, graph, source(current_edge, graph));
vertices_size_type target_index =
get(boost::vertex_index, graph, target(current_edge, graph));
BOOST_REQUIRE(source_index != target_index);
BOOST_REQUIRE(/* (source_index >= 0) : always true && */ (source_index < num_vertices(graph)));
BOOST_REQUIRE(/* (target_index >= 0) : always true && */ (target_index < num_vertices(graph)));
// Verify that the edge is listed as existing in both directions
BOOST_REQUIRE(edge(source(current_edge, graph), target(current_edge, graph), graph).second);
BOOST_REQUIRE(edge(target(current_edge, graph), source(current_edge, graph), graph).second);
++edge_count;
}
BOOST_REQUIRE(edge_count == num_edges(graph));
return (0);
}