blob: c0919419355b24a2805ce41c387c623a062a197c [file] [log] [blame]
// Copyright (C) 2007 Douglas Gregor
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/graph/use_mpi.hpp>
#include <boost/config.hpp>
#include <boost/throw_exception.hpp>
#include <boost/graph/distributed/adjacency_list.hpp>
#include <boost/graph/distributed/mpi_process_group.hpp>
#include <boost/test/minimal.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/graph/erdos_renyi_generator.hpp>
#include <boost/lexical_cast.hpp>
#include <ctime>
using namespace boost;
using boost::graph::distributed::mpi_process_group;
#ifdef BOOST_NO_EXCEPTIONS
void
boost::throw_exception(std::exception const& ex)
{
std::cout << ex.what() << std::endl;
abort();
}
#endif
int test_main(int argc, char** argv)
{
boost::mpi::environment env(argc, argv);
int n = 10000;
double p = 3e-3;
int seed = std::time(0);
int immediate_response_percent = 10;
if (argc > 1) n = lexical_cast<int>(argv[1]);
if (argc > 2) p = lexical_cast<double>(argv[2]);
if (argc > 3) seed = lexical_cast<int>(argv[3]);
typedef adjacency_list<listS,
distributedS<mpi_process_group, vecS>,
bidirectionalS> Graph;
mpi_process_group pg;
int rank = process_id(pg);
int numprocs = num_processes(pg);
bool i_am_root = rank == 0;
// broadcast the seed
broadcast(pg, seed, 0);
// Random number generator
minstd_rand gen;
minstd_rand require_response_gen;
if (i_am_root) {
std::cout << "n = " << n << ", p = " << p << ", seed = " << seed
<< "\nBuilding graph with the iterator constructor... ";
std::cout.flush();
}
// Build a graph using the iterator constructor, where each of the
// processors has exactly the same information.
gen.seed(seed);
Graph g1(erdos_renyi_iterator<minstd_rand, Graph>(gen, n, p),
erdos_renyi_iterator<minstd_rand, Graph>(),
n, pg, Graph::graph_property_type());
// NGE: Grrr, the default graph property is needed to resolve an
// ambiguous overload in the adjaceny list constructor
// Build another, identical graph using add_edge
if (i_am_root) {
std::cout << "done.\nBuilding graph with add_edge from the root...";
std::cout.flush();
}
gen.seed(seed);
require_response_gen.seed(1);
Graph g2(n, pg);
if (i_am_root) {
// The root will add all of the edges, some percentage of which
// will require an immediate response from the owner of the edge.
for (erdos_renyi_iterator<minstd_rand, Graph> first(gen, n, p), last;
first != last; ++first) {
Graph::lazy_add_edge lazy
= add_edge(vertex(first->first, g2), vertex(first->second, g2), g2);
if (require_response_gen() % 100 < immediate_response_percent) {
// Send out-of-band to require a response
std::pair<graph_traits<Graph>::edge_descriptor, bool> result(lazy);
BOOST_CHECK(source(result.first, g2) == vertex(first->first, g2));
BOOST_CHECK(target(result.first, g2) == vertex(first->second, g2));
}
}
}
if (i_am_root) {
std::cout << "synchronizing...";
std::cout.flush();
}
synchronize(g2);
// Verify that the two graphs are indeed identical.
if (i_am_root) {
std::cout << "done.\nVerifying graphs...";
std::cout.flush();
}
// Check the number of vertices
if (num_vertices(g1) != num_vertices(g2)) {
std::cerr << g1.processor() << ": g1 has " << num_vertices(g1)
<< " vertices, g2 has " << num_vertices(g2) << " vertices.\n";
communicator(pg).abort(-1);
}
// Check the number of edges
if (num_edges(g1) != num_edges(g2)) {
std::cerr << g1.processor() << ": g1 has " << num_edges(g1)
<< " edges, g2 has " << num_edges(g2) << " edges.\n";
communicator(pg).abort(-1);
}
// Check the in-degree and out-degree of each vertex
graph_traits<Graph>::vertex_iterator vfirst1, vlast1, vfirst2, vlast2;
boost::tie(vfirst1, vlast1) = vertices(g1);
boost::tie(vfirst2, vlast2) = vertices(g2);
for(; vfirst1 != vlast1 && vfirst2 != vlast2; ++vfirst1, ++vfirst2) {
if (out_degree(*vfirst1, g1) != out_degree(*vfirst2, g2)) {
std::cerr << g1.processor() << ": out-degree mismatch ("
<< out_degree(*vfirst1, g1) << " vs. "
<< out_degree(*vfirst2, g2) << ").\n";
communicator(pg).abort(-1);
}
if (in_degree(*vfirst1, g1) != in_degree(*vfirst2, g2)) {
std::cerr << g1.processor() << ": in-degree mismatch ("
<< in_degree(*vfirst1, g1) << " vs. "
<< in_degree(*vfirst2, g2) << ").\n";
communicator(pg).abort(-1);
}
}
// TODO: Check the actual edge targets
// Build another, identical graph using add_edge
if (i_am_root) {
std::cout << "done.\nBuilding graph with add_edge from everywhere...";
std::cout.flush();
}
gen.seed(seed);
require_response_gen.seed(1);
Graph g3(n, pg);
{
// Each processor will take a chunk of incoming edges and add
// them. Some percentage of the edge additions will require an
// immediate response from the owner of the edge. This should
// create a lot of traffic when building the graph, but should
// produce a graph identical to the other graphs.
typedef graph_traits<Graph>::edges_size_type edges_size_type;
erdos_renyi_iterator<minstd_rand, Graph> first(gen, n, p);
edges_size_type chunk_size = edges_size_type(p*n*n)/numprocs;
edges_size_type start = chunk_size * rank;
edges_size_type remaining_edges =
(rank < numprocs - 1? chunk_size
: edges_size_type(p*n*n) - start);
// Spin the generator to the first edge we're responsible for
for (; start; ++first, --start) ;
for (; remaining_edges; --remaining_edges, ++first) {
Graph::lazy_add_edge lazy
= add_edge(vertex(first->first, g3), vertex(first->second, g3), g3);
if (require_response_gen() % 100 < immediate_response_percent) {
// Send out-of-band to require a response
std::pair<graph_traits<Graph>::edge_descriptor, bool> result(lazy);
BOOST_CHECK(source(result.first, g3) == vertex(first->first, g3));
BOOST_CHECK(target(result.first, g3) == vertex(first->second, g3));
}
}
}
if (i_am_root) {
std::cout << "synchronizing...";
std::cout.flush();
}
synchronize(g3);
// Verify that the two graphs are indeed identical.
if (i_am_root) {
std::cout << "done.\nVerifying graphs...";
std::cout.flush();
}
// Check the number of vertices
if (num_vertices(g1) != num_vertices(g3)) {
std::cerr << g1.processor() << ": g1 has " << num_vertices(g1)
<< " vertices, g3 has " << num_vertices(g3) << " vertices.\n";
communicator(pg).abort(-1);
}
// Check the number of edges
if (num_edges(g1) != num_edges(g3)) {
std::cerr << g1.processor() << ": g1 has " << num_edges(g1)
<< " edges, g3 has " << num_edges(g3) << " edges.\n";
communicator(pg).abort(-1);
}
// Check the in-degree and out-degree of each vertex
boost::tie(vfirst1, vlast1) = vertices(g1);
boost::tie(vfirst2, vlast2) = vertices(g3);
for(; vfirst1 != vlast1 && vfirst2 != vlast2; ++vfirst1, ++vfirst2) {
if (out_degree(*vfirst1, g1) != out_degree(*vfirst2, g3)) {
std::cerr << g1.processor() << ": out-degree mismatch ("
<< out_degree(*vfirst1, g1) << " vs. "
<< out_degree(*vfirst2, g3) << ").\n";
communicator(pg).abort(-1);
}
if (in_degree(*vfirst1, g1) != in_degree(*vfirst2, g3)) {
std::cerr << g1.processor() << ": in-degree mismatch ("
<< in_degree(*vfirst1, g1) << " vs. "
<< in_degree(*vfirst2, g3) << ").\n";
communicator(pg).abort(-1);
}
}
// TODO: Check the actual edge targets
if (i_am_root) {
std::cout << "done.\n";
std::cout.flush();
}
return 0;
}