blob: 7f89797045899aa901ec883f505e66da59cd9bda [file] [log] [blame]
// Copyright (C) 2005, 2006 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#define PBGL_ACCOUNTING
#include <boost/graph/use_mpi.hpp>
#include <boost/config.hpp>
#include <boost/throw_exception.hpp>
#include <boost/graph/distributed/delta_stepping_shortest_paths.hpp>
#include <boost/graph/distributed/mpi_process_group.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/graph/parallel/distribution.hpp>
#include <boost/graph/erdos_renyi_generator.hpp>
#include <boost/graph/distributed/adjacency_list.hpp>
#include <boost/graph/graphviz.hpp>
#include <boost/random.hpp>
#include <boost/test/minimal.hpp>
#include <boost/graph/iteration_macros.hpp>
#include <iostream>
#include <iomanip>
#ifdef BOOST_NO_EXCEPTIONS
void
boost::throw_exception(std::exception const& ex)
{
std::cout << ex.what() << std::endl;
abort();
}
#endif
/****************************************************************************
* Timing *
****************************************************************************/
typedef double time_type;
inline time_type get_time()
{
return MPI_Wtime();
}
std::string print_time(time_type t)
{
std::ostringstream out;
out << std::setiosflags(std::ios::fixed) << std::setprecision(2) << t;
return out.str();
}
/****************************************************************************
* Edge weight generator iterator *
****************************************************************************/
template<typename F, typename RandomGenerator>
class generator_iterator
{
public:
typedef std::input_iterator_tag iterator_category;
typedef typename F::result_type value_type;
typedef const value_type& reference;
typedef const value_type* pointer;
typedef void difference_type;
explicit
generator_iterator(RandomGenerator& gen, const F& f = F())
: f(f), gen(&gen)
{
value = this->f(gen);
}
reference operator*() const { return value; }
pointer operator->() const { return &value; }
generator_iterator& operator++()
{
value = f(*gen);
return *this;
}
generator_iterator operator++(int)
{
generator_iterator temp(*this);
++(*this);
return temp;
}
bool operator==(const generator_iterator& other) const
{ return f == other.f; }
bool operator!=(const generator_iterator& other) const
{ return !(*this == other); }
private:
F f;
RandomGenerator* gen;
value_type value;
};
template<typename F, typename RandomGenerator>
inline generator_iterator<F, RandomGenerator>
make_generator_iterator( RandomGenerator& gen, const F& f)
{ return generator_iterator<F, RandomGenerator>(gen, f); }
/****************************************************************************
* Verification *
****************************************************************************/
template <typename Graph, typename DistanceMap, typename WeightMap>
void
verify_shortest_paths(const Graph& g, DistanceMap distance,
const WeightMap& weight) {
distance.set_max_ghost_cells(0);
BGL_FORALL_VERTICES_T(v, g, Graph) {
BGL_FORALL_OUTEDGES_T(v, e, g, Graph) {
get(distance, target(e, g));
}
}
synchronize(process_group(g));
BGL_FORALL_VERTICES_T(v, g, Graph) {
BGL_FORALL_OUTEDGES_T(v, e, g, Graph) {
assert(get(distance, target(e, g)) <=
get(distance, source(e, g)) + get(weight, e));
}
}
}
using namespace boost;
using boost::graph::distributed::mpi_process_group;
typedef int weight_type;
struct WeightedEdge {
WeightedEdge(weight_type weight = 0) : weight(weight) { }
weight_type weight;
template<typename Archiver>
void serialize(Archiver& ar, const unsigned int /*version*/)
{
ar & weight;
}
};
struct VertexProperties {
VertexProperties(int d = 0)
: distance(d) { }
int distance;
template<typename Archiver>
void serialize(Archiver& ar, const unsigned int /*version*/)
{
ar & distance;
}
};
void
test_distributed_shortest_paths(int n, double p, int c, int seed)
{
typedef adjacency_list<listS,
distributedS<mpi_process_group, vecS>,
undirectedS,
VertexProperties,
WeightedEdge> Graph;
typedef graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef graph_traits<Graph>::vertices_size_type vertices_size_type;
typedef property_map<Graph, vertex_index_t>::type vertex_index_map;
// Build a random number generator
minstd_rand gen;
gen.seed(seed);
// Build a random graph
Graph g(erdos_renyi_iterator<minstd_rand, Graph>(gen, n, p),
erdos_renyi_iterator<minstd_rand, Graph>(),
make_generator_iterator(gen, uniform_int<int>(0, c)),
n);
uniform_int<vertices_size_type> rand_vertex(0, n);
graph::distributed::delta_stepping_shortest_paths(g,
vertex(rand_vertex(gen), g),
dummy_property_map(),
get(&VertexProperties::distance, g),
get(&WeightedEdge::weight, g));
verify_shortest_paths(g,
get(&VertexProperties::distance, g),
get(&WeightedEdge::weight, g));
}
int test_main(int argc, char* argv[])
{
mpi::environment env(argc, argv);
int n = 1000;
double p = 0.01;
int c = 100;
int seed = 1;
if (argc > 1) n = lexical_cast<int>(argv[1]);
if (argc > 2) p = lexical_cast<double>(argv[2]);
if (argc > 3) c = lexical_cast<int>(argv[3]);
if (argc > 4) seed = lexical_cast<int>(argv[4]);
test_distributed_shortest_paths(n, p, c, seed);
return 0;
}