blob: ee6589671e2da8c9eda4f6af114a03333bb97e8d [file] [log] [blame]
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Olaf Krzikalla 2004-2006.
// (C) Copyright Ion Gaztanaga 2006-2009.
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#include <boost/intrusive/detail/config_begin.hpp>
#include <boost/intrusive/unordered_set.hpp>
#include <boost/intrusive/detail/pointer_to_other.hpp>
#include "itestvalue.hpp"
#include "smart_ptr.hpp"
#include "common_functors.hpp"
#include <vector>
#include <set>
#include <boost/detail/lightweight_test.hpp>
#include "test_macros.hpp"
#include "test_container.hpp"
namespace boost { namespace intrusive { namespace test {
#if !defined (BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
template<class T, class O1, class O2, class O3, class O4, class O5, class O6>
#else
template<class T, class ...Options>
#endif
struct is_unordered<boost::intrusive::unordered_set<T,
#if !defined (BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4, O5, O6
#else
Options...
#endif
> >
{
static const bool value = true;
};
}}}
using namespace boost::intrusive;
struct my_tag;
template<class VoidPointer>
struct hooks
{
typedef unordered_set_base_hook<void_pointer<VoidPointer> > base_hook_type;
typedef unordered_set_base_hook
< link_mode<auto_unlink>
, void_pointer<VoidPointer>
, tag<my_tag>
, store_hash<true>
> auto_base_hook_type;
typedef unordered_set_member_hook
< void_pointer<VoidPointer>
, optimize_multikey<true>
> member_hook_type;
typedef unordered_set_member_hook
< link_mode<auto_unlink>, void_pointer<VoidPointer>
, store_hash<true>
, optimize_multikey<true>
> auto_member_hook_type;
};
static const std::size_t BucketSize = 8;
template<class ValueTraits, bool CacheBegin, bool CompareHash, bool Incremental>
struct test_unordered_set
{
typedef typename ValueTraits::value_type value_type;
static void test_all(std::vector<value_type>& values);
static void test_sort(std::vector<value_type>& values);
static void test_insert(std::vector<value_type>& values);
static void test_swap(std::vector<value_type>& values);
static void test_rehash(std::vector<value_type>& values, detail::true_);
static void test_rehash(std::vector<value_type>& values, detail::false_);
static void test_find(std::vector<value_type>& values);
static void test_impl();
static void test_clone(std::vector<value_type>& values);
};
template<class ValueTraits, bool CacheBegin, bool CompareHash, bool Incremental>
void test_unordered_set<ValueTraits, CacheBegin, CompareHash, Incremental>::
test_all(std::vector<typename ValueTraits::value_type>& values)
{
typedef typename ValueTraits::value_type value_type;
typedef unordered_set
<value_type
, value_traits<ValueTraits>
, constant_time_size<value_type::constant_time_size>
, cache_begin<CacheBegin>
, compare_hash<CompareHash>
, incremental<Incremental>
> unordered_set_type;
typedef typename unordered_set_type::bucket_traits bucket_traits;
{
typename unordered_set_type::bucket_type buckets [BucketSize];
unordered_set_type testset(bucket_traits(buckets, BucketSize));
testset.insert(values.begin(), values.end());
test::test_container(testset);
testset.clear();
testset.insert(values.begin(), values.end());
test::test_common_unordered_and_associative_container(testset, values);
testset.clear();
testset.insert(values.begin(), values.end());
test::test_unordered_associative_container(testset, values);
testset.clear();
testset.insert(values.begin(), values.end());
test::test_unique_container(testset, values);
}
test_sort(values);
test_insert(values);
test_swap(values);
test_rehash(values, detail::bool_<Incremental>());
test_find(values);
test_impl();
test_clone(values);
}
//test case due to an error in tree implementation:
template<class ValueTraits, bool CacheBegin, bool CompareHash, bool Incremental>
void test_unordered_set<ValueTraits, CacheBegin, CompareHash, Incremental>::test_impl()
{
typedef typename ValueTraits::value_type value_type;
typedef unordered_set
<value_type
, value_traits<ValueTraits>
, constant_time_size<value_type::constant_time_size>
, cache_begin<CacheBegin>
, compare_hash<CompareHash>
, incremental<Incremental>
> unordered_set_type;
typedef typename unordered_set_type::bucket_traits bucket_traits;
std::vector<value_type> values (5);
for (int i = 0; i < 5; ++i)
values[i].value_ = i;
typename unordered_set_type::bucket_type buckets [BucketSize];
unordered_set_type testset(bucket_traits(buckets, BucketSize));
for (int i = 0; i < 5; ++i)
testset.insert (values[i]);
testset.erase (testset.iterator_to (values[0]));
testset.erase (testset.iterator_to (values[1]));
testset.insert (values[1]);
testset.erase (testset.iterator_to (values[2]));
testset.erase (testset.iterator_to (values[3]));
}
//test: constructor, iterator, clear, reverse_iterator, front, back, size:
template<class ValueTraits, bool CacheBegin, bool CompareHash, bool Incremental>
void test_unordered_set<ValueTraits, CacheBegin, CompareHash, Incremental>::
test_sort(std::vector<typename ValueTraits::value_type>& values)
{
typedef typename ValueTraits::value_type value_type;
typedef unordered_set
<value_type
, value_traits<ValueTraits>
, constant_time_size<value_type::constant_time_size>
, cache_begin<CacheBegin>
, compare_hash<CompareHash>
, incremental<Incremental>
> unordered_set_type;
typedef typename unordered_set_type::bucket_traits bucket_traits;
typename unordered_set_type::bucket_type buckets [BucketSize];
unordered_set_type testset1(values.begin(), values.end(), bucket_traits(buckets, BucketSize));
BOOST_TEST (5 == std::distance(testset1.begin(), testset1.end()));
if(Incremental){
{ int init_values [] = { 4, 5, 1, 2, 3 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
}
else{
{ int init_values [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
}
testset1.clear();
BOOST_TEST (testset1.empty());
}
//test: insert, const_iterator, const_reverse_iterator, erase, iterator_to:
template<class ValueTraits, bool CacheBegin, bool CompareHash, bool Incremental>
void test_unordered_set<ValueTraits, CacheBegin, CompareHash, Incremental>::
test_insert(std::vector<typename ValueTraits::value_type>& values)
{
typedef typename ValueTraits::value_type value_type;
typedef unordered_set
<value_type
, value_traits<ValueTraits>
, constant_time_size<value_type::constant_time_size>
, cache_begin<CacheBegin>
, compare_hash<CompareHash>
, incremental<Incremental>
> unordered_set_type;
typedef typename unordered_set_type::bucket_traits bucket_traits;
typename unordered_set_type::bucket_type buckets [BucketSize];
unordered_set_type testset(bucket_traits(buckets, BucketSize));
testset.insert(&values[0] + 2, &values[0] + 5);
const unordered_set_type& const_testset = testset;
if(Incremental)
{
{ int init_values [] = { 4, 5, 1 };
TEST_INTRUSIVE_SEQUENCE( init_values, const_testset.begin() ); }
typename unordered_set_type::iterator i = testset.begin();
BOOST_TEST (i->value_ == 4);
i = testset.insert(values[0]).first;
BOOST_TEST (&*i == &values[0]);
i = testset.iterator_to (values[2]);
BOOST_TEST (&*i == &values[2]);
testset.erase (i);
{ int init_values [] = { 5, 1, 3 };
TEST_INTRUSIVE_SEQUENCE( init_values, const_testset.begin() ); }
}
else{
{ int init_values [] = { 1, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, const_testset.begin() ); }
typename unordered_set_type::iterator i = testset.begin();
BOOST_TEST (i->value_ == 1);
i = testset.insert(values[0]).first;
BOOST_TEST (&*i == &values[0]);
i = testset.iterator_to (values[2]);
BOOST_TEST (&*i == &values[2]);
testset.erase (i);
{ int init_values [] = { 1, 3, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, const_testset.begin() ); }
}
}
//test: insert (seq-version), swap, erase (seq-version), size:
template<class ValueTraits, bool CacheBegin, bool CompareHash, bool Incremental>
void test_unordered_set<ValueTraits, CacheBegin, CompareHash, Incremental>::
test_swap(std::vector<typename ValueTraits::value_type>& values)
{
typedef typename ValueTraits::value_type value_type;
typedef unordered_set
<value_type
, value_traits<ValueTraits>
, constant_time_size<value_type::constant_time_size>
, cache_begin<CacheBegin>
, compare_hash<CompareHash>
, incremental<Incremental>
> unordered_set_type;
typedef typename unordered_set_type::bucket_traits bucket_traits;
typename unordered_set_type::bucket_type buckets1 [BucketSize];
typename unordered_set_type::bucket_type buckets2 [BucketSize];
unordered_set_type testset1(&values[0], &values[0] + 2, bucket_traits(buckets1, BucketSize));
unordered_set_type testset2(bucket_traits(buckets2, BucketSize));
testset2.insert (&values[0] + 2, &values[0] + 6);
testset1.swap (testset2);
if(Incremental){
{ int init_values [] = { 4, 5, 1, 2 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
{ int init_values [] = { 2, 3 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset2.begin() ); }
testset1.erase (testset1.iterator_to(values[4]), testset1.end());
BOOST_TEST (testset1.size() == 1);
BOOST_TEST (&*testset1.begin() == &values[2]);
}
else{
{ int init_values [] = { 1, 2, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
{ int init_values [] = { 2, 3 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset2.begin() ); }
testset1.erase (testset1.iterator_to(values[5]), testset1.end());
BOOST_TEST (testset1.size() == 1);
BOOST_TEST (&*testset1.begin() == &values[3]);
}
}
//test: rehash:
template<class ValueTraits, bool CacheBegin, bool CompareHash, bool Incremental>
void test_unordered_set<ValueTraits, CacheBegin, CompareHash, Incremental>::
test_rehash(std::vector<typename ValueTraits::value_type>& values, detail::true_)
{
typedef typename ValueTraits::value_type value_type;
typedef unordered_set
<value_type
, value_traits<ValueTraits>
, constant_time_size<value_type::constant_time_size>
, cache_begin<CacheBegin>
, compare_hash<CompareHash>
, incremental<Incremental>
> unordered_set_type;
typedef typename unordered_set_type::bucket_traits bucket_traits;
//Build a uset
typename unordered_set_type::bucket_type buckets1 [BucketSize];
typename unordered_set_type::bucket_type buckets2 [BucketSize*2];
unordered_set_type testset1(&values[0], &values[0] + 6, bucket_traits(buckets1, BucketSize));
//Test current state
BOOST_TEST(testset1.split_count() == BucketSize/2);
{ int init_values [] = { 4, 5, 1, 2, 3 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//Incremental rehash step
BOOST_TEST (testset1.incremental_rehash() == true);
BOOST_TEST(testset1.split_count() == (BucketSize/2+1));
{ int init_values [] = { 5, 1, 2, 3, 4 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//Rest of incremental rehashes should lead to the same sequence
for(std::size_t split_bucket = testset1.split_count(); split_bucket != BucketSize; ++split_bucket){
BOOST_TEST (testset1.incremental_rehash() == true);
BOOST_TEST(testset1.split_count() == (split_bucket+1));
{ int init_values [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
}
//This incremental rehash should fail because we've reached the end of the bucket array
BOOST_TEST(testset1.incremental_rehash() == false);
BOOST_TEST(testset1.split_count() == BucketSize);
{ int init_values [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//
//Try incremental hashing specifying a new bucket traits pointing to the same array
//
//This incremental rehash should fail because the new size is not twice the original
BOOST_TEST(testset1.incremental_rehash(bucket_traits(buckets1, BucketSize)) == false);
BOOST_TEST(testset1.split_count() == BucketSize);
{ int init_values [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//This incremental rehash should success because the new size is twice the original
//and split_count is the same as the old bucket count
BOOST_TEST(testset1.incremental_rehash(bucket_traits(buckets1, BucketSize*2)) == true);
BOOST_TEST(testset1.split_count() == BucketSize);
{ int init_values [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//This incremental rehash should also success because the new size is half the original
//and split_count is the same as the new bucket count
BOOST_TEST(testset1.incremental_rehash(bucket_traits(buckets1, BucketSize)) == true);
BOOST_TEST(testset1.split_count() == BucketSize);
{ int init_values [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//
//Try incremental hashing specifying a new bucket traits pointing to the same array
//
//This incremental rehash should fail because the new size is not twice the original
BOOST_TEST(testset1.incremental_rehash(bucket_traits(buckets2, BucketSize)) == false);
BOOST_TEST(testset1.split_count() == BucketSize);
{ int init_values [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//This incremental rehash should success because the new size is twice the original
//and split_count is the same as the old bucket count
BOOST_TEST(testset1.incremental_rehash(bucket_traits(buckets2, BucketSize*2)) == true);
BOOST_TEST(testset1.split_count() == BucketSize);
{ int init_values [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//This incremental rehash should also success because the new size is half the original
//and split_count is the same as the new bucket count
BOOST_TEST(testset1.incremental_rehash(bucket_traits(buckets1, BucketSize)) == true);
BOOST_TEST(testset1.split_count() == BucketSize);
{ int init_values [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//Full shrink rehash
testset1.rehash(bucket_traits(buckets1, 4));
BOOST_TEST (testset1.size() == values.size()-1);
BOOST_TEST (testset1.incremental_rehash() == false);
{ int init_values [] = { 4, 5, 1, 2, 3 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//Full shrink rehash again
testset1.rehash(bucket_traits(buckets1, 2));
BOOST_TEST (testset1.size() == values.size()-1);
BOOST_TEST (testset1.incremental_rehash() == false);
{ int init_values [] = { 2, 4, 3, 5, 1 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//Full growing rehash
testset1.rehash(bucket_traits(buckets1, BucketSize));
BOOST_TEST (testset1.size() == values.size()-1);
BOOST_TEST (testset1.incremental_rehash() == false);
{ int init_values [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//Incremental rehash shrinking
//First incremental rehashes should lead to the same sequence
for(std::size_t split_bucket = testset1.split_count(); split_bucket > 6; --split_bucket){
BOOST_TEST (testset1.incremental_rehash(false) == true);
BOOST_TEST(testset1.split_count() == (split_bucket-1));
{ int init_values [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
}
//Incremental rehash step
BOOST_TEST (testset1.incremental_rehash(false) == true);
BOOST_TEST(testset1.split_count() == (BucketSize/2+1));
{ int init_values [] = { 5, 1, 2, 3, 4 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//Incremental rehash step 2
BOOST_TEST (testset1.incremental_rehash(false) == true);
BOOST_TEST(testset1.split_count() == (BucketSize/2));
{ int init_values [] = { 4, 5, 1, 2, 3 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//This incremental rehash should fail because we've reached the half of the bucket array
BOOST_TEST(testset1.incremental_rehash(false) == false);
BOOST_TEST(testset1.split_count() == BucketSize/2);
{ int init_values [] = { 4, 5, 1, 2, 3 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
}
//test: rehash:
template<class ValueTraits, bool CacheBegin, bool CompareHash, bool Incremental>
void test_unordered_set<ValueTraits, CacheBegin, CompareHash, Incremental>::
test_rehash(std::vector<typename ValueTraits::value_type>& values, detail::false_)
{
typedef typename ValueTraits::value_type value_type;
typedef unordered_set
<value_type
, value_traits<ValueTraits>
, constant_time_size<value_type::constant_time_size>
, cache_begin<CacheBegin>
, compare_hash<CompareHash>
, incremental<Incremental>
> unordered_set_type;
typedef typename unordered_set_type::bucket_traits bucket_traits;
typename unordered_set_type::bucket_type buckets1 [BucketSize];
typename unordered_set_type::bucket_type buckets2 [2];
typename unordered_set_type::bucket_type buckets3 [BucketSize*2];
unordered_set_type testset1(&values[0], &values[0] + 6, bucket_traits(buckets1, BucketSize));
BOOST_TEST (testset1.size() == values.size()-1);
{ int init_values [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
testset1.rehash(bucket_traits(buckets2, 2));
BOOST_TEST (testset1.size() == values.size()-1);
{ int init_values [] = { 4, 2, 5, 3, 1 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
testset1.rehash(bucket_traits(buckets3, BucketSize*2));
BOOST_TEST (testset1.size() == values.size()-1);
{ int init_values [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//Now rehash reducing the buckets
testset1.rehash(bucket_traits(buckets3, 2));
BOOST_TEST (testset1.size() == values.size()-1);
{ int init_values [] = { 4, 2, 5, 3, 1 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
//Now rehash increasing the buckets
testset1.rehash(bucket_traits(buckets3, BucketSize*2));
BOOST_TEST (testset1.size() == values.size()-1);
{ int init_values [] = { 1, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE( init_values, testset1.begin() ); }
}
//test: find, equal_range (lower_bound, upper_bound):
template<class ValueTraits, bool CacheBegin, bool CompareHash, bool Incremental>
void test_unordered_set<ValueTraits, CacheBegin, CompareHash, Incremental>::
test_find(std::vector<typename ValueTraits::value_type>& values)
{
typedef typename ValueTraits::value_type value_type;
typedef unordered_set
<value_type
, value_traits<ValueTraits>
, constant_time_size<value_type::constant_time_size>
, cache_begin<CacheBegin>
, compare_hash<CompareHash>
, incremental<Incremental>
> unordered_set_type;
typedef typename unordered_set_type::bucket_traits bucket_traits;
typename unordered_set_type::bucket_type buckets [BucketSize];
unordered_set_type testset (values.begin(), values.end(), bucket_traits(buckets, BucketSize));
typedef typename unordered_set_type::iterator iterator;
value_type cmp_val;
cmp_val.value_ = 2;
iterator i = testset.find (cmp_val);
BOOST_TEST (i->value_ == 2);
BOOST_TEST ((++i)->value_ != 2);
std::pair<iterator,iterator> range = testset.equal_range (cmp_val);
BOOST_TEST (range.first->value_ == 2);
BOOST_TEST (range.second->value_ == 3);
BOOST_TEST (std::distance (range.first, range.second) == 1);
cmp_val.value_ = 7;
BOOST_TEST (testset.find (cmp_val) == testset.end());
}
template<class ValueTraits, bool CacheBegin, bool CompareHash, bool Incremental>
void test_unordered_set<ValueTraits, CacheBegin, CompareHash, Incremental>
::test_clone(std::vector<typename ValueTraits::value_type>& values)
{
typedef typename ValueTraits::value_type value_type;
typedef unordered_set
<value_type
, value_traits<ValueTraits>
, constant_time_size<value_type::constant_time_size>
, cache_begin<CacheBegin>
, compare_hash<CompareHash>
, incremental<Incremental>
> unordered_set_type;
typedef typename unordered_set_type::bucket_traits bucket_traits;
{
//Test with equal bucket arrays
typename unordered_set_type::bucket_type buckets1 [BucketSize];
typename unordered_set_type::bucket_type buckets2 [BucketSize];
unordered_set_type testset1 (values.begin(), values.end(), bucket_traits(buckets1, BucketSize));
unordered_set_type testset2 (bucket_traits(buckets2, BucketSize));
testset2.clone_from(testset1, test::new_cloner<value_type>(), test::delete_disposer<value_type>());
//Ordering is not guarantee in the cloning so insert data in a set and test
std::set<typename ValueTraits::value_type>
src(testset1.begin(), testset1.end());
std::set<typename ValueTraits::value_type>
dst(testset2.begin(), testset2.end());
BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin()));
testset2.clear_and_dispose(test::delete_disposer<value_type>());
BOOST_TEST (testset2.empty());
}
{
//Test with bigger source bucket arrays
typename unordered_set_type::bucket_type buckets1 [BucketSize*2];
typename unordered_set_type::bucket_type buckets2 [BucketSize];
unordered_set_type testset1 (values.begin(), values.end(), bucket_traits(buckets1, BucketSize*2));
unordered_set_type testset2 (bucket_traits(buckets2, BucketSize));
testset2.clone_from(testset1, test::new_cloner<value_type>(), test::delete_disposer<value_type>());
//Ordering is not guaranteed in the cloning so insert data in a set and test
std::set<typename ValueTraits::value_type>
src(testset1.begin(), testset1.end());
std::set<typename ValueTraits::value_type>
dst(testset2.begin(), testset2.end());
BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin()));
testset2.clear_and_dispose(test::delete_disposer<value_type>());
BOOST_TEST (testset2.empty());
}
{
//Test with smaller source bucket arrays
typename unordered_set_type::bucket_type buckets1 [BucketSize];
typename unordered_set_type::bucket_type buckets2 [BucketSize*2];
unordered_set_type testset1 (values.begin(), values.end(), bucket_traits(buckets1, BucketSize));
unordered_set_type testset2 (bucket_traits(buckets2, BucketSize*2));
testset2.clone_from(testset1, test::new_cloner<value_type>(), test::delete_disposer<value_type>());
//Ordering is not guarantee in the cloning so insert data in a set and test
std::set<typename ValueTraits::value_type>
src(testset1.begin(), testset1.end());
std::set<typename ValueTraits::value_type>
dst(testset2.begin(), testset2.end());
BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin()));
testset2.clear_and_dispose(test::delete_disposer<value_type>());
BOOST_TEST (testset2.empty());
}
}
template<class VoidPointer, bool constant_time_size, bool incremental>
class test_main_template
{
public:
int operator()()
{
typedef testvalue<hooks<VoidPointer> , constant_time_size> value_type;
static const int random_init[6] = { 3, 2, 4, 1, 5, 2 };
std::vector<testvalue<hooks<VoidPointer> , constant_time_size> > data (6);
for (int i = 0; i < 6; ++i)
data[i].value_ = random_init[i];
test_unordered_set < typename detail::get_base_value_traits
< value_type
, typename hooks<VoidPointer>::base_hook_type
>::type
, true
, false
, incremental
>::test_all(data);
test_unordered_set < typename detail::get_member_value_traits
< value_type
, member_hook< value_type
, typename hooks<VoidPointer>::member_hook_type
, &value_type::node_
>
>::type
, false
, false
, incremental
>::test_all(data);
return 0;
}
};
template<class VoidPointer, bool incremental>
class test_main_template<VoidPointer, false, incremental>
{
public:
int operator()()
{
typedef testvalue<hooks<VoidPointer> , false> value_type;
static const int random_init[6] = { 3, 2, 4, 1, 5, 2 };
std::vector<testvalue<hooks<VoidPointer> , false> > data (6);
for (int i = 0; i < 6; ++i)
data[i].value_ = random_init[i];
test_unordered_set < typename detail::get_base_value_traits
< value_type
, typename hooks<VoidPointer>::base_hook_type
>::type
, true
, false
, incremental
>::test_all(data);
test_unordered_set < typename detail::get_member_value_traits
< value_type
, member_hook< value_type
, typename hooks<VoidPointer>::member_hook_type
, &value_type::node_
>
>::type
, false
, false
, incremental
>::test_all(data);
test_unordered_set < typename detail::get_base_value_traits
< value_type
, typename hooks<VoidPointer>::auto_base_hook_type
>::type
, false
, true
, incremental
>::test_all(data);
test_unordered_set < typename detail::get_member_value_traits
< value_type
, member_hook< value_type
, typename hooks<VoidPointer>::auto_member_hook_type
, &value_type::auto_node_
>
>::type
, false
, true
, incremental
>::test_all(data);
return 0;
}
};
int main( int, char* [] )
{
test_main_template<void*, false, true>()();
test_main_template<smart_ptr<void>, false, true>()();
test_main_template<void*, true, true>()();
test_main_template<smart_ptr<void>, true, true>()();
test_main_template<void*, false, false>()();
test_main_template<smart_ptr<void>, false, false>()();
test_main_template<void*, true, true>()();
test_main_template<smart_ptr<void>, true, false>()();
return boost::report_errors();
}
#include <boost/intrusive/detail/config_end.hpp>