blob: 04897dac8ec7ca6018edfd37424d8e5edd864c3b [file] [log] [blame]
// Boost GCD & LCM common_factor.hpp test program --------------------------//
// (C) Copyright Daryle Walker 2001, 2006.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 01 Dec 2006 Various fixes for old compilers (Joaquin M Lopez Munoz)
// 10 Nov 2006 Make long long and __int64 mutually exclusive (Daryle Walker)
// 04 Nov 2006 Use more built-in numeric types, binary-GCD (Daryle Walker)
// 03 Nov 2006 Use custom numeric types (Daryle Walker)
// 02 Nov 2006 Change to Boost.Test's unit test system (Daryle Walker)
// 07 Nov 2001 Initial version (Daryle Walker)
#define BOOST_TEST_MAIN "Boost.Math GCD & LCM unit tests"
#include <boost/config.hpp> // for BOOST_MSVC, etc.
#include <boost/detail/workaround.hpp>
#include <boost/math/common_factor.hpp> // for boost::math::gcd, etc.
#include <boost/mpl/list.hpp> // for boost::mpl::list
#include <boost/operators.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/test_case_template.hpp>
#include <istream> // for std::basic_istream
#include <limits> // for std::numeric_limits
#include <ostream> // for std::basic_ostream
namespace {
// TODO: add polynominal/non-real type; especially after any switch to the
// binary-GCD algorithm for built-in types
// Custom integer class (template)
template < typename IntType, int ID = 0 >
class my_wrapped_integer
: private ::boost::shiftable1<my_wrapped_integer<IntType, ID>,
::boost::operators<my_wrapped_integer<IntType, ID> > >
{
// Helper type-aliases
typedef my_wrapped_integer self_type;
typedef IntType self_type::* bool_type;
// Member data
IntType v_;
public:
// Template parameters
typedef IntType int_type;
BOOST_STATIC_CONSTANT(int,id = ID);
// Lifetime management (use automatic destructor and copy constructor)
my_wrapped_integer( int_type const &v = int_type() ) : v_( v ) {}
// Accessors
int_type value() const { return this->v_; }
// Operators (use automatic copy assignment)
operator bool_type() const { return this->v_ ? &self_type::v_ : 0; }
self_type & operator ++() { ++this->v_; return *this; }
self_type & operator --() { --this->v_; return *this; }
self_type operator ~() const { return self_type( ~this->v_ ); }
self_type operator !() const { return self_type( !this->v_ ); }
self_type operator +() const { return self_type( +this->v_ ); }
self_type operator -() const { return self_type( -this->v_ ); }
bool operator <( self_type const &r ) const { return this->v_ < r.v_; }
bool operator ==( self_type const &r ) const { return this->v_ == r.v_; }
self_type &operator *=(self_type const &r) {this->v_ *= r.v_; return *this;}
self_type &operator /=(self_type const &r) {this->v_ /= r.v_; return *this;}
self_type &operator %=(self_type const &r) {this->v_ %= r.v_; return *this;}
self_type &operator +=(self_type const &r) {this->v_ += r.v_; return *this;}
self_type &operator -=(self_type const &r) {this->v_ -= r.v_; return *this;}
self_type &operator<<=(self_type const &r){this->v_ <<= r.v_; return *this;}
self_type &operator>>=(self_type const &r){this->v_ >>= r.v_; return *this;}
self_type &operator &=(self_type const &r) {this->v_ &= r.v_; return *this;}
self_type &operator |=(self_type const &r) {this->v_ |= r.v_; return *this;}
self_type &operator ^=(self_type const &r) {this->v_ ^= r.v_; return *this;}
// Input & output
friend std::istream & operator >>( std::istream &i, self_type &x )
{ return i >> x.v_; }
friend std::ostream & operator <<( std::ostream &o, self_type const &x )
{ return o << x.v_; }
}; // my_wrapped_integer
template < typename IntType, int ID >
my_wrapped_integer<IntType, ID> abs( my_wrapped_integer<IntType, ID> const &x )
{ return ( x < my_wrapped_integer<IntType, ID>(0) ) ? -x : +x; }
typedef my_wrapped_integer<int> MyInt1;
typedef my_wrapped_integer<unsigned> MyUnsigned1;
typedef my_wrapped_integer<int, 1> MyInt2;
typedef my_wrapped_integer<unsigned, 1> MyUnsigned2;
// Without these explicit instantiations, MSVC++ 6.5/7.0 does not find
// some friend operators in certain contexts.
MyInt1 dummy1;
MyUnsigned1 dummy2;
MyInt2 dummy3;
MyUnsigned2 dummy4;
// Various types to test with each GCD/LCM
typedef ::boost::mpl::list<signed char, short, int, long,
#ifdef BOOST_HAS_LONG_LONG
boost::long_long_type,
#elif defined(BOOST_HAS_MS_INT64)
__int64,
#endif
MyInt1> signed_test_types;
typedef ::boost::mpl::list<unsigned char, unsigned short, unsigned,
unsigned long,
#ifdef BOOST_HAS_LONG_LONG
boost::ulong_long_type,
#elif defined(BOOST_HAS_MS_INT64)
unsigned __int64,
#endif
MyUnsigned1, MyUnsigned2> unsigned_test_types;
} // namespace
#define BOOST_NO_MACRO_EXPAND /**/
// Specialize numeric_limits for _some_ of our types
namespace std
{
template < >
class numeric_limits< MyInt1 >
{
typedef MyInt1::int_type int_type;
typedef numeric_limits<int_type> limits_type;
public:
BOOST_STATIC_CONSTANT(bool, is_specialized = limits_type::is_specialized);
static MyInt1 min BOOST_NO_MACRO_EXPAND() throw() { return (limits_type::min)(); }
static MyInt1 max BOOST_NO_MACRO_EXPAND() throw() { return (limits_type::max)(); }
BOOST_STATIC_CONSTANT(int, digits = limits_type::digits);
BOOST_STATIC_CONSTANT(int, digits10 = limits_type::digits10);
BOOST_STATIC_CONSTANT(bool, is_signed = limits_type::is_signed);
BOOST_STATIC_CONSTANT(bool, is_integer = limits_type::is_integer);
BOOST_STATIC_CONSTANT(bool, is_exact = limits_type::is_exact);
BOOST_STATIC_CONSTANT(int, radix = limits_type::radix);
static MyInt1 epsilon() throw() { return limits_type::epsilon(); }
static MyInt1 round_error() throw() { return limits_type::round_error(); }
BOOST_STATIC_CONSTANT(int, min_exponent = limits_type::min_exponent);
BOOST_STATIC_CONSTANT(int, min_exponent10 = limits_type::min_exponent10);
BOOST_STATIC_CONSTANT(int, max_exponent = limits_type::max_exponent);
BOOST_STATIC_CONSTANT(int, max_exponent10 = limits_type::max_exponent10);
BOOST_STATIC_CONSTANT(bool, has_infinity = limits_type::has_infinity);
BOOST_STATIC_CONSTANT(bool, has_quiet_NaN = limits_type::has_quiet_NaN);
BOOST_STATIC_CONSTANT(bool, has_signaling_NaN = limits_type::has_signaling_NaN);
BOOST_STATIC_CONSTANT(float_denorm_style, has_denorm = limits_type::has_denorm);
BOOST_STATIC_CONSTANT(bool, has_denorm_loss = limits_type::has_denorm_loss);
static MyInt1 infinity() throw() { return limits_type::infinity(); }
static MyInt1 quiet_NaN() throw() { return limits_type::quiet_NaN(); }
static MyInt1 signaling_NaN() throw() {return limits_type::signaling_NaN();}
static MyInt1 denorm_min() throw() { return limits_type::denorm_min(); }
BOOST_STATIC_CONSTANT(bool, is_iec559 = limits_type::is_iec559);
BOOST_STATIC_CONSTANT(bool, is_bounded = limits_type::is_bounded);
BOOST_STATIC_CONSTANT(bool, is_modulo = limits_type::is_modulo);
BOOST_STATIC_CONSTANT(bool, traps = limits_type::traps);
BOOST_STATIC_CONSTANT(bool, tinyness_before = limits_type::tinyness_before);
BOOST_STATIC_CONSTANT(float_round_style, round_style = limits_type::round_style);
}; // std::numeric_limits<MyInt1>
template < >
class numeric_limits< MyUnsigned1 >
{
typedef MyUnsigned1::int_type int_type;
typedef numeric_limits<int_type> limits_type;
public:
BOOST_STATIC_CONSTANT(bool, is_specialized = limits_type::is_specialized);
static MyUnsigned1 min BOOST_NO_MACRO_EXPAND() throw() { return (limits_type::min)(); }
static MyUnsigned1 max BOOST_NO_MACRO_EXPAND() throw() { return (limits_type::max)(); }
BOOST_STATIC_CONSTANT(int, digits = limits_type::digits);
BOOST_STATIC_CONSTANT(int, digits10 = limits_type::digits10);
BOOST_STATIC_CONSTANT(bool, is_signed = limits_type::is_signed);
BOOST_STATIC_CONSTANT(bool, is_integer = limits_type::is_integer);
BOOST_STATIC_CONSTANT(bool, is_exact = limits_type::is_exact);
BOOST_STATIC_CONSTANT(int, radix = limits_type::radix);
static MyUnsigned1 epsilon() throw() { return limits_type::epsilon(); }
static MyUnsigned1 round_error() throw(){return limits_type::round_error();}
BOOST_STATIC_CONSTANT(int, min_exponent = limits_type::min_exponent);
BOOST_STATIC_CONSTANT(int, min_exponent10 = limits_type::min_exponent10);
BOOST_STATIC_CONSTANT(int, max_exponent = limits_type::max_exponent);
BOOST_STATIC_CONSTANT(int, max_exponent10 = limits_type::max_exponent10);
BOOST_STATIC_CONSTANT(bool, has_infinity = limits_type::has_infinity);
BOOST_STATIC_CONSTANT(bool, has_quiet_NaN = limits_type::has_quiet_NaN);
BOOST_STATIC_CONSTANT(bool, has_signaling_NaN = limits_type::has_signaling_NaN);
BOOST_STATIC_CONSTANT(float_denorm_style, has_denorm = limits_type::has_denorm);
BOOST_STATIC_CONSTANT(bool, has_denorm_loss = limits_type::has_denorm_loss);
static MyUnsigned1 infinity() throw() { return limits_type::infinity(); }
static MyUnsigned1 quiet_NaN() throw() { return limits_type::quiet_NaN(); }
static MyUnsigned1 signaling_NaN() throw()
{ return limits_type::signaling_NaN(); }
static MyUnsigned1 denorm_min() throw(){ return limits_type::denorm_min(); }
BOOST_STATIC_CONSTANT(bool, is_iec559 = limits_type::is_iec559);
BOOST_STATIC_CONSTANT(bool, is_bounded = limits_type::is_bounded);
BOOST_STATIC_CONSTANT(bool, is_modulo = limits_type::is_modulo);
BOOST_STATIC_CONSTANT(bool, traps = limits_type::traps);
BOOST_STATIC_CONSTANT(bool, tinyness_before = limits_type::tinyness_before);
BOOST_STATIC_CONSTANT(float_round_style, round_style = limits_type::round_style);
}; // std::numeric_limits<MyUnsigned1>
#if BOOST_WORKAROUND(BOOST_MSVC,<1300)
// MSVC 6.0 lacks operator<< for __int64, see
// http://support.microsoft.com/default.aspx?scid=kb;en-us;168440
inline ostream& operator<<(ostream& os, __int64 i)
{
char buf[20];
sprintf(buf,"%I64d", i);
os << buf;
return os;
}
inline ostream& operator<<(ostream& os, unsigned __int64 i)
{
char buf[20];
sprintf(buf,"%I64u", i);
os << buf;
return os;
}
#endif
} // namespace std
// GCD tests
BOOST_AUTO_TEST_SUITE( gcd_test_suite )
// GCD on signed integer types
BOOST_AUTO_TEST_CASE_TEMPLATE( gcd_int_test, T, signed_test_types )
{
#ifndef BOOST_MSVC
using boost::math::gcd;
#else
using namespace boost::math;
#endif
// Originally from Boost.Rational tests
BOOST_CHECK_EQUAL( gcd<T>( 1, -1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( gcd<T>( -1, 1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( gcd<T>( 1, 1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( gcd<T>( -1, -1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( gcd<T>( 0, 0), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( gcd<T>( 7, 0), static_cast<T>( 7) );
BOOST_CHECK_EQUAL( gcd<T>( 0, 9), static_cast<T>( 9) );
BOOST_CHECK_EQUAL( gcd<T>( -7, 0), static_cast<T>( 7) );
BOOST_CHECK_EQUAL( gcd<T>( 0, -9), static_cast<T>( 9) );
BOOST_CHECK_EQUAL( gcd<T>( 42, 30), static_cast<T>( 6) );
BOOST_CHECK_EQUAL( gcd<T>( 6, -9), static_cast<T>( 3) );
BOOST_CHECK_EQUAL( gcd<T>(-10, -10), static_cast<T>(10) );
BOOST_CHECK_EQUAL( gcd<T>(-25, -10), static_cast<T>( 5) );
BOOST_CHECK_EQUAL( gcd<T>( 3, 7), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( gcd<T>( 8, 9), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( gcd<T>( 7, 49), static_cast<T>( 7) );
}
// GCD on unmarked signed integer type
BOOST_AUTO_TEST_CASE( gcd_unmarked_int_test )
{
#ifndef BOOST_MSVC
using boost::math::gcd;
#else
using namespace boost::math;
#endif
// The regular signed-integer GCD function performs the unsigned version,
// then does an absolute-value on the result. Signed types that are not
// marked as such (due to no std::numeric_limits specialization) may be off
// by a sign.
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( 1, -1 )), MyInt2( 1) );
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( -1, 1 )), MyInt2( 1) );
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( 1, 1 )), MyInt2( 1) );
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( -1, -1 )), MyInt2( 1) );
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( 0, 0 )), MyInt2( 0) );
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( 7, 0 )), MyInt2( 7) );
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( 0, 9 )), MyInt2( 9) );
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( -7, 0 )), MyInt2( 7) );
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( 0, -9 )), MyInt2( 9) );
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( 42, 30 )), MyInt2( 6) );
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( 6, -9 )), MyInt2( 3) );
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( -10, -10 )), MyInt2(10) );
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( -25, -10 )), MyInt2( 5) );
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( 3, 7 )), MyInt2( 1) );
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( 8, 9 )), MyInt2( 1) );
BOOST_CHECK_EQUAL( abs(gcd<MyInt2>( 7, 49 )), MyInt2( 7) );
}
// GCD on unsigned integer types
BOOST_AUTO_TEST_CASE_TEMPLATE( gcd_unsigned_test, T, unsigned_test_types )
{
#ifndef BOOST_MSVC
using boost::math::gcd;
#else
using namespace boost::math;
#endif
// Note that unmarked types (i.e. have no std::numeric_limits
// specialization) are treated like non/unsigned types
BOOST_CHECK_EQUAL( gcd<T>( 1u, 1u), static_cast<T>( 1u) );
BOOST_CHECK_EQUAL( gcd<T>( 0u, 0u), static_cast<T>( 0u) );
BOOST_CHECK_EQUAL( gcd<T>( 7u, 0u), static_cast<T>( 7u) );
BOOST_CHECK_EQUAL( gcd<T>( 0u, 9u), static_cast<T>( 9u) );
BOOST_CHECK_EQUAL( gcd<T>(42u, 30u), static_cast<T>( 6u) );
BOOST_CHECK_EQUAL( gcd<T>( 3u, 7u), static_cast<T>( 1u) );
BOOST_CHECK_EQUAL( gcd<T>( 8u, 9u), static_cast<T>( 1u) );
BOOST_CHECK_EQUAL( gcd<T>( 7u, 49u), static_cast<T>( 7u) );
}
// GCD at compile-time
BOOST_AUTO_TEST_CASE( gcd_static_test )
{
#ifndef BOOST_MSVC
using boost::math::static_gcd;
#else
using namespace boost::math;
#endif
// Can't use "BOOST_CHECK_EQUAL", otherwise the "value" member will be
// disqualified as compile-time-only constant, needing explicit definition
BOOST_CHECK( (static_gcd< 1, 1>::value) == 1 );
BOOST_CHECK( (static_gcd< 0, 0>::value) == 0 );
BOOST_CHECK( (static_gcd< 7, 0>::value) == 7 );
BOOST_CHECK( (static_gcd< 0, 9>::value) == 9 );
BOOST_CHECK( (static_gcd<42, 30>::value) == 6 );
BOOST_CHECK( (static_gcd< 3, 7>::value) == 1 );
BOOST_CHECK( (static_gcd< 8, 9>::value) == 1 );
BOOST_CHECK( (static_gcd< 7, 49>::value) == 7 );
}
// TODO: non-built-in signed and unsigned integer tests, with and without
// numeric_limits specialization; polynominal tests; note any changes if
// built-ins switch to binary-GCD algorithm
BOOST_AUTO_TEST_SUITE_END()
// LCM tests
BOOST_AUTO_TEST_SUITE( lcm_test_suite )
// LCM on signed integer types
BOOST_AUTO_TEST_CASE_TEMPLATE( lcm_int_test, T, signed_test_types )
{
#ifndef BOOST_MSVC
using boost::math::lcm;
#else
using namespace boost::math;
#endif
// Originally from Boost.Rational tests
BOOST_CHECK_EQUAL( lcm<T>( 1, -1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( lcm<T>( -1, 1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( lcm<T>( 1, 1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( lcm<T>( -1, -1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( lcm<T>( 0, 0), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( lcm<T>( 6, 0), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( lcm<T>( 0, 7), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( lcm<T>( -5, 0), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( lcm<T>( 0, -4), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( lcm<T>( 18, 30), static_cast<T>(90) );
BOOST_CHECK_EQUAL( lcm<T>( -6, 9), static_cast<T>(18) );
BOOST_CHECK_EQUAL( lcm<T>(-10, -10), static_cast<T>(10) );
BOOST_CHECK_EQUAL( lcm<T>( 25, -10), static_cast<T>(50) );
BOOST_CHECK_EQUAL( lcm<T>( 3, 7), static_cast<T>(21) );
BOOST_CHECK_EQUAL( lcm<T>( 8, 9), static_cast<T>(72) );
BOOST_CHECK_EQUAL( lcm<T>( 7, 49), static_cast<T>(49) );
}
// LCM on unmarked signed integer type
BOOST_AUTO_TEST_CASE( lcm_unmarked_int_test )
{
#ifndef BOOST_MSVC
using boost::math::lcm;
#else
using namespace boost::math;
#endif
// The regular signed-integer LCM function performs the unsigned version,
// then does an absolute-value on the result. Signed types that are not
// marked as such (due to no std::numeric_limits specialization) may be off
// by a sign.
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( 1, -1 )), MyInt2( 1) );
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( -1, 1 )), MyInt2( 1) );
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( 1, 1 )), MyInt2( 1) );
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( -1, -1 )), MyInt2( 1) );
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( 0, 0 )), MyInt2( 0) );
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( 6, 0 )), MyInt2( 0) );
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( 0, 7 )), MyInt2( 0) );
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( -5, 0 )), MyInt2( 0) );
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( 0, -4 )), MyInt2( 0) );
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( 18, 30 )), MyInt2(90) );
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( -6, 9 )), MyInt2(18) );
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( -10, -10 )), MyInt2(10) );
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( 25, -10 )), MyInt2(50) );
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( 3, 7 )), MyInt2(21) );
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( 8, 9 )), MyInt2(72) );
BOOST_CHECK_EQUAL( abs(lcm<MyInt2>( 7, 49 )), MyInt2(49) );
}
// LCM on unsigned integer types
BOOST_AUTO_TEST_CASE_TEMPLATE( lcm_unsigned_test, T, unsigned_test_types )
{
#ifndef BOOST_MSVC
using boost::math::lcm;
#else
using namespace boost::math;
#endif
// Note that unmarked types (i.e. have no std::numeric_limits
// specialization) are treated like non/unsigned types
BOOST_CHECK_EQUAL( lcm<T>( 1u, 1u), static_cast<T>( 1u) );
BOOST_CHECK_EQUAL( lcm<T>( 0u, 0u), static_cast<T>( 0u) );
BOOST_CHECK_EQUAL( lcm<T>( 6u, 0u), static_cast<T>( 0u) );
BOOST_CHECK_EQUAL( lcm<T>( 0u, 7u), static_cast<T>( 0u) );
BOOST_CHECK_EQUAL( lcm<T>(18u, 30u), static_cast<T>(90u) );
BOOST_CHECK_EQUAL( lcm<T>( 3u, 7u), static_cast<T>(21u) );
BOOST_CHECK_EQUAL( lcm<T>( 8u, 9u), static_cast<T>(72u) );
BOOST_CHECK_EQUAL( lcm<T>( 7u, 49u), static_cast<T>(49u) );
}
// LCM at compile-time
BOOST_AUTO_TEST_CASE( lcm_static_test )
{
#ifndef BOOST_MSVC
using boost::math::static_lcm;
#else
using namespace boost::math;
#endif
// Can't use "BOOST_CHECK_EQUAL", otherwise the "value" member will be
// disqualified as compile-time-only constant, needing explicit definition
BOOST_CHECK( (static_lcm< 1, 1>::value) == 1 );
BOOST_CHECK( (static_lcm< 0, 0>::value) == 0 );
BOOST_CHECK( (static_lcm< 6, 0>::value) == 0 );
BOOST_CHECK( (static_lcm< 0, 7>::value) == 0 );
BOOST_CHECK( (static_lcm<18, 30>::value) == 90 );
BOOST_CHECK( (static_lcm< 3, 7>::value) == 21 );
BOOST_CHECK( (static_lcm< 8, 9>::value) == 72 );
BOOST_CHECK( (static_lcm< 7, 49>::value) == 49 );
}
// TODO: see GCD to-do
BOOST_AUTO_TEST_SUITE_END()