blob: 70513c82362322c041f40a70121c425e2bb12f9e [file] [log] [blame]
// Copyright Xiaogang Zhang 2006
// Copyright John Maddock 2006, 2007
// Copyright Paul A. Bristow 2007
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <pch.hpp>
#ifdef _MSC_VER
# pragma warning(disable : 4756) // overflow in constant arithmetic
// Constants are too big for float case, but this doesn't matter for test.
#endif
#include <boost/math/concepts/real_concept.hpp>
#include <boost/test/test_exec_monitor.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/special_functions/ellint_3.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#include "handle_test_result.hpp"
//
// DESCRIPTION:
// ~~~~~~~~~~~~
//
// This file tests the Elliptic Integrals of the third kind.
// There are two sets of tests, spot
// tests which compare our results with selected values computed
// using the online special function calculator at
// functions.wolfram.com, while the bulk of the accuracy tests
// use values generated with NTL::RR at 1000-bit precision
// and our generic versions of these functions.
//
// Note that when this file is first run on a new platform many of
// these tests will fail: the default accuracy is 1 epsilon which
// is too tight for most platforms. In this situation you will
// need to cast a human eye over the error rates reported and make
// a judgement as to whether they are acceptable. Either way please
// report the results to the Boost mailing list. Acceptable rates of
// error are marked up below as a series of regular expressions that
// identify the compiler/stdlib/platform/data-type/test-data/test-function
// along with the maximum expected peek and RMS mean errors for that
// test.
//
void expected_results()
{
//
// Define the max and mean errors expected for
// various compilers and platforms.
//
const char* largest_type;
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
if(boost::math::policies::digits<double, boost::math::policies::policy<> >() == boost::math::policies::digits<long double, boost::math::policies::policy<> >())
{
largest_type = "(long\\s+)?double";
}
else
{
largest_type = "long double";
}
#else
largest_type = "(long\\s+)?double";
#endif
//
// Catch all cases come last:
//
add_expected_result(
".*", // compiler
".*", // stdlib
".*", // platform
largest_type, // test type(s)
".*Large.*", // test data group
".*", 50, 20); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
".*", // platform
"real_concept", // test type(s)
".*Large.*", // test data group
".*", 50, 20); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
".*", // platform
largest_type, // test type(s)
".*", // test data group
".*", 15, 8); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
".*", // platform
"real_concept", // test type(s)
".*", // test data group
".*", 15, 8); // test function
//
// Finish off by printing out the compiler/stdlib/platform names,
// we do this to make it easier to mark up expected error rates.
//
std::cout << "Tests run with " << BOOST_COMPILER << ", "
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
}
template <typename T>
void do_test_ellint_pi3(T& data, const char* type_name, const char* test)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
std::cout << "Testing: " << test << std::endl;
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
value_type (*fp2)(value_type, value_type, value_type) = boost::math::ellint_3<value_type, value_type, value_type>;
#else
value_type (*fp2)(value_type, value_type, value_type) = boost::math::ellint_3;
#endif
boost::math::tools::test_result<value_type> result;
result = boost::math::tools::test(
data,
bind_func(fp2, 2, 0, 1),
extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "boost::math::ellint_3", test);
std::cout << std::endl;
}
template <typename T>
void do_test_ellint_pi2(T& data, const char* type_name, const char* test)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
std::cout << "Testing: " << test << std::endl;
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
value_type (*fp2)(value_type, value_type) = boost::math::ellint_3<value_type, value_type>;
#else
value_type (*fp2)(value_type, value_type) = boost::math::ellint_3;
#endif
boost::math::tools::test_result<value_type> result;
result = boost::math::tools::test(
data,
bind_func(fp2, 1, 0),
extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "boost::math::ellint_3", test);
std::cout << std::endl;
}
template <typename T>
void test_spots(T, const char* type_name)
{
// function values calculated on http://functions.wolfram.com/
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 4>, 25> data1 = {
SC_(1), SC_(-1), SC_(0), SC_(-1.557407724654902230506974807458360173087),
SC_(0), SC_(-4), SC_(0.4), SC_(-4.153623371196831087495427530365430979011),
SC_(0), SC_(8), SC_(-0.6), SC_(8.935930619078575123490612395578518914416),
SC_(0), SC_(0.5), SC_(0.25), SC_(0.501246705365439492445236118603525029757890291780157969500480),
SC_(0), SC_(0.5), SC_(0), SC_(0.5),
SC_(-2), SC_(0.5), SC_(0), SC_(0.437501067017546278595664813509803743009132067629603474488486),
SC_(0.25), SC_(0.5), SC_(0), SC_(0.510269830229213412212501938035914557628394166585442994564135),
SC_(0.75), SC_(0.5), SC_(0), SC_(0.533293253875952645421201146925578536430596894471541312806165),
SC_(0.75), SC_(0.75), SC_(0), SC_(0.871827580412760575085768367421866079353646112288567703061975),
SC_(1), SC_(0.25), SC_(0), SC_(0.255341921221036266504482236490473678204201638800822621740476),
SC_(2), SC_(0.25), SC_(0), SC_(0.261119051639220165094943572468224137699644963125853641716219),
SC_(1023)/1024, SC_(1.5), SC_(0), SC_(13.2821612239764190363647953338544569682942329604483733197131),
SC_(0.5), SC_(-1), SC_(0.5), SC_(-1.228014414316220642611298946293865487807),
SC_(0.5), SC_(1e+10), SC_(0.5), SC_(1.536591003599172091573590441336982730551e+10),
SC_(-1e+05), SC_(10), SC_(0.75), SC_(0.0347926099493147087821620459290460547131012904008557007934290),
SC_(-1e+10), SC_(10), SC_(0.875), SC_(0.000109956202759561502329123384755016959364346382187364656768212),
SC_(-1e+10), SC_(1e+20), SC_(0.875), SC_(1.00000626665567332602765201107198822183913978895904937646809e15),
SC_(-1e+10), SC_(1608)/1024, SC_(0.875), SC_(0.0000157080616044072676127333183571107873332593142625043567690379),
1-SC_(1) / 1024, SC_(1e+20), SC_(0.875), SC_(6.43274293944380717581167058274600202023334985100499739678963e21),
SC_(50), SC_(0.1), SC_(0.25), SC_(0.124573770342749525407523258569507331686458866564082916835900),
SC_(1.125), SC_(1), SC_(0.25), SC_(1.77299767784815770192352979665283069318388205110727241629752),
SC_(1.125), SC_(10), SC_(0.25), SC_(0.662467818678976949597336360256848770217429434745967677192487),
SC_(1.125), SC_(3), SC_(0.25), SC_(-0.142697285116693775525461312178015106079842313950476205580178),
SC_(257)/256, SC_(1.5), SC_(0.1), SC_(22.2111124684047142809404895720078056163182744133864821626782),
SC_(257)/256, SC_(21.5), SC_(0.1), SC_(-0.535282720703701002972775208780096689181320029073372524045546),
};
#undef SC_
do_test_ellint_pi3(data1, type_name, "Elliptic Integral PI: Mathworld Data");
#include "ellint_pi3_data.ipp"
do_test_ellint_pi3(ellint_pi3_data, type_name, "Elliptic Integral PI: Random Data");
#include "ellint_pi3_large_data.ipp"
do_test_ellint_pi3(ellint_pi3_large_data, type_name, "Elliptic Integral PI: Large Random Data");
// function values calculated on http://functions.wolfram.com/
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 3>, 9> data2 = {
SC_(0), SC_(0.2), SC_(1.586867847454166237308008033828114192951),
SC_(0), SC_(0.4), SC_(1.639999865864511206865258329748601457626),
SC_(0), SC_(0), SC_(1.57079632679489661923132169163975144209858469968755291048747),
SC_(0.5), SC_(0), SC_(2.221441469079183123507940495030346849307),
SC_(-4), SC_(0.3), SC_(0.712708870925620061597924858162260293305195624270730660081949),
SC_(-1e+05), SC_(-0.5), SC_(0.00496944596485066055800109163256108604615568144080386919012831),
SC_(-1e+10), SC_(-0.75), SC_(0.0000157080225184890546939710019277357161497407143903832703317801),
SC_(1) / 1024, SC_(-0.875), SC_(2.18674503176462374414944618968850352696579451638002110619287),
SC_(1023)/1024, SC_(-0.875), SC_(101.045289804941384100960063898569538919135722087486350366997),
};
#undef SC_
do_test_ellint_pi2(data2, type_name, "Complete Elliptic Integral PI: Mathworld Data");
#include "ellint_pi2_data.ipp"
do_test_ellint_pi2(ellint_pi2_data, type_name, "Complete Elliptic Integral PI: Random Data");
// Special cases, exceptions etc:
BOOST_CHECK_THROW(boost::math::ellint_3(T(1.0001), T(-1), T(0)), std::domain_error);
BOOST_CHECK_THROW(boost::math::ellint_3(T(0.5), T(20), T(1.5)), std::domain_error);
BOOST_CHECK_THROW(boost::math::ellint_3(T(1.0001), T(-1)), std::domain_error);
BOOST_CHECK_THROW(boost::math::ellint_3(T(0.5), T(1)), std::domain_error);
BOOST_CHECK_THROW(boost::math::ellint_3(T(0.5), T(2)), std::domain_error);
}
int test_main(int, char* [])
{
expected_results();
BOOST_MATH_CONTROL_FP;
test_spots(0.0F, "float");
test_spots(0.0, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_spots(0.0L, "long double");
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
test_spots(boost::math::concepts::real_concept(0), "real_concept");
#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::cout;
#endif
return 0;
}