blob: 59461a39c12640d08593f429e699cca112d52834 [file] [log] [blame]
// test_nc_chi_squared.cpp
// Copyright John Maddock 2008.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <pch.hpp>
#ifdef _MSC_VER
#pragma warning (disable:4127 4512)
#endif
#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
# define TEST_FLOAT
# define TEST_DOUBLE
# define TEST_LDOUBLE
# define TEST_REAL_CONCEPT
#endif
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#include <boost/math/distributions/non_central_chi_squared.hpp> // for chi_squared_distribution
#include <boost/math/special_functions/cbrt.hpp> // for chi_squared_distribution
#include <boost/test/test_exec_monitor.hpp> // for test_main
#include <boost/test/results_collector.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE
#include "functor.hpp"
#include "handle_test_result.hpp"
#include "test_nccs_hooks.hpp"
#include <iostream>
using std::cout;
using std::endl;
#include <limits>
using std::numeric_limits;
#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK_CLOSE(a, b, prec); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
}\
}
#define BOOST_CHECK_EX(a, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK(a); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
}\
}
void expected_results()
{
//
// Define the max and mean errors expected for
// various compilers and platforms.
//
const char* largest_type;
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
if(boost::math::policies::digits<double, boost::math::policies::policy<> >() == boost::math::policies::digits<long double, boost::math::policies::policy<> >())
{
largest_type = "(long\\s+)?double|real_concept";
}
else
{
largest_type = "long double|real_concept";
}
#else
largest_type = "(long\\s+)?double|real_concept";
#endif
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"Mac OS", // platform
largest_type, // test type(s)
"[^|]*medium[^|]*", // test data group
"[^|]*", 550, 100); // test function
//
// Catch all cases come last:
//
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
largest_type, // test type(s)
"[^|]*medium[^|]*", // test data group
"[^|]*", 350, 100); // test function
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
largest_type, // test type(s)
"[^|]*large[^|]*", // test data group
"[^|]*", 17000, 3000); // test function
//
// Allow some long double error to creep into
// the double results:
//
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
"double", // test type(s)
"[^|]*", // test data group
"[^|]*", 3, 2); // test function
//
// Finish off by printing out the compiler/stdlib/platform names,
// we do this to make it easier to mark up expected error rates.
//
std::cout << "Tests run with " << BOOST_COMPILER << ", "
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
}
template <class RealType>
RealType naive_pdf(RealType v, RealType lam, RealType x)
{
// Formula direct from
// http://mathworld.wolfram.com/NoncentralChi-SquaredDistribution.html
// with no simplification:
RealType sum, term, prefix(1);
RealType eps = boost::math::tools::epsilon<RealType>();
term = sum = pdf(boost::math::chi_squared_distribution<RealType>(v), x);
for(int i = 1;; ++i)
{
prefix *= lam / (2 * i);
term = prefix * pdf(boost::math::chi_squared_distribution<RealType>(v + 2 * i), x);
sum += term;
if(term / sum < eps)
break;
}
return sum * exp(-lam/2);
}
template <class RealType>
void test_spot(
RealType df, // Degrees of freedom
RealType ncp, // non-centrality param
RealType cs, // Chi Square statistic
RealType P, // CDF
RealType Q, // Complement of CDF
RealType tol) // Test tolerance
{
boost::math::non_central_chi_squared_distribution<RealType> dist(df, ncp);
BOOST_CHECK_CLOSE(
cdf(dist, cs), P, tol);
try{
BOOST_CHECK_CLOSE(
pdf(dist, cs), naive_pdf(dist.degrees_of_freedom(), ncp, cs), tol * 50);
}
catch(const std::overflow_error&)
{}
if((P < 0.99) && (Q < 0.99))
{
//
// We can only check this if P is not too close to 1,
// so that we can guarentee Q is reasonably free of error:
//
BOOST_CHECK_CLOSE(
cdf(complement(dist, cs)), Q, tol);
BOOST_CHECK_CLOSE(
quantile(dist, P), cs, tol * 10);
BOOST_CHECK_CLOSE(
quantile(complement(dist, Q)), cs, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_degrees_of_freedom(ncp, cs, P), df, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_degrees_of_freedom(boost::math::complement(ncp, cs, Q)), df, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_non_centrality(df, cs, P), ncp, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_non_centrality(boost::math::complement(df, cs, Q)), ncp, tol * 10);
}
}
template <class RealType> // Any floating-point type RealType.
void test_spots(RealType)
{
RealType tolerance = (std::max)(
boost::math::tools::epsilon<RealType>(),
(RealType)boost::math::tools::epsilon<double>() * 5) * 150;
//
// At float precision we need to up the tolerance, since
// the input values are rounded off to inexact quantities
// the results get thrown off by a noticeable amount.
//
if(boost::math::tools::digits<RealType>() < 50)
tolerance *= 50;
if(boost::is_floating_point<RealType>::value != 1)
tolerance *= 20; // real_concept special functions are less accurate
cout << "Tolerance = " << tolerance << "%." << endl;
using boost::math::chi_squared_distribution;
using ::boost::math::chi_squared;
using ::boost::math::cdf;
using ::boost::math::pdf;
//
// Test against the data from Table 6 of:
//
// "Self-Validating Computations of Probabilities for Selected
// Central and Noncentral Univariate Probability Functions."
// Morgan C. Wang; William J. Kennedy
// Journal of the American Statistical Association,
// Vol. 89, No. 427. (Sep., 1994), pp. 878-887.
//
test_spot(
static_cast<RealType>(1), // degrees of freedom
static_cast<RealType>(6), // non centrality
static_cast<RealType>(0.00393), // Chi Squared statistic
static_cast<RealType>(0.2498463724258039e-2), // Probability of result (CDF), P
static_cast<RealType>(1-0.2498463724258039e-2), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(5), // degrees of freedom
static_cast<RealType>(1), // non centrality
static_cast<RealType>(9.23636), // Chi Squared statistic
static_cast<RealType>(0.8272918751175548), // Probability of result (CDF), P
static_cast<RealType>(1-0.8272918751175548), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(11), // degrees of freedom
static_cast<RealType>(21), // non centrality
static_cast<RealType>(24.72497), // Chi Squared statistic
static_cast<RealType>(0.2539481822183126), // Probability of result (CDF), P
static_cast<RealType>(1-0.2539481822183126), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(31), // degrees of freedom
static_cast<RealType>(6), // non centrality
static_cast<RealType>(44.98534), // Chi Squared statistic
static_cast<RealType>(0.8125198785064969), // Probability of result (CDF), P
static_cast<RealType>(1-0.8125198785064969), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(51), // degrees of freedom
static_cast<RealType>(1), // non centrality
static_cast<RealType>(38.56038), // Chi Squared statistic
static_cast<RealType>(0.8519497361859118e-1), // Probability of result (CDF), P
static_cast<RealType>(1-0.8519497361859118e-1), // Q = 1 - P
tolerance * 2);
test_spot(
static_cast<RealType>(100), // degrees of freedom
static_cast<RealType>(16), // non centrality
static_cast<RealType>(82.35814), // Chi Squared statistic
static_cast<RealType>(0.1184348822747824e-1), // Probability of result (CDF), P
static_cast<RealType>(1-0.1184348822747824e-1), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(300), // degrees of freedom
static_cast<RealType>(16), // non centrality
static_cast<RealType>(331.78852), // Chi Squared statistic
static_cast<RealType>(0.7355956710306709), // Probability of result (CDF), P
static_cast<RealType>(1-0.7355956710306709), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(500), // degrees of freedom
static_cast<RealType>(21), // non centrality
static_cast<RealType>(459.92612), // Chi Squared statistic
static_cast<RealType>(0.2797023600800060e-1), // Probability of result (CDF), P
static_cast<RealType>(1-0.2797023600800060e-1), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(1), // degrees of freedom
static_cast<RealType>(1), // non centrality
static_cast<RealType>(0.00016), // Chi Squared statistic
static_cast<RealType>(0.6121428929881423e-2), // Probability of result (CDF), P
static_cast<RealType>(1-0.6121428929881423e-2), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(1), // degrees of freedom
static_cast<RealType>(1), // non centrality
static_cast<RealType>(0.00393), // Chi Squared statistic
static_cast<RealType>(0.3033814229753780e-1), // Probability of result (CDF), P
static_cast<RealType>(1-0.3033814229753780e-1), // Q = 1 - P
tolerance);
RealType tol2 = boost::math::tools::epsilon<RealType>() * 5 * 100; // 5 eps as a percentage
boost::math::non_central_chi_squared_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(12));
RealType x = 7;
using namespace std; // ADL of std names.
// mean:
BOOST_CHECK_CLOSE(
mean(dist)
, static_cast<RealType>(8+12), tol2);
// variance:
BOOST_CHECK_CLOSE(
variance(dist)
, static_cast<RealType>(64), tol2);
// std deviation:
BOOST_CHECK_CLOSE(
standard_deviation(dist)
, static_cast<RealType>(8), tol2);
// hazard:
BOOST_CHECK_CLOSE(
hazard(dist, x)
, pdf(dist, x) / cdf(complement(dist, x)), tol2);
// cumulative hazard:
BOOST_CHECK_CLOSE(
chf(dist, x)
, -log(cdf(complement(dist, x))), tol2);
// coefficient_of_variation:
BOOST_CHECK_CLOSE(
coefficient_of_variation(dist)
, standard_deviation(dist) / mean(dist), tol2);
// mode:
BOOST_CHECK_CLOSE(
mode(dist)
, static_cast<RealType>(17.184201184730857030170788677340294070728990862663L), sqrt(tolerance * 500));
BOOST_CHECK_CLOSE(
median(dist),
quantile(
boost::math::non_central_chi_squared_distribution<RealType>(
static_cast<RealType>(8),
static_cast<RealType>(12)),
static_cast<RealType>(0.5)), static_cast<RealType>(tol2));
// skewness:
BOOST_CHECK_CLOSE(
skewness(dist)
, static_cast<RealType>(0.6875), tol2);
// kurtosis:
BOOST_CHECK_CLOSE(
kurtosis(dist)
, static_cast<RealType>(3.65625), tol2);
// kurtosis excess:
BOOST_CHECK_CLOSE(
kurtosis_excess(dist)
, static_cast<RealType>(0.65625), tol2);
} // template <class RealType>void test_spots(RealType)
template <class T>
T nccs_cdf(T df, T nc, T x)
{
return cdf(boost::math::non_central_chi_squared_distribution<T>(df, nc), x);
}
template <class T>
T nccs_ccdf(T df, T nc, T x)
{
return cdf(complement(boost::math::non_central_chi_squared_distribution<T>(df, nc), x));
}
template <typename T>
void do_test_nc_chi_squared(T& data, const char* type_name, const char* test)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
std::cout << "Testing: " << test << std::endl;
value_type (*fp1)(value_type, value_type, value_type) = nccs_cdf;
boost::math::tools::test_result<value_type> result;
result = boost::math::tools::test(
data,
bind_func(fp1, 0, 1, 2),
extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "CDF", test);
fp1 = nccs_ccdf;
result = boost::math::tools::test(
data,
bind_func(fp1, 0, 1, 2),
extract_result(4));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "CCDF", test);
#ifdef TEST_OTHER
fp1 = other::nccs_cdf;
result = boost::math::tools::test(
data,
bind_func(fp1, 0, 1, 2),
extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "other::CDF", test);
#endif
std::cout << std::endl;
}
template <typename T>
void quantile_sanity_check(T& data, const char* type_name, const char* test)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
//
// Tests with type real_concept take rather too long to run, so
// for now we'll disable them:
//
if(!boost::is_floating_point<value_type>::value)
return;
std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl;
//
// These sanity checks test for a round trip accuracy of one half
// of the bits in T, unless T is type float, in which case we check
// for just one decimal digit. The problem here is the sensitivity
// of the functions, not their accuracy. This test data was generated
// for the forward functions, which means that when it is used as
// the input to the inverses then it is necessarily inexact. This rounding
// of the input is what makes the data unsuitable for use as an accuracy check,
// and also demonstrates that you can't in general round-trip these functions.
// It is however a useful sanity check.
//
value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float
for(unsigned i = 0; i < data.size(); ++i)
{
if(data[i][3] == 0)
{
BOOST_CHECK(0 == quantile(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3]));
}
else if(data[i][3] < 0.9999f)
{
value_type p = quantile(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3]);
value_type pt = data[i][2];
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
}
if(data[i][4] == 0)
{
BOOST_CHECK(0 == quantile(complement(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3])));
}
else if(data[i][4] < 0.9999f)
{
value_type p = quantile(complement(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][4]));
value_type pt = data[i][2];
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
}
if(boost::math::tools::digits<value_type>() > 50)
{
//
// Sanity check mode, the accuracy of
// the mode is at *best* the square root of the accuracy of the PDF:
//
try{
value_type m = mode(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]));
value_type p = pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m);
BOOST_CHECK_EX(pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m * (1 + sqrt(precision) * 50)) <= p, i);
BOOST_CHECK_EX(pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m * (1 - sqrt(precision)) * 50) <= p, i);
}
catch(const boost::math::evaluation_error& ) {}
//
// Sanity check degrees-of-freedom finder, don't bother at float
// precision though as there's not enough data in the probability
// values to get back to the correct degrees of freedom or
// non-cenrality parameter:
//
try{
if((data[i][3] < 0.99) && (data[i][3] != 0))
{
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_chi_squared_distribution<value_type>::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]),
data[i][0], precision, i);
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_chi_squared_distribution<value_type>::find_non_centrality(data[i][0], data[i][2], data[i][3]),
data[i][1], precision, i);
}
if((data[i][4] < 0.99) && (data[i][4] != 0))
{
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_chi_squared_distribution<value_type>::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])),
data[i][0], precision, i);
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_chi_squared_distribution<value_type>::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])),
data[i][1], precision, i);
}
}
catch(const std::exception& e)
{
BOOST_ERROR(e.what());
}
}
}
}
template <typename T>
void test_accuracy(T, const char* type_name)
{
#include "nccs.ipp"
do_test_nc_chi_squared(nccs, type_name, "Non Central Chi Squared, medium parameters");
quantile_sanity_check(nccs, type_name, "Non Central Chi Squared, medium parameters");
#include "nccs_big.ipp"
do_test_nc_chi_squared(nccs_big, type_name, "Non Central Chi Squared, large parameters");
quantile_sanity_check(nccs_big, type_name, "Non Central Chi Squared, large parameters");
}
int test_main(int, char* [])
{
BOOST_MATH_CONTROL_FP;
// Basic sanity-check spot values.
expected_results();
// (Parameter value, arbitrarily zero, only communicates the floating point type).
#ifdef TEST_FLOAT
test_spots(0.0F); // Test float.
#endif
#ifdef TEST_DOUBLE
test_spots(0.0); // Test double.
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
#ifdef TEST_LDOUBLE
test_spots(0.0L); // Test long double.
#endif
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
#ifdef TEST_REAL_CONCEPT
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#endif
#endif
#ifdef TEST_FLOAT
test_accuracy(0.0F, "float"); // Test float.
#endif
#ifdef TEST_DOUBLE
test_accuracy(0.0, "double"); // Test double.
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
#ifdef TEST_LDOUBLE
test_accuracy(0.0L, "long double"); // Test long double.
#endif
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
#ifdef TEST_REAL_CONCEPT
test_accuracy(boost::math::concepts::real_concept(0.), "real_concept"); // Test real concept.
#endif
#endif
#endif
return 0;
} // int test_main(int, char* [])