blob: af7edff6f4bbb25dd16dcdbb95d11fa750ad2952 [file] [log] [blame]
// test_nc_t.cpp
// Copyright John Maddock 2008.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <pch.hpp>
#ifdef _MSC_VER
#pragma warning (disable:4127 4512)
#endif
#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
# define TEST_FLOAT
# define TEST_DOUBLE
# define TEST_LDOUBLE
# define TEST_REAL_CONCEPT
#endif
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#include <boost/math/distributions/non_central_t.hpp> // for chi_squared_distribution
#include <boost/test/test_exec_monitor.hpp> // for test_main
#include <boost/test/results_collector.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE
#include "functor.hpp"
#include "handle_test_result.hpp"
#include <iostream>
using std::cout;
using std::endl;
#include <limits>
using std::numeric_limits;
#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK_CLOSE(a, b, prec); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
}\
}
#define BOOST_CHECK_EX(a, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK(a); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
}\
}
void expected_results()
{
//
// Define the max and mean errors expected for
// various compilers and platforms.
//
const char* largest_type;
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
if(boost::math::policies::digits<double, boost::math::policies::policy<> >() == boost::math::policies::digits<long double, boost::math::policies::policy<> >())
{
largest_type = "(long\\s+)?double|real_concept";
}
else
{
largest_type = "long double|real_concept";
}
#else
largest_type = "(long\\s+)?double|real_concept";
#endif
//
// Catch all cases come last:
//
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
"real_concept", // test type(s)
"[^|]*", // test data group
"[^|]*", 300000, 100000); // test function
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
largest_type, // test type(s)
"[^|]*", // test data group
"[^|]*", 250, 50); // test function
//
// Finish off by printing out the compiler/stdlib/platform names,
// we do this to make it easier to mark up expected error rates.
//
std::cout << "Tests run with " << BOOST_COMPILER << ", "
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
}
template <class RealType>
RealType naive_pdf(RealType v, RealType delta, RealType x)
{
}
template <class RealType>
RealType naive_mean(RealType v, RealType delta)
{
using boost::math::tgamma;
return delta * sqrt(v / 2) * tgamma((v-1)/2) / tgamma(v/2);
}
float naive_mean(float v, float delta)
{
return (float)naive_mean((double)v, (double)delta);
}
template <class RealType>
RealType naive_variance(RealType v, RealType delta)
{
using boost::math::tgamma;
RealType r = tgamma((v-1)/2) / tgamma(v/2);
r *= r;
r *= -delta * delta * v / 2;
r += (1 + delta * delta) * v / (v - 2);
return r;
}
float naive_variance(float v, float delta)
{
return (float)naive_variance((double)v, (double)delta);
}
template <class RealType>
RealType naive_skewness(RealType v, RealType delta)
{
using boost::math::tgamma;
RealType tgr = tgamma((v-1)/2) / tgamma(v / 2);
RealType r = delta * sqrt(v) * tgamma((v-1)/2)
* (v * (-3 + delta * delta + 2 * v) / ((-3 + v) * (-2 + v))
- 2 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2));
r /= boost::math::constants::root_two<RealType>()
* pow(((1+delta*delta) * v / (-2+v) - delta*delta*v*tgr*tgr/2), RealType(1.5f))
* tgamma(v/2);
return r;
}
float naive_skewness(float v, float delta)
{
return (float)naive_skewness((double)v, (double)delta);
}
template <class RealType>
RealType naive_kurtosis_excess(RealType v, RealType delta)
{
using boost::math::tgamma;
RealType tgr = tgamma((v-1)/2) / tgamma(v / 2);
RealType r = -delta * delta * v * tgr * tgr / 2;
r *= v * (delta * delta * (1 + v) + 3 * (-5 + 3 * v)) / ((-3 + v)*(-2+v))
- 3 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2);
r += (3 + 6 * delta * delta + delta * delta * delta * delta)* v * v
/ ((-4+v) * (-2+v));
r /= (1+delta*delta)*v / (-2+v) - delta*delta*v *tgr*tgr/2;
r /= (1+delta*delta)*v / (-2+v) - delta*delta*v *tgr*tgr/2;
return r;
}
float naive_kurtosis_excess(float v, float delta)
{
return (float)naive_kurtosis_excess((double)v, (double)delta);
}
template <class RealType>
void test_spot(
RealType df, // Degrees of freedom
RealType ncp, // non-centrality param
RealType t, // T statistic
RealType P, // CDF
RealType Q, // Complement of CDF
RealType tol) // Test tolerance
{
boost::math::non_central_t_distribution<RealType> dist(df, ncp);
BOOST_CHECK_CLOSE(
cdf(dist, t), P, tol);
try{
BOOST_CHECK_CLOSE(
mean(dist), naive_mean(df, ncp), tol);
BOOST_CHECK_CLOSE(
variance(dist), naive_variance(df, ncp), tol);
BOOST_CHECK_CLOSE(
skewness(dist), naive_skewness(df, ncp), tol * 10);
BOOST_CHECK_CLOSE(
kurtosis_excess(dist), naive_kurtosis_excess(df, ncp), tol * 50);
BOOST_CHECK_CLOSE(
kurtosis(dist), 3 + naive_kurtosis_excess(df, ncp), tol * 50);
}
catch(const std::domain_error&)
{
}
/*
BOOST_CHECK_CLOSE(
pdf(dist, t), naive_pdf(dist.degrees_of_freedom(), ncp, t), tol * 50);
*/
if((P < 0.99) && (Q < 0.99))
{
//
// We can only check this if P is not too close to 1,
// so that we can guarentee Q is reasonably free of error:
//
BOOST_CHECK_CLOSE(
cdf(complement(dist, t)), Q, tol);
BOOST_CHECK_CLOSE(
quantile(dist, P), t, tol * 10);
BOOST_CHECK_CLOSE(
quantile(complement(dist, Q)), t, tol * 10);
/*
BOOST_CHECK_CLOSE(
dist.find_degrees_of_freedom(ncp, t, P), df, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_degrees_of_freedom(boost::math::complement(ncp, t, Q)), df, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_non_centrality(df, t, P), ncp, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_non_centrality(boost::math::complement(df, t, Q)), ncp, tol * 10);
*/
}
}
template <class RealType> // Any floating-point type RealType.
void test_spots(RealType)
{
//
// Approx limit of test data is 12 digits expressed here as a persentage:
//
RealType tolerance = (std::max)(
boost::math::tools::epsilon<RealType>(),
(RealType)5e-12f) * 100;
//
// At float precision we need to up the tolerance, since
// the input values are rounded off to inexact quantities
// the results get thrown off by a noticeable amount.
//
if(boost::math::tools::digits<RealType>() < 50)
tolerance *= 50;
if(boost::is_floating_point<RealType>::value != 1)
tolerance *= 20; // real_concept special functions are less accurate
cout << "Tolerance = " << tolerance << "%." << endl;
//
// Test data is taken from:
//
// Computing discrete mixtures of continuous
// distributions: noncentral chisquare, noncentral t
// and the distribution of the square of the sample
// multiple correlation coeficient.
// Denise Benton, K. Krishnamoorthy.
// Computational Statistics & Data Analysis 43 (2003) 249 - 267
//
test_spot(
static_cast<RealType>(3), // degrees of freedom
static_cast<RealType>(1), // non centrality
static_cast<RealType>(2.34), // T
static_cast<RealType>(0.801888999613917), // Probability of result (CDF), P
static_cast<RealType>(1-0.801888999613917), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(126), // degrees of freedom
static_cast<RealType>(-2), // non centrality
static_cast<RealType>(-4.33), // T
static_cast<RealType>(1.252846196792878e-2), // Probability of result (CDF), P
static_cast<RealType>(1-1.252846196792878e-2), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(20), // degrees of freedom
static_cast<RealType>(23), // non centrality
static_cast<RealType>(23), // T
static_cast<RealType>(0.460134400391924), // Probability of result (CDF), P
static_cast<RealType>(1-0.460134400391924), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(20), // degrees of freedom
static_cast<RealType>(33), // non centrality
static_cast<RealType>(34), // T
static_cast<RealType>(0.532008386378725), // Probability of result (CDF), P
static_cast<RealType>(1-0.532008386378725), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(12), // degrees of freedom
static_cast<RealType>(38), // non centrality
static_cast<RealType>(39), // T
static_cast<RealType>(0.495868184917805), // Probability of result (CDF), P
static_cast<RealType>(1-0.495868184917805), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(12), // degrees of freedom
static_cast<RealType>(39), // non centrality
static_cast<RealType>(39), // T
static_cast<RealType>(0.446304024668836), // Probability of result (CDF), P
static_cast<RealType>(1-0.446304024668836), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(200), // degrees of freedom
static_cast<RealType>(38), // non centrality
static_cast<RealType>(39), // T
static_cast<RealType>(0.666194209961795), // Probability of result (CDF), P
static_cast<RealType>(1-0.666194209961795), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(200), // degrees of freedom
static_cast<RealType>(42), // non centrality
static_cast<RealType>(40), // T
static_cast<RealType>(0.179292265426085), // Probability of result (CDF), P
static_cast<RealType>(1-0.179292265426085), // Q = 1 - P
tolerance);
boost::math::non_central_t_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(12));
BOOST_CHECK_CLOSE(pdf(dist, 12), static_cast<RealType>(1.235329715425894935157684607751972713457e-1L), tolerance);
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, -2), -4), static_cast<RealType>(5.797932289365814702402873546466798025787e-2L), tolerance);
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, 2), 4), static_cast<RealType>(5.797932289365814702402873546466798025787e-2L), tolerance);
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, 2), 0), static_cast<RealType>(5.388394890639957139696546086044839573749e-2L), tolerance);
} // template <class RealType>void test_spots(RealType)
template <class T>
T nct_cdf(T df, T nc, T x)
{
return cdf(boost::math::non_central_t_distribution<T>(df, nc), x);
}
template <class T>
T nct_ccdf(T df, T nc, T x)
{
return cdf(complement(boost::math::non_central_t_distribution<T>(df, nc), x));
}
template <typename T>
void do_test_nc_t(T& data, const char* type_name, const char* test)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
std::cout << "Testing: " << test << std::endl;
value_type (*fp1)(value_type, value_type, value_type) = nct_cdf;
boost::math::tools::test_result<value_type> result;
result = boost::math::tools::test(
data,
bind_func(fp1, 0, 1, 2),
extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "CDF", test);
fp1 = nct_ccdf;
result = boost::math::tools::test(
data,
bind_func(fp1, 0, 1, 2),
extract_result(4));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "CCDF", test);
std::cout << std::endl;
}
template <typename T>
void quantile_sanity_check(T& data, const char* type_name, const char* test)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
//
// Tests with type real_concept take rather too long to run, so
// for now we'll disable them:
//
if(!boost::is_floating_point<value_type>::value)
return;
std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl;
//
// These sanity checks test for a round trip accuracy of one half
// of the bits in T, unless T is type float, in which case we check
// for just one decimal digit. The problem here is the sensitivity
// of the functions, not their accuracy. This test data was generated
// for the forward functions, which means that when it is used as
// the input to the inverses then it is necessarily inexact. This rounding
// of the input is what makes the data unsuitable for use as an accuracy check,
// and also demonstrates that you can't in general round-trip these functions.
// It is however a useful sanity check.
//
value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float
for(unsigned i = 0; i < data.size(); ++i)
{
if(data[i][3] == 0)
{
BOOST_CHECK(0 == quantile(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3]));
}
else if(data[i][3] < 0.9999f)
{
value_type p = quantile(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3]);
value_type pt = data[i][2];
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
}
if(data[i][4] == 0)
{
BOOST_CHECK(0 == quantile(complement(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3])));
}
else if(data[i][4] < 0.9999f)
{
value_type p = quantile(complement(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][4]));
value_type pt = data[i][2];
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
}
if(boost::math::tools::digits<value_type>() > 50)
{
//
// Sanity check mode, the accuracy of
// the mode is at *best* the square root of the accuracy of the PDF:
//
try{
value_type m = mode(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]));
value_type p = pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m);
BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m * (1 + sqrt(precision) * 100)) <= p, i);
BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m * (1 - sqrt(precision)) * 100) <= p, i);
}
catch(const boost::math::evaluation_error& ) {}
#if 0
//
// Sanity check degrees-of-freedom finder, don't bother at float
// precision though as there's not enough data in the probability
// values to get back to the correct degrees of freedom or
// non-cenrality parameter:
//
try{
if((data[i][3] < 0.99) && (data[i][3] != 0))
{
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_t_distribution<value_type>::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]),
data[i][0], precision, i);
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_t_distribution<value_type>::find_non_centrality(data[i][0], data[i][2], data[i][3]),
data[i][1], precision, i);
}
if((data[i][4] < 0.99) && (data[i][4] != 0))
{
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_t_distribution<value_type>::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])),
data[i][0], precision, i);
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_t_distribution<value_type>::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])),
data[i][1], precision, i);
}
}
catch(const std::exception& e)
{
BOOST_ERROR(e.what());
}
#endif
}
}
}
template <typename T>
void test_accuracy(T, const char* type_name)
{
#include "nct.ipp"
do_test_nc_t(nct, type_name, "Non Central T");
quantile_sanity_check(nct, type_name, "Non Central T");
}
int test_main(int, char* [])
{
BOOST_MATH_CONTROL_FP;
// Basic sanity-check spot values.
expected_results();
// (Parameter value, arbitrarily zero, only communicates the floating point type).
#ifdef TEST_FLOAT
test_spots(0.0F); // Test float.
#endif
#ifdef TEST_DOUBLE
test_spots(0.0); // Test double.
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
#ifdef TEST_LDOUBLE
test_spots(0.0L); // Test long double.
#endif
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
#ifdef TEST_REAL_CONCEPT
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#endif
#endif
#ifdef TEST_FLOAT
test_accuracy(0.0F, "float"); // Test float.
#endif
#ifdef TEST_DOUBLE
test_accuracy(0.0, "double"); // Test double.
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
#ifdef TEST_LDOUBLE
test_accuracy(0.0L, "long double"); // Test long double.
#endif
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
#ifdef TEST_REAL_CONCEPT
test_accuracy(boost::math::concepts::real_concept(0.), "real_concept"); // Test real concept.
#endif
#endif
#endif
return 0;
} // int test_main(int, char* [])