blob: 9ffaba714b92ec7356d897c70266257fe3b34233 [file] [log] [blame]
// Copyright Paul A. Bristow 2007, 2009.
// Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// test_pareto.cpp
// http://en.wikipedia.org/wiki/pareto_distribution
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
// Also:
// Weisstein, Eric W. "pareto Distribution."
// From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/paretoDistribution.html
#ifdef _MSC_VER
# pragma warning(disable: 4127) // conditional expression is constant.
# pragma warning (disable : 4996) // POSIX name for this item is deprecated
# pragma warning (disable : 4224) // nonstandard extension used : formal parameter 'arg' was previously defined as a type
# pragma warning (disable : 4180) // qualifier applied to function type has no meaning; ignored
# pragma warning(disable: 4100) // unreferenced formal parameter.
#endif
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#include <boost/test/test_exec_monitor.hpp> // Boost.Test
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/distributions/pareto.hpp>
using boost::math::pareto_distribution;
#include <boost/math/tools/test.hpp>
#include <iostream>
using std::cout;
using std::endl;
using std::setprecision;
#include <limits>
using std::numeric_limits;
template <class RealType>
void check_pareto(RealType scale, RealType shape, RealType x, RealType p, RealType q, RealType tol)
{
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(
pareto_distribution<RealType>(scale, shape), // distribution.
x), // random variable.
p, // probability.
tol); // tolerance eps.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(
complement(
pareto_distribution<RealType>(scale, shape), // distribution.
x)), // random variable.
q, // probability complement.
tol); // tolerance eps.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::quantile(
pareto_distribution<RealType>(scale, shape), // distribution.
p), // probability.
x, // random variable.
tol); // tolerance eps.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::quantile(
complement(
pareto_distribution<RealType>(scale, shape), // distribution.
q)), // probability complement.
x, // random variable.
tol); // tolerance eps.
} // check_pareto
template <class RealType>
void test_spots(RealType)
{
// Basic sanity checks.
//
// Tolerance are based on units of epsilon, but capped at
// double precision, since that's the limit of our test data:
//
RealType tol = (std::max)((RealType)boost::math::tools::epsilon<double>(), boost::math::tools::epsilon<RealType>());
RealType tol5eps = tol * 5;
RealType tol10eps = tol * 10;
RealType tol100eps = tol * 100;
RealType tol1000eps = tol * 1000;
check_pareto(
static_cast<RealType>(1.1L), //
static_cast<RealType>(5.5L),
static_cast<RealType>(2.2L),
static_cast<RealType>(0.97790291308792L),
static_cast<RealType>(0.0220970869120796L),
tol10eps * 4);
check_pareto(
static_cast<RealType>(0.5L),
static_cast<RealType>(10.1L),
static_cast<RealType>(1.5L),
static_cast<RealType>(0.99998482686481L),
static_cast<RealType>(1.51731351900608e-005L),
tol100eps * 1000); // Much less accurate as p close to unity.
check_pareto(
static_cast<RealType>(0.1L),
static_cast<RealType>(2.3L),
static_cast<RealType>(1.5L),
static_cast<RealType>(0.99802762220697L),
static_cast<RealType>(0.00197237779302972L),
tol1000eps);
// Example from 23.3 page 259
check_pareto(
static_cast<RealType>(2.30444301457005L),
static_cast<RealType>(4),
static_cast<RealType>(2.4L),
static_cast<RealType>(0.15L),
static_cast<RealType>(0.85L),
tol100eps);
check_pareto(
static_cast<RealType>(2),
static_cast<RealType>(3),
static_cast<RealType>(3.4L),
static_cast<RealType>(0.796458375737838L),
static_cast<RealType>(0.203541624262162L),
tol10eps);
check_pareto( // Probability near 0.5
static_cast<RealType>(2),
static_cast<RealType>(2),
static_cast<RealType>(3),
static_cast<RealType>(0.5555555555555555555555555555555555555556L),
static_cast<RealType>(0.4444444444444444444444444444444444444444L),
tol5eps); // accurate.
// Tests for:
// pdf for shapes 1, 2 & 3 (exact)
BOOST_CHECK_CLOSE_FRACTION(
pdf(pareto_distribution<RealType>(1, 1), 1),
static_cast<RealType>(1), //
tol5eps);
BOOST_CHECK_CLOSE_FRACTION( pdf(pareto_distribution<RealType>(1, 2), 1),
static_cast<RealType>(2), //
tol5eps);
BOOST_CHECK_CLOSE_FRACTION( pdf(pareto_distribution<RealType>(1, 3), 1),
static_cast<RealType>(3), //
tol5eps);
// cdf
BOOST_CHECK_EQUAL( // x = scale
cdf(pareto_distribution<RealType>(1, 1), 1),
static_cast<RealType>(0) );
// Compare with values from StatCalc K. Krishnamoorthy, ISBN 1-58488-635-8 eq 23.1.3
BOOST_CHECK_CLOSE_FRACTION( // small x
cdf(pareto_distribution<RealType>(2, 5), static_cast<RealType>(3.4)),
static_cast<RealType>(0.929570372227626L), tol5eps);
BOOST_CHECK_CLOSE_FRACTION( // small x
cdf(pareto_distribution<RealType>(2, 5), static_cast<RealType>(3.4)),
static_cast<RealType>(1 - 0.0704296277723743L), tol5eps);
BOOST_CHECK_CLOSE_FRACTION( // small x
cdf(complement(pareto_distribution<RealType>(2, 5), static_cast<RealType>(3.4))),
static_cast<RealType>(0.0704296277723743L), tol5eps);
// quantile
BOOST_CHECK_EQUAL( // x = scale
quantile(pareto_distribution<RealType>(1, 1), 0),
static_cast<RealType>(1) );
BOOST_CHECK_EQUAL( // x = scale
quantile(complement(pareto_distribution<RealType>(1, 1), 1)),
static_cast<RealType>(1) );
BOOST_CHECK_CLOSE_FRACTION( // small x
cdf(complement(pareto_distribution<RealType>(2, 5), static_cast<RealType>(3.4))),
static_cast<RealType>(0.0704296277723743L), tol5eps);
using namespace std; // ADL of std names.
pareto_distribution<RealType> pareto15(1, 5);
// Note: shape must be big enough (5) that all moments up to kurtosis are defined
// to allow all functions to be tested.
// mean:
BOOST_CHECK_CLOSE_FRACTION(
mean(pareto15), static_cast<RealType>(1.25), tol5eps); // 1.25 == 5/4
BOOST_CHECK_EQUAL(
mean(pareto15), static_cast<RealType>(1.25)); // 1.25 == 5/4 (expect exact so check equal)
pareto_distribution<RealType> p12(1, 2); //
BOOST_CHECK_EQUAL(
mean(p12), static_cast<RealType>(2)); // Exactly two.
// variance:
BOOST_CHECK_CLOSE_FRACTION(
variance(pareto15), static_cast<RealType>(0.10416666666666667L), tol5eps);
// std deviation:
BOOST_CHECK_CLOSE_FRACTION(
standard_deviation(pareto15), static_cast<RealType>(0.32274861218395140L), tol5eps);
// hazard: No independent test values found yet.
//BOOST_CHECK_CLOSE_FRACTION(
// hazard(pareto15, x), pdf(pareto15, x) / cdf(complement(pareto15, x)), tol5eps);
//// cumulative hazard:
//BOOST_CHECK_CLOSE_FRACTION(
// chf(pareto15, x), -log(cdf(complement(pareto15, x))), tol5eps);
//// coefficient_of_variation:
BOOST_CHECK_CLOSE_FRACTION(
coefficient_of_variation(pareto15), static_cast<RealType>(0.25819888974716110L), tol5eps);
// mode:
BOOST_CHECK_CLOSE_FRACTION(
mode(pareto15), static_cast<RealType>(1), tol5eps);
BOOST_CHECK_CLOSE_FRACTION(
median(pareto15), static_cast<RealType>(1.1486983549970351L), tol5eps);
// skewness:
BOOST_CHECK_CLOSE_FRACTION(
skewness(pareto15), static_cast<RealType>(4.6475800154489004L), tol5eps);
// kertosis:
BOOST_CHECK_CLOSE_FRACTION(
kurtosis(pareto15), static_cast<RealType>(73.8L), tol5eps);
// kertosis excess:
BOOST_CHECK_CLOSE_FRACTION(
kurtosis_excess(pareto15), static_cast<RealType>(70.8L), tol5eps);
// Check difference between kurtosis and excess:
BOOST_CHECK_CLOSE_FRACTION(
kurtosis_excess(pareto15), kurtosis(pareto15) - static_cast<RealType>(3L), tol5eps);
// Check kurtosis excess = kurtosis - 3;
} // template <class RealType>void test_spots(RealType)
int test_main(int, char* [])
{
// Check that can generate pareto distribution using the two convenience methods:
boost::math::pareto myp1(1., 1); // Using typedef
pareto_distribution<> myp2(1., 1); // Using default RealType double.
boost::math::pareto pareto11; // Use default values (scale = 1, shape = 1).
// Note NOT pareto11() as the compiler will interpret as a function!
// Basic sanity-check spot values.
BOOST_CHECK_EQUAL(pareto11.scale(), 1); // Check defaults again.
BOOST_CHECK_EQUAL(pareto11.shape(), 1);
BOOST_CHECK_EQUAL(myp1.scale(), 1);
BOOST_CHECK_EQUAL(myp1.shape(), 1);
BOOST_CHECK_EQUAL(myp2.scale(), 1);
BOOST_CHECK_EQUAL(myp2.shape(), 1);
// Test range and support using double only,
// because it supports numeric_limits max for pseudo-infinity.
BOOST_CHECK_EQUAL(range(myp2).first, 0); // range 0 to +infinity
BOOST_CHECK_EQUAL(range(myp2).second, (numeric_limits<double>::max)());
BOOST_CHECK_EQUAL(support(myp2).first, myp2.scale()); // support scale to + infinity.
BOOST_CHECK_EQUAL(support(myp2).second, (numeric_limits<double>::max)());
// Check some bad parameters to the distribution.
BOOST_CHECK_THROW(boost::math::pareto mypm1(-1, 1), std::domain_error); // Using typedef
BOOST_CHECK_THROW(boost::math::pareto myp0(0, 1), std::domain_error); // Using typedef
BOOST_CHECK_THROW(boost::math::pareto myp1m1(1, -1), std::domain_error); // Using typedef
BOOST_CHECK_THROW(boost::math::pareto myp10(1, 0), std::domain_error); // Using typedef
// Check some moments that should fail because shape not big enough.
BOOST_CHECK_THROW(variance(myp2), std::domain_error);
BOOST_CHECK_THROW(standard_deviation(myp2), std::domain_error);
BOOST_CHECK_THROW(skewness(myp2), std::domain_error);
BOOST_CHECK_THROW(kurtosis(myp2), std::domain_error);
BOOST_CHECK_THROW(kurtosis_excess(myp2), std::domain_error);
// Test on extreme values of distribution parameters,
// using just double because it has numeric_limit infinity etc.
BOOST_CHECK_THROW(boost::math::pareto mypinf1(+std::numeric_limits<double>::infinity(), 1), std::domain_error); // Using typedef
BOOST_CHECK_THROW(boost::math::pareto myp1inf(1, +std::numeric_limits<double>::infinity()), std::domain_error); // Using typedef
BOOST_CHECK_THROW(boost::math::pareto mypinf1(+std::numeric_limits<double>::infinity(), +std::numeric_limits<double>::infinity()), std::domain_error); // Using typedef
// Test on extreme values of random variate x, using just double because it has numeric_limit infinity etc..
// No longer allow x to be + or - infinity, then these tests should throw.
BOOST_CHECK_THROW(pdf(pareto11, +std::numeric_limits<double>::infinity()), std::domain_error); // x = + infinity
BOOST_CHECK_THROW(pdf(pareto11, -std::numeric_limits<double>::infinity()), std::domain_error); // x = - infinity
BOOST_CHECK_THROW(cdf(pareto11, +std::numeric_limits<double>::infinity()), std::domain_error); // x = + infinity
BOOST_CHECK_THROW(cdf(pareto11, -std::numeric_limits<double>::infinity()), std::domain_error); // x = - infinity
BOOST_CHECK_EQUAL(pdf(pareto11, 0.5), 0); // x < scale but > 0
BOOST_CHECK_EQUAL(pdf(pareto11, (std::numeric_limits<double>::min)()), 0); // x almost zero but > 0
BOOST_CHECK_EQUAL(pdf(pareto11, 1), 1); // x == scale, result == shape == 1
BOOST_CHECK_EQUAL(pdf(pareto11, +(std::numeric_limits<double>::max)()), 0); // x = +max, pdf has fallen to zero.
BOOST_CHECK_THROW(pdf(pareto11, 0), std::domain_error); // x == 0
BOOST_CHECK_THROW(pdf(pareto11, -1), std::domain_error); // x = -1
BOOST_CHECK_THROW(pdf(pareto11, -(std::numeric_limits<double>::max)()), std::domain_error); // x = - max
BOOST_CHECK_THROW(pdf(pareto11, -(std::numeric_limits<double>::min)()), std::domain_error); // x = - min
BOOST_CHECK_EQUAL(cdf(pareto11, 1), 0); // x == scale, cdf = zero.
BOOST_CHECK_EQUAL(cdf(pareto11, +(std::numeric_limits<double>::max)()), 1); // x = + max, cdf = unity.
BOOST_CHECK_THROW(cdf(pareto11, 0), std::domain_error); // x == 0
BOOST_CHECK_THROW(cdf(pareto11, -(std::numeric_limits<double>::min)()), std::domain_error); // x = - min,
BOOST_CHECK_THROW(cdf(pareto11, -(std::numeric_limits<double>::max)()), std::domain_error); // x = - max,
// (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tol5eps = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tol5eps = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_spots(0.0L); // Test long double.
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x0582))
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::cout;
#endif
return 0;
} // int test_main(int, char* [])
/*
Output:
Compiling...
test_pareto.cpp
Linking...
Embedding manifest...
Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_pareto.exe"
Running 1 test case...
*** No errors detected
*/