blob: 6f16b3d1e4a95d6f3d6275b5acd1082a3467911c [file] [log] [blame]
// (C) Copyright John Maddock 2007.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <pch.hpp>
#include <boost/math/concepts/real_concept.hpp>
#include <boost/test/test_exec_monitor.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/special_functions/round.hpp>
#include <boost/math/special_functions/trunc.hpp>
#include <boost/math/special_functions/modf.hpp>
#include <boost/math/special_functions/sign.hpp>
#include <boost/random/mersenne_twister.hpp>
boost::mt19937 rng;
template <class T>
T get_random()
{
//
// Fill all the bits in T with random values,
// likewise set the exponent to a random value
// that will still fit inside a T, and always
// have a remainder as well as an integer part.
//
int bits = boost::math::tools::digits<T>();
int shift = 0;
int exponent = rng() % (bits - 4);
T result = 0;
while(bits > 0)
{
result += ldexp(static_cast<T>(rng()), shift);
shift += std::numeric_limits<int>::digits;
bits -= std::numeric_limits<int>::digits;
}
return rng() & 1u ? -ldexp(frexp(result, &bits), exponent) : ldexp(frexp(result, &bits), exponent);
}
template <class T, class U>
void check_within_half(T a, U u)
{
BOOST_MATH_STD_USING
if(fabs(a-u) > 0.5f)
{
BOOST_ERROR("Rounded result differed by more than 0.5 from the original");
std::cerr << "Values were: " << std::setprecision(35) << std::setw(40)
<< std::left << a << u << std::endl;
}
if((fabs(a - u) == 0.5f) && (fabs(static_cast<T>(u)) < fabs(a)))
{
BOOST_ERROR("Rounded result was towards zero with boost::round");
std::cerr << "Values were: " << std::setprecision(35) << std::setw(40)
<< std::left << a << u << std::endl;
}
}
//
// We may not have an abs overload for long long so provide a fall back:
//
template <class T>
inline T safe_abs(T const& v ...)
{
return v < 0 ? -v : v;
}
template <class T, class U>
void check_trunc_result(T a, U u)
{
BOOST_MATH_STD_USING
if(fabs(a-u) >= 1)
{
BOOST_ERROR("Rounded result differed by more than 1 from the original");
std::cerr << "Values were: " << std::setprecision(35) << std::setw(40)
<< std::left << a << u << std::endl;
}
if(abs(a) < safe_abs(u))
{
BOOST_ERROR("Truncated result had larger absolute value than the original");
std::cerr << "Values were: " << std::setprecision(35) << std::setw(40)
<< std::left << a << u << std::endl;
}
if(fabs(static_cast<T>(u)) > fabs(a))
{
BOOST_ERROR("Rounded result was away from zero with boost::trunc");
std::cerr << "Values were: " << std::setprecision(35) << std::setw(40)
<< std::left << a << u << std::endl;
}
}
template <class T, class U>
void check_modf_result(T a, T fract, U ipart)
{
BOOST_MATH_STD_USING
if(fract + ipart != a)
{
BOOST_ERROR("Fractional and integer results do not add up to the original value");
std::cerr << "Values were: " << std::setprecision(35) << " "
<< std::left << a << ipart << " " << fract << std::endl;
}
if((boost::math::sign(a) != boost::math::sign(fract)) && boost::math::sign(fract))
{
BOOST_ERROR("Original and fractional parts have differing signs");
std::cerr << "Values were: " << std::setprecision(35) << " "
<< std::left << a << ipart << " " << fract << std::endl;
}
if((boost::math::sign(a) != boost::math::sign(ipart)) && boost::math::sign(ipart))
{
BOOST_ERROR("Original and integer parts have differing signs");
std::cerr << "Values were: " << std::setprecision(35) << " "
<< std::left << a << ipart << " " << ipart << std::endl;
}
if(fabs(a-ipart) >= 1)
{
BOOST_ERROR("Rounded result differed by more than 1 from the original");
std::cerr << "Values were: " << std::setprecision(35) << std::setw(40)
<< std::left << a << ipart << std::endl;
}
}
template <class T>
void test_round(T, const char* name )
{
BOOST_MATH_STD_USING
std::cout << "Testing rounding with type " << name << std::endl;
for(int i = 0; i < 1000; ++i)
{
T arg = get_random<T>();
T r = boost::math::round(arg);
check_within_half(arg, r);
r = boost::math::trunc(arg);
check_trunc_result(arg, r);
T frac = boost::math::modf(arg, &r);
check_modf_result(arg, frac, r);
if(abs(r) < (std::numeric_limits<int>::max)())
{
int i = boost::math::iround(arg);
check_within_half(arg, i);
i = boost::math::itrunc(arg);
check_trunc_result(arg, i);
r = boost::math::modf(arg, &i);
check_modf_result(arg, r, i);
}
if(abs(r) < (std::numeric_limits<long>::max)())
{
long l = boost::math::lround(arg);
check_within_half(arg, l);
l = boost::math::ltrunc(arg);
check_trunc_result(arg, l);
r = boost::math::modf(arg, &l);
check_modf_result(arg, r, l);
}
#ifdef BOOST_HAS_LONG_LONG
if(abs(r) < (std::numeric_limits<boost::long_long_type>::max)())
{
boost::long_long_type ll = boost::math::llround(arg);
check_within_half(arg, ll);
ll = boost::math::lltrunc(arg);
check_trunc_result(arg, ll);
r = boost::math::modf(arg, &ll);
check_modf_result(arg, r, ll);
}
#endif
}
//
// Finish off by testing the error handlers:
//
BOOST_CHECK_THROW(boost::math::iround(static_cast<T>(1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::iround(static_cast<T>(-1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::lround(static_cast<T>(1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::lround(static_cast<T>(-1e20)), boost::math::rounding_error);
#ifdef BOOST_HAS_LONG_LONG
BOOST_CHECK_THROW(boost::math::llround(static_cast<T>(1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::llround(static_cast<T>(-1e20)), boost::math::rounding_error);
#endif
if(std::numeric_limits<T>::has_infinity)
{
BOOST_CHECK_THROW(boost::math::round(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::iround(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::iround(-std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::lround(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::lround(-std::numeric_limits<T>::infinity()), boost::math::rounding_error);
#ifdef BOOST_HAS_LONG_LONG
BOOST_CHECK_THROW(boost::math::llround(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::llround(-std::numeric_limits<T>::infinity()), boost::math::rounding_error);
#endif
}
if(std::numeric_limits<T>::has_quiet_NaN)
{
BOOST_CHECK_THROW(boost::math::round(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::iround(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::lround(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
#ifdef BOOST_HAS_LONG_LONG
BOOST_CHECK_THROW(boost::math::llround(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
#endif
}
BOOST_CHECK_THROW(boost::math::itrunc(static_cast<T>(1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::itrunc(static_cast<T>(-1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::ltrunc(static_cast<T>(1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::ltrunc(static_cast<T>(-1e20)), boost::math::rounding_error);
#ifdef BOOST_HAS_LONG_LONG
BOOST_CHECK_THROW(boost::math::lltrunc(static_cast<T>(1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::lltrunc(static_cast<T>(-1e20)), boost::math::rounding_error);
#endif
if(std::numeric_limits<T>::has_infinity)
{
BOOST_CHECK_THROW(boost::math::trunc(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::itrunc(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::itrunc(-std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::ltrunc(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::ltrunc(-std::numeric_limits<T>::infinity()), boost::math::rounding_error);
#ifdef BOOST_HAS_LONG_LONG
BOOST_CHECK_THROW(boost::math::lltrunc(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::lltrunc(-std::numeric_limits<T>::infinity()), boost::math::rounding_error);
#endif
}
if(std::numeric_limits<T>::has_quiet_NaN)
{
BOOST_CHECK_THROW(boost::math::trunc(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::itrunc(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::ltrunc(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
#ifdef BOOST_HAS_LONG_LONG
BOOST_CHECK_THROW(boost::math::lltrunc(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
#endif
}
}
int test_main(int, char* [])
{
test_round(0.1F, "float");
test_round(0.1, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_round(0.1L, "long double");
test_round(boost::math::concepts::real_concept(0.1), "real_concept");
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::cout;
#endif
return 0;
}